Stat 451 Homework #4

3.40 (a)
$$g(x) = \frac{2}{3} \int_0^1 (x+2y) dy = \frac{2}{3} (x+1)$$
, for $0 \le x \le 1$.

(b)
$$h(y) = \frac{2}{3} \int_0^1 (x+2y) dy = \frac{1}{3} (1+4y)$$
, for $0 \le y \le 1$.

(c)
$$P(X < 1/2) = \frac{2}{3} \int_0^{1/2} (x+1) dx = \frac{5}{12}$$
.

3.44 (a)
$$1 = k \int_{30}^{50} \int_{30}^{50} (x^2 + y^2) dx dy = k(50 - 30) \left(\int_{30}^{50} x^2 dx + \int_{30}^{50} y^2 dy \right) = \frac{392k}{3} \cdot 10^4.$$

So, $k = \frac{3}{392} \cdot 10^{-4}.$

(b)
$$P(30 \le X \le 40, \ 40 \le Y \le 50) = \frac{3}{392} \cdot 10^{-4} \int_{30}^{40} \int_{40}^{50} (x^2 + y^2) \ dy \ dx$$

= $\frac{3}{392} \cdot 10^{-3} \left(\int_{30}^{40} x^2 \ dx + \int_{40}^{50} y^2 \ dy \right) = \frac{3}{392} \cdot 10^{-3} \left(\frac{40^3 - 30^3}{3} + \frac{50^3 - 40^3}{3} \right) = \frac{49}{196}.$

(c)
$$P(30 \le X \le 40, \ 30 \le Y \le 40) = \frac{3}{392} \cdot 10^{-4} \int_{30}^{40} \int_{30}^{40} (x^2 + y^2) \ dx \ dy = 2\frac{3}{392} \cdot 10^{-4} (40 - 30) \int_{30}^{40} x^2 \ dx = \frac{3}{196} \cdot 10^{-3} \frac{40^3 - 30^3}{3} = \frac{37}{196}.$$

3.52 A tabular form of the experiment can be established as,

Sample Space	\boldsymbol{x}	\boldsymbol{y}
HHH	3	3
HHT	2	1
HTH	2	1
THH	2	1
HTT	1	-1
THT	1	-1
TTH	1	-1
TTT	0	-3

So, the joint probability distribution is,

4.10
$$\mu_X = \sum xg(x) = (1)(0.17) + (2)(0.5) + (3)(0.33) = 2.16,$$

 $\mu_Y = \sum yh(y) = (1)(0.23) + (2)(0.5) + (3)(0.27) = 2.04.$

4.12
$$E(X) = \int_0^1 2x(1-x) dx = 1/3$$
. So, $(1/3)(\$5,000) = \$1,667.67$.

4.26
$$E(Z) = E(\sqrt{X^2 + Y^2}) = \int_0^1 \int_0^1 4xy \sqrt{x^2 + y^2} dx dy = \frac{4}{3} \int_0^1 [y(1+y^2)^{3/2} - y^4] dy = 8(2^{3/2} - 1)/15 = 0.9752.$$

- 4.46 From previous exercise, $k = \left(\frac{3}{392}\right) 10^{-4}$, and $g(x) = k \left(20x^2 + \frac{98000}{3}\right)$, with $\mu_X = E(X) = \int_{30}^{50} xg(x) \ dx = k \int_{30}^{50} \left(20x^3 + \frac{98000}{3}x\right) \ dx = 40.8163$. Similarly, $\mu_Y = 40.8163$. On the other hand, $E(XY) = k \int_{30}^{50} \int_{30}^{50} xy(x^2 + y^2) \ dy \ dx = 1665.3061$. Hence, $\sigma_{XY} = E(XY) \mu_X \mu_Y = 1665.3061 (40.8163)^2 = -0.6642$.
 - 4.50 $E(X) = 2 \int_0^1 x(1-x) dx = 2 \left(\frac{x^2}{2} \frac{x^3}{3}\right) \Big|_0^1 = \frac{1}{3}$ and $E(X^2) = 2 \int_0^1 x^2(1-x) dx = 2 \left(\frac{x^3}{3} \frac{x^4}{4}\right) \Big|_0^1 = \frac{1}{6}$. Hence, $Var(X) = \frac{1}{6} \left(\frac{1}{3}\right)^2 = \frac{1}{18}$, and $\sigma = \sqrt{1/18} = 0.2357$.