
Prelab 2 - Customizing a Chipyard Generated SoC

This tutorial is divided into two parts plus a Prerequisites sec5on. Part 1 will guide you through
wri5ng a new "Config," enabling the crea5on of a custom SoC by mixing different components
generated by Chipyard, such as cores, caches, accelerators, and more. Part 2 will cover integra5ng
a peripheral device (our own RTL wriHen in Verilog) into the Chipyard-generated SoC. Steps on
verifying the generated SoC RTL will also be there for both the parts.

Prerequisites

Make sure to complete the steps men5oned in the Lab 1 5ll Chipyard Configura/on.3. No need to
run the vlsi flow.

hHps://gitlab.cecs.pdx.edu/west/crea5ng-a-gds/-/blob/main/chipyard_asap7_commercial.md

If you have already done the above steps and have setup chipyard correctly, then run the following
two commands. These 2 commands need to be run every 5me you open a new Xterm. {Note you
can replace $USER with your username}

1) exec “$SHELL”
This command sources the ~/.bashrc file and sets the environment variables present in the
file.
Make sure to have the following export commands in the .bashrc file, before running the
command. Otherwise, copy and paste the missing lines and then run it.

export PATH="$PATH":/u/$USER/miniforge3/condabin
export LANG=en_US.UTF-8
export PDK_DIR=/stash/asap7/asap7PDK_r1p7

2) source env.sh
run this command in /u/$USER/crea5ng-a-gds/chipyard
type cd ~/crea/ng-a-gds/chipyard/ then type source env.sh

https://gitlab.cecs.pdx.edu/west/creating-a-gds/-/blob/main/chipyard_asap7_commercial.md

Part 1 – Crea.ng a Heterogenous SoC

In Lab 1 we ran the RTL to GDS flow on a TinyRocket Chip.

A TinyRocket Chip is basically a stripped down version of the Rocket Chip.

hHps://chipyard.readthedocs.io/en/1.10.0/Generators/Rocket-Chip.html

The Chipyard framework mainly makes use of scala programming language. The TinyRocketConfig
can be found in the following file (Line 14).

/u/$USER/crea/ng-a-
gds/chipyard/generators/chipyard/src/main/scala/config/RocketConfigs.scala

You can use gvim <above file path> to open and view/edit the file.

Similarly we can create our own configs, create a custom SoC and then run the rest of the vlsi flow
on it(synthesis, par, drc & lvs). {Commands provided in Lab 1}

The Chipyard framework involves mul5ple cores and accelerators that can be composed in
arbitrary ways. This discussion will focus on how you combine Rocket, BOOM and Hwacha in
par5cular ways to create a unique SoC.

Note - (Rocket and Boom are cores while Hwacha is an accelerator which can be connected to any
of the cores).

To read more about these Chipyard-generated RTL

hHps://chipyard.readthedocs.io/en/1.10.0/Generators/index.html

Steps to crea+ng a custom SoC.

1) For this tutorial, go to /u/$USER/crea5ng-a-
gds/chipyard/generators/chipyard/src/main/scala/config/

2) Open HeteroConfigs.scala

https://chipyard.readthedocs.io/en/1.10.0/Generators/Rocket-Chip.html
https://chipyard.readthedocs.io/en/1.10.0/Generators/index.html

This scala file includes configs which contains instan5a5ons of more than one type of cores.
Similarly we can create a new config according to our liking.

3) Create a new config class and instan5ate the AbstractConfig class first. Here, it is called
TapeoutClassConfig.

The AbstractConfig class contains the config fragments for construc5ng the non-/le parts of
the SoC. Here 5le refers to the core and its immediate caches.

Fig. 1 – An example rocket 5le from a rocket chip.

 File path: /u/$USER/crea5ng-a-
gds/chipyard/generators/chipyard/src/main/scala/config/AbstractConfig.scala

4) Add the rest of the components to our custom config

 Here a simple config is created which contains one boom core and one rocket core.

{Important – Lines 26,27 and 28 are called config fragments. The Config fragments are added
from boKom to top. So this way we can override the base values/components menOoned in the
AbstractConfig by adding more config fragments on top of it. Not shown in this example as only
two different types of cores are added here, which are not there anyway in the AbstractConfig}.

5) Save and close the file.

That’s it! A new configura5on has been added. Now it’s 5me to generate the RTL for our
new SoC and test it. You can play around with the config fragments.

Verifica.on (Bare Metal Tes.ng)

Steps to generate and test the SoC

1) Go to /u/$USER/crea5ng-a-gds/chipyard/tests
This directory contains the C programs for bare metal tes5ng of the generated SoCs.

2) Run make command in this directory.
This will invoke the cross compiler to generate riscv-executables, which can be fed to
our SoC. You should see a .riscv file for each of the C file, aoer running make.

3) Now go to /u/$USER/crea5ng-a-gds/chipyard/sims/verilator

4) Run make CONFIG=TapeoutClassConfig
This should result in another binary called simulator-chipyard.harness-
TapeoutClassConfig.
If that works, it means all the Chisel and Scala are well wriHen, and it’s 5me to check if
all the RTL is connected and mapped properly. {In this example it’s easy to write the
scala code, so this command should most definitely work. This can be used for checking
future designs with more scala coding involved}.

5) Run make CONFIG=TapeoutClassConfig BINARY=../../tests/hello.riscv run-binary

This runs the RISC-V binary of hello.c, where hello.c is a C program which outputs the
type of core 0, i.e., whether core 0 is a rocket core or a boom. It is a boom core in this
case. You can switch the cores by swapping lines 26 and 27 and then re-running by
make clean followed by steps 4 and 5 again.

Go to generated-src/chipyard.harness.TestHarness.<project>/gen-collateral to see the
generated RTL files.

Part 2 – Integra.ng a Peripheral Component using MMIO

Chipyard allows us to integrate exis5ng Verilog IPs in the form of black boxes.

Peripheral components can be integrated as a Memory Mapped IO device or as a Tightly coupled
Rocc Accelarator (IO device accesed through custom instruc5ons).

In this tutorial we will be going over MMIO integra5on.

For integra5ng our Verilog module into a Chipyard SoC, we need to place our Verilog in a specific
directory and also write a scala wrapper for proper integra5on.

Here we will be using the Verilog code for a GCD (Greatest Common Divisor) module, which is
already provided with Chipyard. This takes two inputs – x&y and computes the greatest common
divisor for the two inputs.

Step 1 – Crea/ng the directory structure

Go to /u/$USER/crea5ng-a-gds/chipyard/generators

Create the following directory structure

Here are the relevant commands to be entered in generators directory. Enter them in the order
given.

mkdir jon {you can change jon to anything you wish, but beHer to keep it as jon for ease of
comple5on of this tutorial.}

cd jon

touch build.sbt

mkdir src

cd src

mkdir main

cd main

mkdir scala

mkdir resources

cd resources

mkdir vsrc

Step 2 – Copy the Verilog and scala code

For this tutorial we are using the Verilog code that is already present in the repo. The scala
wrapper is also present the repo. Now we need to copy these 2 files into the corresponding folders
in the directory structure we created in step 1.

cp /u/$USER/crea/ng-a-gds/chipyard/generators/chipyard/src/main/scala/example/GCD.scala
/u/jonthom/crea/ng-a-gds/chipyard/generators/jon/src/main/scala/

cp /u/jonthom/crea/ng-a-
gds/chipyard/generators/chipyard/src/main/resources/vsrc/GCDMMIOBlackBox.v
/u/jonthom/crea/ng-a-gds/chipyard/generators/jon/src/main/resources/vsrc/

The final directory structure should look like this.

Step 3 – Edit the build.sbt file

We need to add our project to the top level buildfile.

filepath - /u/$USER/crea5ng-a-gds/chipyard/build.sbt

Here our project name is jon. So add the lines 233-237 as it is in the screenshot above.

Then we need to add our project to the chipyard project in the same buildfile.

Our project ‘jon’ has been added to the chipyard dependencies.

Aoer this add our project as a dependency to the tapeout project in the same file

Step 4 – Edit the DigitalTop.scala file

Before we edit this file it is recommended to change line 1 of the GCD.scala file which we copy-
pasted in step 2. In this case the package name is changed to tapeoutclass_package.

DigitalTop.scala{filepath - /u/$USER/crea5ng-a-
gds/chipyard/generators/chipyard/src/main/scala/DigitalTop.scala }

In DigitalTop.scala comment lines 30 and 50 and add our traits(lines 31 and 51) as in the
screenshot below. The DigitalTop Module is the actual RTL that gets synthesized.

Step 5 – Add the new Config

Finally we can add the new config as we did in Part 1. This 5me we will add our config in
MMIOAcceleratorConfigs.scala.

{file path - /u/$USER/crea5ng-a-
gds/chipyard/generators/chipyard/src/main/scala/config/MMIOAcceleratorConfigs.scala }

That’s it!

Verifica.on (Bare metal tes.ng)

The RISC-V binaries should already be generated in the test directory if Part 1 of this lab is
completed. Else follow steps 1 and 2 in the verifica5on sec5on of Part 1.

1) Go to /u/$USER/crea5ng-a-gds/chipyard/sims/verilator

2) Run make CONFIG=TapeoutGCD

3) Run make CONFIG=TapeoutGCD BINARY=../../tests/gcd.riscv run-binary

change the x and y input values in gcd.c in the test directory and run make again to
generate new gcd.riscv and rerun this step 3 command again to test again.

gcd.c {x=60, y=40}

terminal output {GCD=20}
i.e., the Greatest Common Divisor of 60 and 40 is 20.

I would highly recommend checking out the following Github repo for clarity regarding the
scala/chisel code.

hHps://github.com/Intensivate/learning-journey/wiki/Adding-an-MMIO-Peripheral

https://github.com/Intensivate/learning-journey/wiki/Adding-an-MMIO-Peripheral

