Prelab 2 - Customizing a Chipyard Generated SoC

This tutorial is divided into two parts plus a Prerequisites section. Part 1 will guide you through
writing a new "Config," enabling the creation of a custom SoC by mixing different components
generated by Chipyard, such as cores, caches, accelerators, and more. Part 2 will cover integrating
a peripheral device (our own RTL written in Verilog) into the Chipyard-generated SoC. Steps on
verifying the generated SoC RTL will also be there for both the parts.

Prerequisites

Make sure to complete the steps mentioned in the Lab 1 till Chipyard Configuration.3. No need to
run the vlisi flow.

https://gitlab.cecs.pdx.edu/west/creating-a-gds/-/blob/main/chipyard asap7 commercial.md

If you have already done the above steps and have setup chipyard correctly, then run the following
two commands. These 2 commands need to be run every time you open a new Xterm. {Note you
can replace SUSER with your username}

1) exec “SSHELL”
This command sources the ~/.bashrc file and sets the environment variables present in the
file.
Make sure to have the following export commands in the .bashrc file, before running the
command. Otherwise, copy and paste the missing lines and then run it.

export PATH="SPATH":/u/SUSER/miniforge3/condabin
export LANG=en_US.UTF-8
export PDK_DIR=/stash/asap7/asap7PDK_r1p7

2) source env.sh
run this command in /u/SUSER/creating-a-gds/chipyard
type cd ~/creating-a-gds/chipyard/ then type source env.sh

https://gitlab.cecs.pdx.edu/west/creating-a-gds/-/blob/main/chipyard_asap7_commercial.md

Part 1 — Creating a Heterogenous SoC

In Lab 1 we ran the RTL to GDS flow on a TinyRocket Chip.
A TinyRocket Chip is basically a stripped down version of the Rocket Chip.

https://chipyard.readthedocs.io/en/1.10.0/Generators/Rocket-Chip.html

The Chipyard framework mainly makes use of scala programming language. The TinyRocketConfig
can be found in the following file (Line 14).

Ju/SUSER/creating-a-
gds/chipyard/generators/chipyard/src/main/scala/config/RocketConfigs.scala

You can use gvim <above file path> to open and view/edit the file.

package chipyard

import org.chipsalliance.cde.config.{Conf1ig}
import freechips.rocketchip.diplomacy.{AsynchronousCrossing}

/] ==
// Rocket Configs

10 class RocketConfig extends Config(
11 new freechips.rocketchip.subsystem.withNBigCores(1) ++ // single rocket-core
12 new chipyard.config.AbstractConfig)

14 class TinyRocketConfig extends Config(

15 new chipyard.iobinders.withDontTouchIOBinders(false) ++ // TODO FIX: Don't dontTouch the ports
16 new freechips.rocketchip.subsystem.WwithIncoherentBusTopology ++ // use incoherent bus topology

17 new freechips.rocketchip.subsystem.withNBanks(0) ++ // remove L2%

18 new freechips.rocketchip.subsystem.WithNoMemPort ++ // remove backing memory

19 new freechips.rocketchip.subsystem.withlTinyCore ++ // single tiny rocket-core

20 new chipyard.config.AbstractConfig)

22 class UARTTSIRocketConfig extends Configl

23 new chipyard.harness.wWithUARTSerial ++

24 new chipyard.config.WithNoUART ++

25 new chipyard.config.wWithMemoryBusFrequency(10) ++

26 new chipyard.config.withPeripheryBusFrequency(10) ++

27 new freechips.rocketchip.subsystem.wWithNBigCores(1) ++ // single rocket-core
28 new chipyard.config.AbstractConfig]]

Similarly we can create our own configs, create a custom SoC and then run the rest of the visi flow
on it(synthesis, par, drc & Ivs). {Commands provided in Lab 1}

The Chipyard framework involves multiple cores and accelerators that can be composed in
arbitrary ways. This discussion will focus on how you combine Rocket, BOOM and Hwacha in
particular ways to create a unique SoC.

Note - (Rocket and Boom are cores while Hwacha is an accelerator which can be connected to any
of the cores).

To read more about these Chipyard-generated RTL

https://chipyard.readthedocs.io/en/1.10.0/Generators/index.html

Steps to creating a custom SoC.

1) For this tutorial, go to /u/SUSER/creating-a-
gds/chipyard/generators/chipyard/src/main/scala/config/

2) Open HeteroConfigs.scala

https://chipyard.readthedocs.io/en/1.10.0/Generators/Rocket-Chip.html
https://chipyard.readthedocs.io/en/1.10.0/Generators/index.html

package chipyard
import org.chipsalliance.cde.config.{Config}

[/ =
// Heterogenous Configs
L

class LargeBoomAndRocketConfig extends Config(
new boom.common.WithNLargeBooms (1) ++ // single-core boom
new freechips.rocketchip.subsystem.WithNBigCores(1) ++ // single rocket-core
new chipyard.config.WithSystemBuswidth(128) ++
new chipyard.config.AbstractConfig)

// DOC 1include start: BoomAndRocketWithHwacha
class HwachalargeBoomAndHwachaRocketConfig extends Config(
new chipyard.config.WithHwachaTest ++

new hwacha.DefaultHwachaConfig ++ // add hwacha to all harts
new boom.common.wWithNLargeBooms (1) ++ // add 1 boom core
new freechips.rocketchip.subsystem.withNBigCores(1) ++ // add 1 rocket core

new chipyard.config.WithSystemBuswidth(128) ++
new chipyard.config.AbstractConfig)
// DOC include end: BoomAndRocketWithHwacha

class LargeBoomAndHwachaRocketConfig extends Config(
new chipyard.config.WithMultiRoCC ++ // support heterogeneous rocc

new chipyard.config.WithMultiRoCCHwacha(0) ++ // put hwacha on hart-0 (rocket)
new hwacha.DefaultHwachaConfig ++ // set default hwacha config keys
new boom.common.WithNLargeBooms (1) ++ // add 1 boom core

new freechips.rocketchip.subsystem.withNBigCores(1) ++ // add 1 rocket core
new chipyard.config.WithSystemBuswidth(128) ++
new chipyard.config.AbstractConfig)

This scala file includes configs which contains instantiations of more than one type of cores.
Similarly we can create a new config according to our liking.

Create a new config class and instantiate the AbstractConfig class first. Here, it is called
TapeoutClassConfig.

21 new chipyard.config.WithSystemBuswWidth(128) ++
22 new chipyard.config.AbstractConfig)

23 // DOC 1include end: BoomAndRocketWithHwacha

24

25 class TapeoutClassConfig extends Config(

26

27 new chipyard.config.AbstractConfig

28)

29

30

31

32 class LargeBoomAndHwachaRocketConfig extends Config(

33 new chipyard.config.withMultiRoCC ++
2A now rhinuvard ranfin Wit+hMul +1RACCHWarhal(n) +5

The AbstractConfig class contains the config fragments for constructing the non-tile parts of
the SoC. Here tile refers to the core and its immediate caches.

RocketTile

Rocket > PTW

Y ¥ v
L1l L1D

Y Y
TileBus

Fig. 1 — An example rocket tile from a rocket chip.

File path: /u/SUSER/creating-a-
gds/chipyard/generators/chipyard/src/main/scala/config/AbstractConfig.scala

4) Add the rest of the components to our custom config

25 class TapeoutClassConfig extends Configl

26 new freechips.rocketchip.subsystem.WithNBigCores(1l) ++ // 1 rocket cores added
27 new boom.common.WithNLargeBooms(1) ++

28 new chipyard.config.WithSystemBuswWidth(128) ++

29 new chipyard.config.AbstractConfig

30)

Here a simple config is created which contains one boom core and one rocket core.

{Important — Lines 26,27 and 28 are called config fragments. The Config fragments are added

from bottom to top. So this way we can override the base values/components mentioned in the
AbstractConfig by adding more config fragments on top of it. Not shown in this example as only
two different types of cores are added here, which are not there anyway in the AbstractConfig}.

5) Save and close the file.

That’s it! A new configuration has been added. Now it’s time to generate the RTL for our
new SoC and test it. You can play around with the config fragments.

Verification (Bare Metal Testing)

Steps to generate and test the SoC

1) Go to /u/SUSER/creating-a-gds/chipyard/tests
This directory contains the C programs for bare metal testing of the generated SoCs.

2) Run make command in this directory.
This will invoke the cross compiler to generate riscv-executables, which can be fed to
our SoC. You should see a .riscv file for each of the C file, after running make.

3) Now go to /u/SUSER/creating-a-gds/chipyard/sims/verilator

4) Run make CONFIG=TapeoutClassConfig
This should result in another binary called simulator-chipyard.harness-
TapeoutClassConfig.
If that works, it means all the Chisel and Scala are well written, and it’s time to check if
all the RTL is connected and mapped properly. {In this example it’s easy to write the
scala code, so this command should most definitely work. This can be used for checking
future designs with more scala coding involved}.

5) Run make CONFIG=TapeoutClassConfig BINARY=../../tests/hello.riscv run-binary

This runs the RISC-V binary of hello.c, where hello.c is a C program which outputs the
type of core 0, i.e., whether core 0 is a rocket core or a boom. It is a boom core in this
case. You can switch the cores by swapping lines 26 and 27 and then re-running by
make clean followed by steps 4 and 5 again.

Go to generated-src/chipyard.harness.TestHarness.<project>/gen-collateral to see the
generated RTL files.

Part 2 — Integrating a Peripheral Component using MMIO

Chipyard allows us to integrate existing Verilog IPs in the form of black boxes.

Peripheral components can be integrated as a Memory Mapped 10 device or as a Tightly coupled
Rocc Accelarator (10 device accesed through custom instructions).

In this tutorial we will be going over MMIO integration.

For integrating our Verilog module into a Chipyard SoC, we need to place our Verilog in a specific
directory and also write a scala wrapper for proper integration.

Here we will be using the Verilog code for a GCD (Greatest Common Divisor) module, which is
already provided with Chipyard. This takes two inputs — x&y and computes the greatest common
divisor for the two inputs.

Step 1 — Creating the directory structure

Go to /u/SUSER/creating-a-gds/chipyard/generators

Create the following directory structure

generators/yourproject/
build.sbt
src/main/
scala/
resources/
vsrc/

YourFile.v

Here are the relevant commands to be entered in generators directory. Enter them in the order
given.

mkdir jon {you can change jon to anything you wish, but better to keep it as jon for ease of
completion of this tutorial.}

cd jon

touch build.sbt
mkdir src

cd src

mkdir main

cd main

mkdir scala
mkdir resources
cd resources

mkdir vsrc

Step 2 — Copy the Verilog and scala code

For this tutorial we are using the Verilog code that is already present in the repo. The scala
wrapper is also present the repo. Now we need to copy these 2 files into the corresponding folders
in the directory structure we created in step 1.

cp /u/SUSER/creating-a-gds/chipyard/generators/chipyard/src/main/scala/example/GCD.scala
/u/jonthom/creating-a-gds/chipyard/generators/jon/src/main/scala/

cp /u/jonthom/creating-a-
gds/chipyard/generators/chipyard/src/main/resources/vsrc/GCDMMIOBlackBox.v
/u/jonthom/creating-a-gds/chipyard/generators/jon/src/main/resources/vsrc/

generators/chipyard/
build.sbt
src/main/
scala/
example/
GCD.scala
resources/
vsrc/
GCDMMIOBlackBox.v

The final directory structure should look like this.

Step 3 — Edit the build.sbt file

We need to add our project to the top level buildfile.

filepath - /u/SUSER/creating-a-gds/chipyard/build.sbt

230 .settings(chiselTestSettings)

231 .settings(commonSettings)

232

233 lazy val jon = (project in file("generators/jon"))
234 .dependsOn(rocketchip)

235 .settings(1fbraryDependencies ++= rocketLibDeps.value)
236 .settings(chiselTestSettings)

237 .settings(commonSettings)

238

239

240 lazy val gemmini = (project in file("generators/gemmini®))
241 .dependsOn(rocketchip)

242 .settings(libraryDependencies ++= rocketLibDeps.value)
243 .settings(chiselTestSettings)

244 .settings(commonSettings)

SAC

Here our project name is jon. So add the lines 233-237 as it is in the screenshot above.

Then we need to add our project to the chipyard project in the same buildfile.

151 [lazy val chipyard = (project in file("generators/chipyard"))

152 .dependsOn(testchipip, rocketchip, boom, hwacha, sifive_blocks, sifive_cache, 1ocell,
153 sha3, // On separate line to allow for cleaner tutorial-setup patches
54 jon

155 dsptools, “rocket-dsp-utils”,

156 gemmini, icenet, tracegen, cva6, nvdla, sodor, 1ibex, fft_generator,
157 constellation, mempress, barf, shuttle)

158 .settings(libraryDependencies ++= rocketLibDeps.value)

159 .settings(

160 libraryDependencies ++= Seql(

161 "org.reflections" % "reflections"” % "0.10.2"

162)

163)

Our project ‘jon’ has been added to the chipyard dependencies.

After this add our project as a dependency to the tapeout project in the same file

259 lazy val tapeout = (project in file("./tools/barstools/"))
260 .dependsOn(fon) //changed

261 .settings(chiselSettings)

262 .settings(chiselTestSettings)

263 .settings(commonSettings)

Step 4 — Edit the DigitalTop.scala file

Before we edit this file it is recommended to change line 1 of the GCD.scala file which we copy-
pasted in step 2. In this case the package name is changed to tapeoutclass_package.

[//package chipyard.example
package tapeoutclass_package

1
2
3
4 1mport chisel3._

5 import chisel3.util._

6 import chisel3.experimental.{IntParam, BaseModule}

7 import freechips.rocketchip.amba.ax14.

8 import freechips.rocketchip.subsystem.BaseSubsystem

9 1import org.chipsalliance.cde.config.{Parameters, Field, Config}
10 import freechips.rocketchip.diplomacy._

11 import freechips.rocketchip.regmapper.{HasRegMap, RegField}

12 import freechips.rocketchip.tilelink. _

13 1mport freechips.rocketchip.util.UIntIsOneof

DigitalTop.scala{filepath - /u/SUSER/creating-a-
gds/chipyard/generators/chipyard/src/main/scala/DigitalTop.scala }

In DigitalTop.scala comment lines 30 and 50 and add our traits(lines 31 and 51) as in the
screenshot below. The DigitalTop Module is the actual RTL that gets synthesized.

25 with sifive.blocks.devices.gpio.HasPeripheryGPIO // Enables optionally adding the sifive GPIOs

26 with sifive.blocks.devices.spi.HasPeripherySPIFlash // Enables optionally adding the sifive SPI flash controller

27 with sifive.blocks.devices.spi.HasPeripherySPI // Enables optionally adding the sifive SPI port

28 with icenet.CanHavePeripheryIceNIC // Enables optionally adding the IceNIC for FireSim

29 with chipyard.example.CanHavePeripheryInitZero // Enables optionally adding the initzero example widget

30 //with chipyard.example.CanHavePeripheryGCD // Enables optionally adding the GCD example widget

31 with tapeoutclass_package.CanHavePeripheryGCD

32 with chipyard.example.CanHavePeripheryStreamingFIR // Enables optionally adding the DSPTools FIR example widget

33 with chipyard.example.CanHavePeripheryStreamingPassthrough // Enables optionally adding the DSPTools streaming-passt
rough example widget

34 with nvidia.blocks.dla.CanHavePeripheryNVDLA // Enables optionally having an NVDLA

35 with chipyard.clocking.HasChipyardPRCI // Use Chipyard reset/clock distribution

36 with fftgenerator.CanHavePeripheryFFT // Enables optionally having an MMIO-based FFT block

37 with constellation.soc.CanHaveGlobalNoC // Support instantiating a global NoC interconnect

38 {

39 override lazy val module = new DigitalTopModule(this)

40 }

41

42 class DigitalTopModule[+L <: DigitalTopl(l: L) extends ChipyardSystemModule(l)

43 with testchipip.CanHaveTraceIOModuleImp

44 with sifive.blocks.devices.12c.HasPeripheryI2CModuleImp

45 with sifive.blocks.devices.pwm.HasPeripheryPWMModuleImp

46 with sifive.blocks.devices.uart.HasPeripheryUARTModuleImp

47 with sifive.blocks.devices.gpio.HasPeripheryGPIOModuleImp

48 with sifive.blocks.devices.spi.HasPeripherySPIFlashModuleImp

49 with sifive.blocks.devices.spi.HasPeripherySPIModuleImp

50 [J//with chipyard.example.CanHavePeripheryGCDModuleImp

51 with tapeoutclass_package.CanHavePeripheryGCDModuleImp

52 with freechips.rocketchip.util.DontTouch

53 // DOC include end: DigitalTop

Step 5 — Add the new Config

Finally we can add the new config as we did in Part 1. This time we will add our config in
MMIOAcceleratorConfigs.scala.

{file path - /u/SUSER/creating-a-
gds/chipyard/generators/chipyard/src/main/scala/config/MMIOAcceleratorConfigs.scala }

10 //Jonathan Config

11 class TapeoutGCD extends Config(

12 new tapeoutclass_package.WithGCD(useAXI4=false, useBlackBox=true) ++ // Use GCD Chisel, connect Tilelink
13 new freechips.rocketchip.subsystem.withNBigCores(1) ++

14 new chipyard.config.AbstractConfig)

15

That’s it!

Verification (Bare metal testing)

The RISC-V binaries should already be generated in the test directory if Part 1 of this lab is
completed. Else follow steps 1 and 2 in the verification section of Part 1.

1) Go to /u/SUSER/creating-a-gds/chipyard/sims/verilator
2) Run make CONFIG=TapeoutGCD

3) Run make CONFIG=TapeoutGCD BINARY=../../tests/gcd.riscv run-binary

change the x and y input values in gcd.c in the test directory and run make again to
generate new gcd.riscv and rerun this step 3 command again to test again.

10 white (y != 0) {
11 if (x > y)

12 X=X -Y;
13 else

14 y =y - Xx;
15}

16 return x;

17 }

18

19 // DOC 1include start: GCD test

20 int main(void)

21 {

22 uint32 t result, ref, x =I00, y = 40;

24 // wait for peripheral to be ready
2 while ((reg_read8(GCD_STATUS) & 0x2) == 0) ;

2 reg_write32(GCD_X, x);
28 reg_write32(GCD_Y, y);

gcd.c {x=60, y=40}

[UART] UARTO is here (stdin/stdout).
Hardware result 20 1is correct for GCD

- /u/jonthom/creating-a-gds/chipyard/sims/verilator/generated-src/chipyard.harness.TestHarness.TapeoutGCD/gen-collateral/Te
stDriver.v:158: Verilog $finish

terminal output {GCD=20}
i.e., the Greatest Common Divisor of 60 and 40 is 20.

| would highly recommend checking out the following Github repo for clarity regarding the
scala/chisel code.

https://github.com/Intensivate/learning-journey/wiki/Adding-an-MMIO-Peripheral

https://github.com/Intensivate/learning-journey/wiki/Adding-an-MMIO-Peripheral

