
Homework Set #3: 
 

1.  When a thermal oxide of thickness 0.50 m is grown on a silicon wafer using either 

wet or dry oxidation, what thickness of the substrate is consumed?  What is the apparent 

color of this oxide layer when viewed normally from above?  Where are the top and 

bottom surfaces of the resulting oxide layer located relative to the original surface of the 

wafer?  Does any of this depend on crystal orientation (i.e., will results differ on [100] 

and [111] wafers)?  Why or why not?  (Assume a density of elemental silicon as 2.33 

g/cm3 and a density of amorphous silicon dioxide, i.e., fused quartz or quartz glass, as 

2.27 g/cm3.) 

 

The density of silicon is 2.33 g/cm3 and the density of amorphous silicon dioxide 

is 2.27 g/cm3.  Thus, dividing both of these values by their formula weights, one 

finds that the formula weight density of silicon is 0.0829 FW/cm3 and the formula 

weight density of amorphous silicon dioxide is 0.0378 FW/cm3.  Thus, the ratio of 

the formula weight density of amorphous silicon dioxide to silicon is 0.4555.  

Therefore, for a given silicon dioxide film of arbitrary thickness, xo: 
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Similarly, the number of formula weights of silicon consumed is given by: 
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where, Six  is the thickness of silicon consumed.  Clearly, the stoichometry of the 

growth reaction requires: 
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Thus, one finds: 

 

4555.0
FW/cm 0829.0

FW/cm 0378.0
3

3


o

Si

x

x
 

 

Therefore, for any thermal oxidation process the thickness of silicon consumed is 

about 45.5% the thickness of amorphous silicon dioxide grown.  Thus, for a 0.5 

m thick thermal oxide, 0.22775 m of the silicon substrate must be consumed. 

 

The relative positions of top and bottom surfaces of the oxide layer relative to the 

original wafer surface are illustrated by the following figure  

 



 
 

Although thermal oxide is very transparent at optical and ultraviolet wavelengths, 

diffraction imparts an apparent color.  For 0.50 m as indicated by the table in 

the notes, this color is blue-green, which tends toward blue for slightly thinner 

oxide and toward a very prominent green color for slightly thicker oxide. 

 

Thermal oxide thickness relative to the quantity of silicon consumed is 

independent of wafer orientation since the volume concentration of silicon atoms 

is independent of wafer orientation  Of course, the growth rate is different on 

[111] silicon versus [100] silicon and can be understood as a consequence of 

differing areal concentration of silicon atoms associated with different crystal 

planes. 

 

2.  Using the Arrhenius data (activation energies and pre-exponential coefficients) given 

in the class notes, calculate the linear and parabolic rate constants for dry oxidation of 

[111] and [100] silicon at 700, 900, and 1100C.  Which wafer orientation oxidizes more 

in a given time and why?  If it is necessary to use 700C for this oxidation process in order 

to maintain an acceptable thermal budget for the overall process, is there any practical 

way to increase the rate by a factor of fifteen without increasing the temperature? 

 

A process which obeys an Arrhenius law is a thermally activated process.  The 

rate constants of such a process have the general form: 
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For oxidation,  can be either the linear or parabolic rate constant, 0  is a the 

“pre-exponential factor” and corresponds to the rate constant at “infinite 

temperature”, that is to say, the rate when the average thermal energy of the 

system greatly exceeds the activation energy.  Of course,Ea  is activation energy, 

which physically can be thought of as deriving from an energy barrier existing 

between so-called reactant and product states. 

 

First of all, ordinary temperature must be converted to absolute temperature.  

Thus, one finds: 

 

700C = 973K;    900C = 1173K;   1100C = 1373K 

 

Original wafer surface 
0.27225 m 

0.22775 m 

0.5 m 



From the data given in the notes, it follows that the linear rate constant, B A, for 

dry oxidation is given on a [100] silicon surface by: 
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and on a [111] silicon surface by: 
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Again, it is clear that these two expressions differ only by the pre-exponential 

factor.  Naturally, this is to be expected since the difference in the rates is due to 

the difference in the effective concentration of silicon atoms on the two types of 

surfaces.  Obviously, the energetics of the oxidation reaction remain the same for 

both [100] and [111] silicon surfaces.  Therefore, one would not expect the 

activation energies to be different on [100] and [111] surfaces.  This is confirmed 

experimentally by the observation that both rate constants have the same slope on 

an Arrhenius plot (i.e., a plot of the logarithm of the rate constant vs reciprocal 

temperature).  The parabolic rate constant, B, for dry oxidation is given on [100] 

and [111] by the same expression: 
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Once again, this makes physical sense since in the parabolic regime film growth 

is limited by oxidant diffusion through the oxide layer.  Clearly, since quartz 

glass, i.e., thermal oxide, is amorphous and its structure is independent of any 

original silicon crystal structure, this process is independent of the orientation of 

the underlying silicon surface and, thus, is same for oxidation of either [100] or 

[111] silicon surfaces. 

 

Using a value of 8 6173 10 5. ( )  eV/ K  for Boltzmann's constant, k, one finds: 

 

At 700C: 

B/A = 4.5040(108) m/sec on [100] 

B/A = 7.5650(108) m/sec on [111] 

    B = 9.1093(108) m2/sec on [100] and [111] 

 

At 900C: 

B/A = 2.6296(106) m/sec on [100] 

B/A = 4.4166(106) m/sec on [111] 

    B = 1.1111(106) m2/sec on [100] and [111] 

 



At 1100C: 

B/A = 4.6945(105) m/sec on [100] 

B/A = 7.8849(105) m/sec on [111] 

    B = 6.5395(106) m2/sec on [100] and [111] 

 

As observed above, [111] oxidizes faster than [100] because the surface 

concentration of silicon atoms is higher on a [111] surface. 

 

Of course, if process temperature cannot be changed, then one must resort to 

some other means of increasing the oxidation rate.  One possibility is the use of 

wet oxidation instead of dry oxidation since the intrinsic rate constants for wet 

oxidation are larger.  However, wet oxidation may result in poorer interfacial 

quality for the oxide, but if this is not an issue then wet oxidation may be used.  

Alternatively, oxidation rate constants scale directly with oxidant pressure, 

therefore, carrying out the oxidation at 15 atmospheres instead of one atmosphere 

should give the desired result.  However, a possible problem with such a process 

change might be increased generation of oxidation induced defects (typically 

extrinsic stacking faults) due to the increased growth rate. 

 

3.  Suppose you are responsible for a dry oxidation process designed to grow 120 nm of 

oxide on [100] wafers: 

a.  Suppose that process integration issues require that a temperature of no higher 

than 900C must be used.  What is the time you will use to obtain this thickness?  

What is the time if steam can be used instead? 

 

Both dry and wet oxidation are governed by the Deal-Grove growth law: 
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Of course, A and B are the rate constants.  This expression can be rearranged as 

follows: 
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Here, t is the time needed to grow an oxide layer of thickness, x, and t0 is an 

initial condition, i.e., either an actual or a hypothetical time required to grow any 

pre-existing oxide film under designated process conditions.  In this form, the 

utility of the designation of B as the parabolic rate constant and B A as the 

linear rate constant is obvious.  Following the same procedure as in the previous 

problem, one finds that at 900C (i.e., 1173K) on [100] silicon wafers: 

 

B/A = 2.6296(106) m/sec 

    B = 1.1111(106) m2/sec 



 

Now, for dry oxidation, a fictitious initial thickness of 0.020 m is assumed.  The 

corresponding initial condition, t0, is obtained directly from the Deal-Grove law: 
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One now substitutes this result to obtain: 
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If steam was used instead, the procedure remains very similar.  Of course, one 

must use the rate constants appropriate to wet oxidation.  It follows from the data 

given in the class notes that for a [100] silicon surface: 
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Thus, at 900C, one obtains: 

 

B/A = 4.2032(105) m/sec 

    B = 4.3168(106) m2/sec 

 

For wet oxidation, no initial rapid oxidation occurs, thus, no initial fictitious 

oxide thickness is needed and t0 can be taken to be zero.  Therefore: 
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Clearly, wet oxidation is much faster than dry oxidation.  In general, a processing 

time of 14.06 hours is unacceptably long in a modern manufacturing 

environment.  This result clearly illustrates the “throughput” advantage of wet 

oxidation over dry oxidation.  However, dry oxidation is advantageous for 

fabrication of very thin oxides since the interface state density for dry oxides is 

generally lower. 



 

b.  Suppose that the furnace aborts during the process you designed in part a.  You 

remove the wafers, measure the oxide thickness and find that there is 100 nm of 

oxide.  Once the furnace is repaired, what do you do now?  If you can “save” these 

wafers, how do you do it? 

 

This is a realistic situation that might confront a process engineer.  Of course, it 

may be better to “scrap” the wafers for such a case of non-standard processing.  

However, if the oxide layer is not that critical, e.g., not a gate oxide, it may be 

convenient and economical to “rework”.  In this case, once the furnace is 

repaired and tested, one can finish the oxidation by calculating the time needed to 

add the required amount of oxide.  Thus, if xi  is an initial amount of oxide present 

on the wafer, the Deal-Grove law takes the form: 
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Clearly, the time required to add the additional oxide is just the difference in the 

time it took to grow the 100 nm and the time required to grow the full 120 nm 

oxide layer.  (It turns out that in this form, a fictitious initial thickness is not 

needed explicitly provided that xi  is more than 20-25 nm in the case of a dry 

oxidation.)  Thus, xi  is the 100 nm of oxide grown during the aborted furnace 

cycle.  Of course, the rate constants are the same as before. 

 

Accordingly, it was found in part a, that growth of 120 nm of oxide requires a 

time of 14.06 hrs.  Thus, it follows that the time, required to grow 100 nm of 

oxide, i.e., the time until the abort occurred which provides the initial condition 

for the regrowth, is given by a corresponding calculation: 
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(Here, initial rapid oxidation must be accounted for because it is actual oxidation 

time that is being calculated.)  Thus, the furnace must have been running for just 

over seven hours before aborting.  The time needed to complete the oxidation is 

just the difference of the time needed to grow 120 nm and the time needed to grow 

100 nm.  Therefore, the additional time, t, is: 
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Thus, the wafers need to go back into the furnace for about three and a quarter 

hours to complete the oxidation. 



 

c.  During processing in either a vertical or horizontal quartz tube furnace wafers are 

generally held at the edges by a quartz holder (or “boat”).  The wafers are 

conventionally held perpendicular to the gas stream as shown below:  

 

Oxidant Flow

Wafers  
 

Your first attempt at designing the process described in part a results in wafers with 

unacceptable oxide uniformity.  In particular, they exhibit a gradient from top to 

bottom with the oxide at the top being thicker than at the bottom.  What might be 

causing this gradient and how would you go about fixing it?  Is it due to oxidant 

depletion within the furnace or something else?  Why or why not? 

 

The oxide thickness gradient observed on the wafers is almost certainly due to 

temperature non-uniformity.  This can arise by not allowing the wafers to come to 

thermal equilibrium in the furnace before starting the oxidation, i.e., the “soak” 

step is too short, or by too low a gas flow which causes the furnace to be unevenly 

heated, i.e., convection within the furnace is not damped out.  Other more 

pathological causes due to leaks or “aspiration” may also cause such non-

uniformity. 

 

In any case, it is clear that  the wafers are getting hotter on the top than on the 

bottom.  This may be solved by increasing gas flow and/or increasing thermal 

soak before processing.  It is not due to oxidant depletion since, as indicated by 

the Deal-Grove kinetic model of oxidation, an oxidation process never enters a 

mass transport limited regime. 

 

4.  Consider an aluminum “gate” MOS capacitor fabricated on a uniformly doped p-type 

substrate covered with a uniform layer of thermally grown silicon dioxide.  Suppose that 

the net acceptor doping concentration is 51015 atoms/cm3, that the gate electrode is 

circular with diameter 100 m, and that the oxide thickness is 50 nm. 

a.  Calculate minimum and maximum absolute capacitance one expects to obtain for 

a high frequency CV measurement made at 300K.  (Note: ox0.34 pF/cm and 

s1.04 pF/cm) 

 

The oxide capacitance per unit area is easily obtained as follows: 
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The maximum depletion width is calculated from the standard formula: 
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Some explanation of units rationalization is necessary here.  Clearly, in the 

expression for maximum depletion width, the square of q, the fundamental charge, 

appears explicitly in the denominator within the radical.  It turns out that for 

rationalization of units, it is advantageous to express each of the two factors of q 

in a different set of units.  Thus, one factor of q is expressed in ordinary cgs units, 

i.e., Coulombs (1.602(1019) C).  In contrast, the other factor of q is expressed in 

atomic units, i.e., electron volts per volt.  Clearly, since energy is the product of 

charge and potential, eV/V must be a unit of charge.  In particular, one eV is 

defined as the amount of energy that a particle, e.g., an electron, having one 

fundamental unit of charge, i.e., q, gains when “falling through” a potential drop 

of one volt.  Hence it follows that q must be precisely equal to one eV/V.  

(Therefore, 1 eV/V is exactly equivalent to 1.602(1019) C.)  Furthermore, since 

one Coulomb is defined as the product of one Farad and one volt, this substitution 

“trick” allows all energy and electrical units to be cancelled out leaving only 

units of length (as is desired).  Thus, the maximum depletion capacitance per unit 

area now follows immediately: 
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The maximum capacitance observed in a high frequency CV plot is just due to the 

oxide.  The minimum capacitance is obtained from a series combination of oxide 

and depletion capacitances: 
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Absolute capacitances are just obtained by multiplying by area.  The area is just 

the area of a circular electrode: 
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Thus, Cmax is 5.341 pF and Cmin is 1.428 pF. 

 

b.  Determine flat band capacitance using values obtained in part a.  Assume that the 

effective work function difference between pure aluminum and the p-type silicon 

substrate is 0.20 eV.  Sketch ideal quasistatic and high frequency CV plots and label 

minimum, maximum and flat band capacitances and show the position of the flat 

band voltage. 

 

To calculate flat band capacitance, one must calculate extrinsic Debye length: 
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It immediately follows that: 
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Of course, the measured flat band capacitance is obtained as the series 

combination of this value with the oxide capacitance: 
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Obviously, CFB is 3.874 pF 

 

Quasi-static and high frequency CV plots can be sketched as follows: 
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c.  How much positive fixed charge per unit area is necessary to cause a flat band 

shift of 150 mV?  If this is due to singly charged interfacial defects, what is the 

defect density?  Does this shift depend on the area of the gate electrode? 

 

The flat band shift due to positive charge must be in the negative direction, thus, 

the required charge density is: 
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If this is due to an interfacial density, N, of singly charged species, this density is: 
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This is a reasonable result. 


