
 

Impurity Diffusion in Semiconductors 
 

In the practical fabrication of solid-state electronic devices, it is generally necessary 

to introduce controlled amounts of various shallow level impurities, i.e., dopants (B, P, or 

As), into particular regions within the silicon crystal.  Indeed, boundaries between 

regions inside the volume of the wafer for which extrinsic doping changes from p-type to 

n-type or vice-versa form electrically active structures called pn-junctions.  (Along with 

MOS capacitors, pn-junctions are the most important fundamental components of solid-

state devices.)  In general, although the wafer may have some uniform background 

doping added to the original melt during manufacture of the substrate itself, it is usual for 

additional dopants to be introduced through the surface of wafer.  These are commonly 

restricted to specific laterally defined regions of the wafer surface by some type of mask, 

i.e., one type of dopant might be introduced into some particular area (or areas) and other 

types of dopants introduced elsewhere.  In any case, the vertical and lateral distribution of 

these dopant atoms may be precisely manipulated by carefully controlled diffusion.  Such 

diffusion processes are thermally activated and, thus, are carried out in quartz tube 

furnaces very similar to those used for thermal oxidation.  (However, the atmosphere 

inside the furnace generally will be inert or reducing rather than oxidizing.) 

 

Linear Transport Processes 

 

Diffusion of shallow level dopants in semiconductors, e.g., silicon, is a specific 

example of a broad class of physical processes called transport processes.  Other 

examples are conduction of heat and electricity and viscous fluid flow.  Physically, 

transport processes are characteristic of physical systems which are not in 

thermodynamic equilibrium.  Indeed, from a theoretical point of view, transport processes 

are dissipative in nature, which when occurring within some physical system, proceed to 

establish the system in equilibrium at which time any net transport comes to a halt.  (The 

general study of transport processes and the approach to equilibrium is called non-

equilibrium thermodynamics.)  Conventionally, transport processes are considered within 

the context of a linear phenomenology, which means that they are described by 

expressions of the generic form: 

 

baba XJ L
 

 

Here, Ja is defined as flux (or, more generally, a flux vector) identified with transport of 

some physical property, a, e.g., mass, momentum, energy, charge, etc.  Similarly, Xb is 

defined as driving or thermodynamic force, identified with a disequilibrium in some 

physical property, b, e.g., gradients of concentration, fluid velocity, temperature, 

electrical potential, etc.  Physically, a thermodynamic force quantifies the magnitude of 

any disequilibrium driving net transport processes.  Thus, fluxes and forces are related by 

the parameter, Lab, called a phenomenological transport coefficient.  In the most general 

formulation (as above), fluxes and forces formally appear as column vector components 

and transport coefficients as square matrix elements.  This allows for the possibility that a 

force in one physical property, b, may drive a flux in some different physical property, a.  

Indeed, such “cross effects” are commonly observed.  Representative examples are 



 

provided by thermal diffusion or thermoelectric effects in which case a temperature 

gradient drives material or electrical transport respectively.  Clearly, cross effect transport 

coefficients correspond to off-diagonal matrix elements as defined by the preceding 

general expression.  Of course, “direct effects” for which a force in a physical property 

drives a flux in the same property correspond to diagonal matrix elements and, therefore, 

are generally more important than cross effects.  Obviously, ordinary diffusion, heat and 

electrical transport, viscous fluid flow, etc. provide elementary examples of just such 

processes.  Therefore, to describe impurity diffusion in semiconductors, it is only 

necessary to consider direct effects, i.e., only diffusive forces and fluxes.  In such a case, 

the general matrix expression can be simplified to a simple linear proportionality: 
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In this expression, the direct effect transport coefficient, La, represents an ordinary 

numerical quantity rather than a matrix element.  Clearly, for impurity diffusion, a 

corresponds to some impurity species, hence, La is identified as diffusivity of a (usually 

symbolized as Da).  In passing, it is, again, useful to observe that this same linear 

phenomenology can be applied to various specific physical situations that might 

superficially appear unrelated.  Therefore, several specific cases are summarized as 

follows: 

 

Ohm’s Law of electrical conduction:  j = E = E/ 

J = electric current density, j 

(units: A/cm2) 
X = electric field, E = V 

(units: V/cm) 

V = electrical potential 

L = conductivity,  = 1/ 

(units: mho/cm) 

 = resistivity ( cm) 

Fourier’s Law of heat transport:  q = T 

J = heat flux, q 

(units: W/cm2) 
X = thermal force, T 

(units: K/cm) 

T = temperature 

L = thermal conductivity,  

(units: W/K cm) 

Fick’s Law of diffusion: F = DC 

J = material flux, F 

(units: /sec cm2) 
X = diffusion force, C 

(units: /cm4) 

C = concentration 

L = diffusivity, D 

(units: cm2/sec) 

Newton’s Law of viscous fluid flow: Fu = u 

J = fluid velocity flux, Fu 

(units: /sec2 cm) 

X = viscous force, u 

(units: /sec) 

u = fluid velocity 

L=viscosity,  

(units: /sec cm) 

Table 4: Summary of common linear transport phenomena 

 

Here, the subscript a has been dropped and J, X, and L correspond to the simple linear 

transport relation: 



 

 

XJ  L  
 

Clearly, the preceding correspondences are useful because once one type of transport 

process is considered, e.g., impurity diffusion, any results obtained can be immediately 

applied to other types of transport by the simple expedient of redefinition and/or 

substitution of the appropriate phenomenological parameters. 

Limiting further consideration specifically to the case of impurity diffusion, one 

considers transport of impurity species through a hypothetical bar of some solid material, 

e.g., semiconductor, having a uniform cross section.  Furthermore, for additional 

simplicity, one assumes that the concentration of impurity species varies only along the 

length of the bar and is constant over any given cross section.  Thus, assuming that 

transport fluxes remain constant over some small time interval, t, then the net change 

per unit time in the number of impurity atoms in a small volume element of width, x, 

located at a distance, x, from the end of the bar is given by the simple difference 

expression: 
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Here, N is the number of impurity atoms found within the volume element, F(x) is 

impurity flux, and A is the cross sectional area of the bar.  This is illustrated by the 

following figure: 
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Fig. 49: Diffusion in a rectangular bar of constant cross section 

 

If impurity concentration, C, is defined as usual as the quotient of N divided with volume, 

then one obtains: 
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In the limit that the material volume element is allowed to become arbitrarily thin, the 

right hand side of this expression can just be identified as the negative of the derivative of 



 

the material flux with respect to x.  Similarly, the left hand side can be identified as the 

derivative of concentration with respect to time, hence: 
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Here, partial derivatives are written since C and F are functions of both position and time.  

Of course, material flux and concentration are related by Fick’s Law, which in a single 

dimension has the form: 
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Here, D is the diffusivity of the impurity species.  If the two preceding equations are 

formally combined, one obtains a single second order linear partial differential equation 

as follows: 
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This equation is conventionally called Fick’s equation, Fick’s Second Law, or just the 

diffusion equation.  Clearly, it is a closed form expression for concentration as a function 

of position and time.  (By convention, Fick’s First Law is just the linear transport relation 

defined previously.)  Furthermore, within the present context, the diffusion equation has 

been derived in a one dimensional form.  For an elementary description of impurity 

diffusion in semiconductors this is adequate.  However, in more complicated situations 

diffusion in more than one dimension must be considered.  Obviously, Fick’s Second 

Law can be generalized to all three dimensions just by replacing the second order partial 

derivative with the Laplacian: 
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In summary, Fick’s Laws are useful for the description of diffusion of relatively dilute 

solutes.  If the concentration becomes sufficiently high, due to interactions between 

solute atoms D may become dependent on the concentration, C.  In this case, diffusion 

becomes non-linear and is much more difficult to treat mathematically. 

 

Solution of Fick’s Equation 

 

Construction of a general solution of the diffusion equation in one dimension is quite 

straightforward.  First of all, one must separate the space and time variables.  This can be 

accomplished by assuming that the concentration, C, is a formal product of a function of 

position, g(x), and a function of time, f (t): 
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Upon substitution of this form, it follows that: 
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Clearly, all of the x dependence appears on the left hand side and all of the t dependence 

appears on the right hand side.  Since the variables have now been separated, one can set 

each side equal to an unknown “separation constant”.  Therefore, the arbitrary constant, 

, is defined such that: 
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The form, 2, is used purely for mathematical convenience.  These two ordinary 

differential equations are easily integrated by elementary methods.  In the case of the 

time equation one has: 
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Here, t is an unknown constant.  In the case of the space equation, one immediately 

recognizes that the solution can be expressed as either a sine or a cosine: 
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However, it is more convenient to express this in equivalent form as a complex 

exponential: 
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Here, x is a second unknown constant.  Thus, it follows that a particular solution of the 

diffusion equation, C, can be written as follows: 
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In this expression,  is the product of the arbitrary constants t and x and, thus, is itself 

an unknown constant.  Obviously, the separation constant, , labels each particular 

solution. 



 

It is well known that particular solutions of linear differential equations satisfy the 

Principle of Superposition.  Simply stated, this means that if any two functions are 

independent solutions of some differential equation, then the sum (or difference) of the 

two is also a solution.  Thus, if one considers  to be a continuous variable, it follows that 

a general solution of the diffusion equation can be written as an integral, i.e., a limiting 

sum, over all particular solutions: 

 

 
xitD eedtxC 





 
2

)(),(

 
 

Here,  is now treated as an unknown function of .  It is desirable to express () in 

terms of some initial condition, C0(x), defined such that: 
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Upon inspection, one observes that C0(x) is just the ordinary Fourier transform of ().  

Furthermore, Fourier transformation is easily inverted, therefore, () can be written 

explicitly as follows: 

 









 xiexdxC )(

2

1
)( 0

 
 

Clearly, the “inverse Fourier transform” is identical to the “forward Fourier transform” 

except that a factor of 1/2 appears.  (These forms can be made exactly identical if one 

removes a factor of 2  from the denominator of the above expression in which case 

one finds that C0(x) and  2)(  define a formal “Fourier transform pair”.)  Thus, 

substitution of the above result into the expression for C(x,t) yields: 
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This expression can be further simplified by completion of the square in the exponent: 
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The integral over  can be determined using standard methods (e.g., complex contour 

integration), however it is essentially an integral over a Gaussian function and is found to 

be equal to Dt/ : 
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Clearly, impurity concentration at any time, t, is completely determined by the initial 

concentration.  Indeed, this is a completely general result and is applicable for any initial 

concentration, C0(x). 

 

Instantaneous Source 

 

A specific form for C0(x) that is of particular interest can be represented 

mathematically as follows: 
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Here, )( 0xx  is a Dirac delta function, which is defined to be zero everywhere except 

in the case that xx0 where it becomes infinite.  Furthermore, the integral of )( 0xx  

over x is finite and equal to one.  This is called an instantaneous source.  An instructive 

way to view a delta function is as a normalized Gaussian function, which has a standard 

deviation of zero.  Therefore, this initial concentration corresponds to an infinitely thin 

sheet of impurity located at a position, x0.  Within this context, the coefficient, N, is the 

number of dopant atoms per unit area of the sheet and is called dose.  (The factor of 2 

included in the definition of C0(x) is a geometrical factor which accounts for the fact that 

a wafer is, perhaps, better regarded as a semi-infinite diffusion domain rather than an 

infinite domain.)  Thus, C(x,t) can be trivially determined if one substitutes the preceding 

form for C0(x): 
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Integration over x is trivial due to the delta function, hence: 
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Clearly, an instantaneous source results in a Gaussian concentration profile.  (The 

terminology “concentration profile” is generally used to describe dependence of impurity 

concentration in a one dimensional sense.) 

In practice, a Gaussian concentration profile describes an impurity diffusion process 

for which an “infinitely thin” initial layer of dopant, i.e., shallow level impurity, is 

deposited on the wafer surface.  This surface deposition is followed by diffusion at 

elevated temperature for some time, t.  Obviously, since x0 is zero by definition, the 

concentration profile takes the simplified form: 
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Here, Cs is surface concentration and is equal to DtN / .  Obviously, for t equal to 

zero, Cs is infinite just as one expects from the original delta function concentration 

profile. 

 

Constant Source 

 

A second initial concentration profile, which is generally useful for the description of 

impurity diffusion has the explicit form: 
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Here, )( 0xxH   is a Heaviside or unit step function and is formally defined to be equal to 

zero if xx0 and equal to one if xx0.  Thus, C0(x) is equal to 2Cs if xx0 and equal to 

zero if xx0.  This is called a constant source.  Clearly, upon substitution the step 

function “cuts off” the integral above a value of x0 and one obtains the result: 
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This integral is modified by defining a new integration variable x equal to xx, hence: 
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The integral cannot be constructed in closed form but has a standard definition in terms 

of the error function, erf(x) or complementary error function, erfc(x): 
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Hence, a constant source results in a complementary error function concentration profile. 

In contrast to the previous case, this type of concentration profile describes impurity 

diffusion processes for which the surface of the wafer remains in equilibrium with some 

dopant source (solid, liquid, or gaseous) during exposure to elevated temperature, i.e., 

during the diffusion process.  Therefore, the surface concentration can generally be 

identified as the maximum solid solubility of the dopant in silicon.  Hence, it is usual to 

set x0 to zero and, thus, the concentration profile takes the form: 
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Clearly, the surface impurity concentration remains constant in the case of a 

complementary error function profile.  In contrast, for a Gaussian profile, Cs decreases as 

t/1 .  Furthermore, the total integrated amount of impurity present within the wafer is 

constant in the case of an instantaneous source; however, it continues to increase in the 

case of a constant source.  Physically, this is easily understood if one observes that all 

impurity species diffused into the wafer are initially present in an instantaneous source.  

However, a constant source continues to introduce impurity atoms into the wafer surface 

during the diffusion process. 


