
Chapter 8: Nonhomogeneous Problems

Heat flow with sources and nonhomogeneous boundary conditions

We consider first the heat equation without sources and constant nonhomogeneous boundary conditions.

∂u

∂t
= k

∂2u

∂x2
(1)

u(0, t) = A (2)

u(L, t) = B (3)

u(x, 0) = f(x) (4)

In this case the method of separation of variables does not work since the boundary conditions are nonho-
mogeneous.
To solve the problem we use the following approach: first we find the equilibrium temperature uE(x) by
solving the problem

d2uE

dx2
= 0 (5)

uE(0) = A (6)

uE(L) = B (7)

The solution is

uE(x) = A +
B − A

L
x

Next we introduce a new function v(x, t) that measures the displacement of the temperature u(x, t) from
the equilibrium temperature uE(x)

v(x, t) = u(x, t) − uE(x)

Then v(x, t) is the solution of the homogeneous problem

∂v

∂t
= k

∂2v

∂x2
(8)

v(0, t) = 0 (9)

v(L, t) = 0 (10)

v(x, 0) = f(x) − uE(x) (11)

and is given by

v(x, t) =
∞
∑

n=1

an sin
nπx

L
e−k(nπ/L)2t

and from (11) we determine the coefficients an as the Fourier sine series coefficients of f(x) − uE(x)

an =
2

L

∫ L

0

[f(x) − uE(x)] sin
nπx

L
dx

Then, the solution of the problem (1-4) is

u(x, t) = uE(x) + v(x, t) = A +
B − A

L
x +

∞
∑

n=1

an sin
nπx

L
e−k(nπ/L)2t
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where the coefficients an are evaluated according to the formulae above. Notice that as time goes to infinity,
u(x, t) approaches the equilibrium temperature uE(x).

The approach described above will work also for the nonhomogeneous problem with time independent
(steady) sources of thermal energy

∂u

∂t
= k

∂2u

∂x2
+ Q(x) (12)

subject to (2), (3), (4) if an equilibrium temperature exists.

Time-dependent nonhomogeneous terms

Next we consider the following nonhomogeneous problem

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t) (13)

u(0, t) = A(t) (14)

u(L, t) = B(t) (15)

u(x, 0) = f(x) (16)

In this case the sources of thermal energy are time and space dependent, and the boundary values at the
ends may vary in time.

We will solve this problem in two steps:

1. In the first step we look for a function r(x, t) such that r(0, t) = A(t) and r(L, t) = B(t). Moreover we
want want r(x, t) to have a simple form, for example

r(x, t) = A(t) +
x

L
[B(t) − A(t)] (17)

2. In the second step we consider the difference

v(x, t) = u(x, t) − r(x, t) ⇔ u(x, t) = v(x, t) + r(x, t) (18)

Then, v(x, t) is the solution of the problem

∂v

∂t
= k

∂2v

∂x2
+

[

Q(x, t) − ∂r

∂t
+ k

∂2r

∂x2

]

≡ k
∂2v

∂x2
+ Q(x, t) (19)

with homogeneous boundary conditions

v(0, t) = 0 (20)

v(L, t) = 0 (21)

and the initial condition

v(x, 0) = u(x, 0) − r(x, 0) = f(x) − A(0) − x

L
[B(0) − A(0)] ≡ g(x) (22)

The problem is reduced now to solving (19-22). To solve this problem we use the method of eigenfunc-

tion expansion.
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We consider the homogeneous problem

∂w

∂t
= k

∂2w

∂x2
(23)

w(0, t) = 0 (24)

w(L, t) = 0 (25)

By using separation of variables we obtain the eigenvalue problem

d2Φ

dx2
+ λΦ = 0

Φ(0) = 0

Φ(L) = 0

For this problem the eigenvalues are λn =
(

nπ
L

)2
and the corresponding eigenfunctions are Φn(x) =

sin nπx
L . To maintain generality, we do not use the explicit form of the eigenfunctions. We express

the unknown solution v(x, t) as a generalized Fourier series of eigenfunctions with time dependent
coefficients

v(x, t) =
∞
∑

n=1

an(t)Φn(x) (26)

Assuming that term-by-term differentiation is justified, after replacing (26) in (19) we obtain

∞
∑

n=1

dan(t)

dt
Φn(x) = k

∞
∑

n=1

an(t)
d2Φn(x)

dx2
+ Q(x, t) = −k

∞
∑

n=1

an(t)λnΦn(x)dx + Q(x, t) (27)

To obtain the last relation in (27) we used the eigenfunction property d2Φn

dx2 = −λnΦn.

Next we also expand Q(x, t) as a generalized Fourier series of eigenfunctions with time dependent
coefficients

Q(x, t) =
∞
∑

n=1

qn(t)Φn(x) (28)

where the generalized Fourier coefficients are given by

qn(t) =

∫ L

0
Q(x, t)Φn(x)dx
∫ L

0
Φ2

n(x)dx
(29)

After replacing (28) in (27) and identifying the coefficients, we obtain the following differential equations
for the coefficients

dan

dt
+ λnkan = qn(t), n = 1, 2, . . . (30)

To obtain the initial conditions for the differential equations (30) we use the initial condition (22).
Then

g(x) =
∞
∑

n=1

an(0)Φn(x)
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such that

an(0) =

∫ L

0
g(x)Φn(x)dx

∫ L

0
Φ2

n(x)dx
, n = 1, 2, . . . (31)

Q: Show that the solution of the initial-value problem (30)-(31) is given by

an(t) = an(0)e−λnkt + e−λnkt

∫ t

0

qn(τ)eλnkτdτ (32)

To conclude, the solution of the nonhomogeneous problem (13-16) is

u(x, t) = v(x, t) + r(x, t) (33)

where r(x, t) is given by (17) and v(x, t) is given by (26) with the coefficients an(t) evaluated according
to (32).

Q: Solve the nonhomogeneous problem

ut = uxx + e−t sin(3x), 0 < x < π

u(0, t) = 0, u(π, t) = 1, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ π

Method of eigenfunction expansion using Green’s formula

We consider the heat equation with sources and nonhomogeneous time dependent boundary conditions.

∂u

∂t
= k

∂2u

∂x2
+ Q(x, t) (34)

u(0, t) = A(t) (35)

u(L, t) = B(t) (36)

u(x, 0) = f(x) (37)

Previously we learned how to solve this problem in two steps:

1. In the first step we find a function r(x, t) such that r(0, t) = A(t), r(L, t) = B(t). Then the difference
v(x, t) = u(x, t) − r(x, t) will satisfy a problem with homogeneous boundary conditions.

2. In the second step the solution v(x, t) is obtained using the method of eigenfunction expansion, then
u(x, t) = v(x, t) + r(x, t).

Next we show how the method of eigenfunction expansion may be applied directly to solve the problem
(34-37). Special attention must be paid to the fact that term-by-term differentiation of the Fourier series is
not justified when the boundary conditions are nonhomogeneous.

To begin, we consider the homogeneous problem

d2Φ

dx2
+ λnΦ = 0 (38)
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Φ(0) = 0 (39)

Φ(L) = 0 (40)

For this problem the eigenvalues are λn = (nπ/L)2 and the corresponding eigenfunctions are Φn = sin nπx
L .

Since any piecewise smooth function may be expanded as a series of these eigenfunctions, we consider

u(x, t) =
∞
∑

n=1

bn(t)Φn(x) (41)

The (generalized) Fourier coefficients bn(t) may be expressed as

bn(t) =

∫ L

0
uΦndx

∫ L

0
Φ2

ndx
(42)

Notice that at the points where the (periodic) extension of u(x, t) is not continuous (e.g. x = 0 and x = L)
the ” = ” sign in (41) must be replaced by ” ∼ ”. Term by term differentiation with respect to x is not
justified since u(x, t) satisfies nonhomogeneous boundary conditions. We can only consider term-by-term
differentiation of (41) with respect to time

∂u

∂t
=

∞
∑

n=1

dbn

dt
Φn(x) (43)

After replacing (43) in (34) we obtain

∞
∑

n=1

dbn

dt
Φn(x) = k

∂2u

∂x2
+ Q(x, t)

such that, using the orthogonality of the eigenfunctions, it follows that

dbn

dt
=

∫ L

0

[

k ∂2u
∂x2 + Q(x, t)

]

Φn(x)dx
∫ L

0
Φ2

n(x)dx
(44)

We want to obtain a first-order differential equation for the coefficients bn(t). We notice that if we consider
the (generalized) Fourier series of the source terms

Q(x, t) =
∞
∑

n=1

qn(t)Φn(x)

then the coefficients qn(t) are given by

qn(t) =

∫ L

0
Q(x, t)Φn(x)dx
∫ L

0
Φ2

n(x)dx
(45)

Using (45) we may write (44) as

dbn

dt
= qn(t) + k

∫ L

0
∂2u
∂x2 Φn(x)dx

∫ L

0
Φ2

n(x)dx
(46)

To express the last term in the right hand side of (46) in terms of bn(t) we use the following property known
as Green’s formula

∫ L

0

(

u
∂2v

∂x2
− v

∂2u

∂x2

)

dx =

(

u
∂v

∂x
− v

∂u

∂x

)
∣

∣

∣

∣

L

0

(47)

Q: Prove that (47) is valid for any functions u, v that are twice continuously differentiable.
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If we let v = Φn(x) in (47) then we obtain

∫ L

0

Φn(x)
∂2u

∂x2
dx =

∫ L

0

u
d2Φn

dx2
dx −

(

u
dΦn

dx
− Φn

∂u

∂x

)
∣

∣

∣

∣

L

0

(48)

Since the eigenfunction Φn satisfies (38-40) with λ = λn, from (48) we obtain

∫ L

0

Φn(x)
∂2u

∂x2
dx = −λn

∫ L

0

uΦndx − u
dΦn

dx

∣

∣

∣

∣

L

0

= −λn

∫ L

0

uΦndx − nπ

L
[B(t)(−1)n − A(t)] (49)

After replacing (49) and (42) in (46) we obtain a first-order linear differential equation for the Fourier
coefficients

dbn

dt
+ kλnbn = qn(t) +

k nπ
L [A(t) − (−1)nB(t)]

∫ L

0
Φ2

n(x)dx
(50)

The required initial condition for (50) follows from the given initial condition (37)

f(x) =
∞
∑

n=1

bn(0)Φn(x)

bn(0) =

∫ L

0
f(x)Φn(x)dx

∫ L

0
Φ2

n(x)dx
(51)

Therefore, the solution u(x, t) of (34-37) is given by

u(x, t) =
∞
∑

n=1

bn(t)Φn(x) (52)

where the coefficients are obtained by solving the initial-value problem (50)-(51).

Forced vibrating string and resonance

We consider vibrations of a string subject to an external force Q(x, t). The model problem is given by the
PDE

utt = c2uxx + Q(x, t), 0 < x < L, t > 0 (53)

with homogeneous boundary conditions,
u(0, t) = 0 (54)

u(L, t) = 0 (55)

and initial conditions
u(x, 0) = f(x), 0 < x < L (56)

∂u

∂t
(x, 0) = g(x), 0 < x < L (57)

We search for the solution u(x, t) as a series of x-eigenfunctions with time dependent coefficients

u(x, t) =
∞
∑

n=1

an(t)φn(x) (58)

where φn(x) = sin(nπx/L), λn = (nπ/L)2. We also consider the Fourier series of the forcing term,

Q(x, t) =
∞
∑

n=1

qn(t)φn(x) (59)
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where the time dependent coefficients qn(t) are computed according to

qn(t) =

∫ L

0
Q(x, t)φn(x) dx
∫ L

0
φ2

n(x) dx
=

2

L

∫ L

0

Q(x, t) sin(
nπx

L
) dx (60)

After replacing (58) and (59) into the PDE (53) and using the fact that φ′′

n = −λnφn, we obtain:

∞
∑

n=1

a′′

n(t)φn(x) = −c2
∞
∑

n=1

λnan(t)φn(x) +

∞
∑

n=1

qn(t)φn(x) (61)

Identification of the coefficients in the series above implies that the coefficients an(t) will satisfy the ODEs

a′′

nt + c2λnan(t) = qn(t), n = 1, 2, . . . (62)

To obtain initial conditions for these ODEs we use (58) in (56-57) such that an(0) must be the Fourier
coefficients of f(x) and a′

n(0) must be Fourier coefficients of g(x)

an(0) =

∫ L

0
f(x)φn(x) dx

∫ L

0
φ2

n(x) dx
; a′

n(0) =

∫ L

0
g(x)φn(x) dx

∫ L

0
φ2

n(x) dx
(63)

The second order ODEs (62) has the general solution as the sum of the general solution to the homogeneous
equation and a particular solution, call it ap

n(t), to the nonhomogeneous equation

an(t) = c1 cos(c
√

λn t) + c2 sin(c
√

λn t) + ap
n(t)

The constants c1, c2 above are determined from the initial conditions (63). A particular solution ap
n(t) may

be obtained using the method of variation of parameters.

As a particular case, we consider the vibrations of a string subject to a periodic forcing Q(x, t) = q(x) cos(ωt),
where ω > 0 is a constant. In this case, writting the forcing term as a series of eigenfunctions we get

q(x) cos(ωt) =
∞
∑

n=1

qnφn(x) cos(ωt), qn =
2

L

∫ L

0

q(x) sin(nπx/L) dx (64)

and the differential equations (62) for the coefficients are written

a′′

n(t) + c2λnan(t) = qn cos(ωt) (65)

Q: Show that the general solution to (65) is

an(t) = c1 cos(c
√

λn t) + c2 sin(c
√

λn t) +
qn cos(ωt)

c2λn − ω2
(66)

where c1, c2 are arbitrary constants, provided that the forcing frequency ω is different from the natural fre-

quency cλn : c2λn − ω2 6= 0.

Q: Show that if the forcing frequency ω is the same as one of the natural frequencies cλn then
the general solution to (65) is

an(t) = c1 cos(c
√

λnt) + c2 sin(c
√

λnt) +
qn

2ω
t sin(ωt) (67)

and resonance occurs: the amplitude of the natural modes corresponding to the forcing frequency will grow
in time without a bound.

Q: Solve the problem (53- 57) in 0 ≤ x ≤ π if c2 = 1 and

7



1. Q(x, t) = sin x sin t

2. Q(x, t) = sin x cos 2t

Q: Repeat the problem above when the Dirichlet boundary conditions (54-55) are replaced by the ”free end”
boundary conditions

ux(0, t) = 0 (68)

ux(L, t) = 0 (69)
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Section 8.6: Poisson’s Equation

We consider a two dimensional domain Ω with boundary S and the Poisson’s equation

∇
2u = Q, in Ω (1)

subject to nonhomogeneous boundary conditions

u = α, on S (2)

The function u (equilibrium temperature), the source terms Q, and the boundary values α are time inde-
pendent: u = u(x, y), Q = Q(x, y), α = α(x, y).
Our first approach to find the solution is to split problem (1-2) in two problems that are easier to solve:

1. a nonhomogeneous PDE
∇

2u1 = Q, in Ω (3)

subject to the homogeneous boundary condition

u1 = 0, on S (4)

2. a homogeneous (Laplace) PDE
∇

2u2 = 0, in Ω (5)

subject to the nonhomogeneous boundary condition

u2 = α, on S (6)

If we are able to solve these problems, using the linearity we can easily show that

u = u1 + u2 (7)

is the solution of the nonhomogeneous problem (1-2).
We have already studied the nonhomogeneous problem (Laplace) (5)-(6). If Ω has a simple geometrical
shape (e.g. rectangle, disk) the solution may be obtained using separation of variables. Next we focus our
attention on solving problem (3)-(4) on a rectangle: 0 ≤ x ≤ L, 0 ≤ y ≤ H.
Using the method of eigenfunction expansion we expand u1(x, y) in a series of x-eigenfunctions

u1(x, y) =
∞
∑

n=1

bn(y) sin
nπx

L
(8)

where the Fourier sine series coefficients bn are functions of y.
Remark: alternatively, we may expand u1(x, y) in a series of y-eigenfunctions

u1(x, y) =
∞
∑

n=1

bn(x) sin
nπy

H
(9)

We are free to make this choice since the boundary are homogeneous in both x and y directions.

By differentiating (8) twice with respect to y then replacing in (3) we obtain

∞
∑

n=1

d2bn

dy2
sin

nπx

L
+

∂2u1

∂x2
= Q(x, y) (10)

Term-by-term differentiation of the Fourier sine series (8) with respect to x is also justified since u1(0, y) ≡
0, u1(L, y) ≡ 0. By differentiating term-by-term (8) twice with respect to x we obtain

∂2u1

∂x2
= −

∞
∑

n=1

(nπ

L

)2

bn(y) sin
nπx

L

1



such that we may write (10) as

∞
∑

n=1

[

d2bn

dy2
−

(nπ

L

)2

bn

]

sin
nπx

L
= Q(x, y) (11)

We may also expand the source terms as a Fourier sine series

Q(x, y) =
∞
∑

n=1

qn(y) sin
nπx

L
(12)

where the coefficients qn(y) are

qn(y) =
2

L

∫ L

0

Q(x, y) sin
nπx

L
dx (13)

After replacing (12) in (11) and identifying the coefficients we obtain a second-order nonhomogeneous
differential equation for bn(y):

d2bn

dy2
−

(nπ

L

)2

bn = qn(y) (14)

Using the boundary conditions u1(x, 0) ≡ 0, u1(x,H) ≡ 0 in (8) we obtain the boundary conditions for the
coefficients

bn(0) = 0 (15)

bn(H) = 0 (16)

Therefore, the coefficients are obtained by solving the nonhomogeneous boundary value problem (14), (15),
(16). The general solution of the homogeneous equation

d2bo
n

dy2
−

(nπ

L

)2

bo
n = 0 (17)

is
bo
n(y) = a1e

nπy

L + a2e
−

nπy

L (18)

which may be written in the equivalent form

bo
n(y) = c1 sinh

nπ

L
(y − H) + c2 cosh

nπ

L
(y − H) (19)

The general solution of the nonhomogeneous equation (14) is obtained as

bn(y) = bo
n(y) + bp

n(y) = c1 sinh
nπ

L
(y − H) + c2 cosh

nπ

L
(y − H) + bp

n(y) (20)

where bp
n(y) is a particular solution of (14) (that means any function that satisfies (14)). To find the solution

of the boundary value problem (14),(15-16) we determine the constants c1 and c2 in (20) using the boundary
conditions (15-16).
A particular solution may be found using the method of variations of parameters. This approach is general,
but is not always trivial and may require extensive computations. In some special situations (if qn(y) has a
simple form ) a particular solution may be found by searching for bp

n(y) of the same form as qn(y).

Q: Solve the problem (14),(15-16) if

a. qn(y) = 1

b. qn(y) = y2

c. qn(y) = e−y

d. qn(y) = cos y
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Nonhomogeneous boundary conditions (any geometry)

Next we show how the method of eigenfunction expansion may be used to solve the Poisson’s equation

∇
2u = Q, in Ω (21)

with nonhomogeneous boundary conditions

u = α, on S (22)

where Ω is an arbitrary (2D or 3D) domain with boundary S. We assume that the eigenvalue prob-
lem ∇2Φ = −λΦ with Φ = 0 on S has been solved such that the eigenvalues λi and the corresponding
eigenfunctions Φi are assumed to be known.

We express the function u(x, y) as a series of eigenfunctions

u =
∑

i

biΦi (23)

and search for the coefficients bi. Term-by-term differentiation of (23) is not justified since u satisfies
nonhomogeneous boundary conditions. Using the orthogonality of the eigenfunctions from (23) we obtain

bi =

∫

Ω
uΦidΩ

∫

Ω
Φ2

i dΩ
= −

1

λi

∫

Ω
u∇2ΦidΩ

∫

Ω
Φ2

i dΩ
(24)

The last relation in (24) is obtained using ∇2Φi = −λiΦi.

Q: Prove that for any functions u and v that are twice continuously differentiable the following Green’s

formula holds
∫

Ω

(u∇2v − v∇2u)dΩ =

∫

S

(u∇v − v∇u) · nds (25)

where n is the unit outward normal vector to the boundary.

Q: Show that the orthogonality of the eigenfunctions follows directly from the Green’s formula (25).
Using (25) with v = Φi we obtain

∫

Ω

u∇2ΦidΩ =

∫

Ω

Φi∇
2udΩ +

∫

S

(u∇Φi − Φi∇u) · nds (26)

Since ∇2u = Q in Ω and u = α, Φi = 0 on S, (26) is written

∫

Ω

u∇2ΦidΩ =

∫

Ω

QΦidΩ +

∫

S

α∇Φi · nds

such that from (24) we may express the coefficients bi as

bi = −
1

λi

∫

Ω
ΦiQdΩ +

∫

S
α∇Φi · nds

∫

Ω
Φ2

i dΩ
(27)
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