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1. Introduction 

The very substantial growth in econometric and statistical theory in the last 30 
years has been at least matched by the explosive growth of computer technology 
and computational methods and algorithms. For the average researcher 30 years 
ago it was a problem of some moment to need the inverse of a matrix of relatively 
small size, say 5 X 5. Many procedures that are routinely applied today were not 
even attempted, even if they had been thought of. 

The impressive advances of hardware, software, and algorithmic technology 
since that time have significantly advanced the state of econometrics; they have, 
however, not been an unmixed blessing. On the one hand, new problems have 
emerged which can trap the unwary. On the other hand, there has occurred an 
increase in the capital/output ratio in research. It is difficult to escape the 
conclusion that, as a consequence, the average researcher today spends a higher 
fraction of his time in data management, computer-program writing and adapta- 
tion, in interpretation of masses of computed output and a lesser fraction of his 
time in reasoning about the underlying problem than did his predecessor. 

The purpose of this chapter is to highlight some of the most important 
computational methods and problems of today. The emphasis is on algorithms 
and general procedures for solving problems and not on detailed implementation 
in concrete computer programs or systems. Hence, names familiar to many such 
as TSP, ESP, GREMLIN, TROLL, AUTOREG, SHAZAAM, etc. will not be 
discussed. For some classical approaches to numerical analysis the reader is 
referred to Hildebrand (1956). For detailed computer implementation see 
Carnahan, Luther and Wilkes (1969). 

Section 2 is devoted to certain matrix methods involved in estimating the 
parameters of single and simultaneous equation models. Sections 3-7 cover 
various aspects of numerical optimization. These methods become relevant 
whenever the first-order conditions for a maximum are not linear in the parame- 
ters to be estimated. Section 3 gives a survey of the typical functions that are 
optimized. Section 4 discusses the basic theory of optimization. Section 5 covers 
special purpose algorithms and simplifications useful in econometrics; Section 6 
considers some further aspects of algorithms. Section 7 deals with very particular 
difficulties encountered only in problems of certain types. Section 8 is devoted to 
numerical integration and Section 9 to random number generation. 

The list is obviously incomplete and problems that are treated are covered only 
in broad outlines. An extensive bibliography refers the interested reader to many 
extensions. 
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2. Matrix methods 

As is well known, many commonly used estimators of the coefficients of econo- 
metric equations are the solutions to equations of the form 

Ap=C, (2.1) 

where b represents the k-element coefficient vector estimated, A is a k x k matrix 
(usually non-singular), c a k-element vector, and where A and c depend only on 
the data. Some examples are discussed below. For the pertinent econometric 
theory see Schmidt (1976), Theil(1971), and for computational aspects see Belsley 
(1974). 

(1) Ordinary Least Squares. If the model is 

Y= xp + u, (2.2) 

where Y and u are n X 1 and X is n X k (and usually of rank k), then A = X’X and 
c = X’Y. 

If linear restrictions are imposed on /? by 

where R is p X k and of rank p, then A = X’X as before and c = X’Y + 
R’( R( X’X)-‘R’)-‘(r - R( X’X)-‘X’Y). If the ridge estimator [Schmidt (1976)] 
is required instead, c = X’Y as before but A = X’X + ~1, where s is a constant. 

(2) k-Class. Consider a full system of simultaneous equations 

YT+XB=U, 

where Y and U are n X g, r is g X g and non-singular, X is n X k, and B is k x g. 
To discuss single equations estimators consider the first equation of the system 
written as 

where Z, = [Y, X,], 8’ = (y’ P’), and u.~ is the first column of U. Then the 
following k-class estimators for 6 are immediate from A6 = c. Let A be given by 

Y;X, 

1 xix, ’ 
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where V, = Y, - X( X’X) - ‘X’Y, and c by 

c= [ ‘YP-$vY]. 

If k, = k, = 1, two-stage least squares results. If k, = k, = the smallest eigenvalue 
h of 

where Yp = [y Y,], we obtain limited information maximum likelihood esti- 
mates. If k, = k, = 1 +(k - k* - g - 1)/n, where k* is the number of columns in 
X,, we obtain Nagar’s 0( n - ’ ) unbiased estimator. Other estimators are obtained 
by choosing k, and k, to be unequal. 

If W is a (g, + k*) x n matrix of instruments uncorrelated with u . , , instrumen- 
tal variables estimators (as are the above) are given in general by setting A = W’Z 
and c = w’y, which also includes the indirect least squares estimator. 

(3) Three-stage least squares. Write the full system as 

y; = zisi + ui, i=l ,*a*, g, 

and define y’ = ( y;, . . . , yi), Z = diag( Zi) a block-diagonal matrix with Zi in the 
ith position, bi as the two-stage least squares estimate of ai, and S the square 
matrix with (ij)th element Sij = ( yi - Z$,>‘( yj - zjdj)/n. Then if A = Z’(S - ‘8 
X( X’X) - ‘X’)Z and c = Z’( S - ’ 8 X( X’X) - ‘X’) y, we have the three-stage least 
squares estimator. 

2.1. Methods for solving Ab = c 

The computation of each of the above estimators, as well as of many others, 
requires the inverse of A. Error in the inversion process accumulates as a result of 
rounding error in each computation. Rounding error, in turn, is due to the fact 
that the representation of numbers in a computer occupies a fixed number of 
places. In a binary computer floating point numbers are of the form (*a)(2’), 
where a, the mantissa, and b, the characteristic, are binary integers stored in the 
computer and where the binary point “ .” and “2” are implied. The extent to 
which rounding error may affect the results is indicated by the condition number 
K, which is the ratio of absolute value of the largest eigenvalue of A to the 
absolute value of the smallest [Golub (1969) and Jennings (1980)].’ Various 

‘Since the matrix A is positive definite in all our examples, we may dispense with the absolute value 
in the definition of the condition number. 
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illustrative examples are provided by Golub (1969) and Wampler (1980). Con- 
sider as an example a case of OLS in which A = X’X and assume 

1 1 1 1 
E 0 0 0 

X=0 E 0 0. 

/ 1 0 0 E 0 
0 0 0 E 

The eigenvalues of A are 4+ s*, e*, E*, and E*. If E < 2-‘I*, where t is the number 
of binary digits in the mantissa of a floating point number, A will be a matrix 
with unity for each element and hence of rank 1 and not invertible. In general, the 
bound for the relative or proportionate error in the solution of an OLS problem is 
qrc, where n measures machine precision (e.g. 10 -6). Some principal matrix 
methods for controlling rounding error are discussed briefly below; for detailed 
application to econometric estimators see Belsley (1974), Golub (1969), and 
Wampler (1980). We illustrate the methods with reference to the ordinary 
regression model. 

(1) Scaling. If the model is given by (2.2), it can also be written as Y = Za + U, 
where Z = XB and B is a suitable diagonal matrix. The estimate for (Y is 
ai = (Z’Z) - ‘Z’Y and fi = Bb. Choosing bjj as [l/c:= ,x;]‘/* generally improves 
the conditioning of Z’Z. 

(2) Cholesky factorization [Golub (1969), Klema (1973)]. If A is a positive 
definite matrix of order k, A may be factored so that 

A= R’R, (2.3) 

where R is upper triangular. Error bounds for the factorization can be computed. 
Replacing A by R’R: 

and the solution proceeds in two steps: we first solve R’c = c which is a triangular 
system and is solved easily; we next solve RP = t which is another triangular 
system. Cholesky factorizations for the k x k matrix A can be obtained in two 
ways [ Golub ( 1969)] : 

(a) Define 



Ch. 12: Computational Problems 

and then let 

r/2 
, i= 2,...,k, 

(b) Define u)~ = aij for all i, j. Then set 

r,,= (aip)r”, p=l,..., k, 

rpj = a;j /rppY p=l ,..., k, j> k, 
aCaP. 

PI PI a;+‘=+- 
G ’ 

p=l ,..., k, i=p+l,..., k, jai. 

The decompositions are themselves subject to rounding error and 
guarantee that (b) can be completed even if A is positive definite. 

705 

there is no 

(3) The QR decomposition [Belsley (1974), Golub (1969) and Jennings (1980)]. 
For all n x k matrices X there exists an n x n orthogonal matrix Q and a k X k 
upper triangular matrix R, such that 

QX= “ol =R. [ 1 

Partitioning Q’= [Q, Q,] it follows that 

X= Q,R, = Q’R. 

The solution of Ab = c in the ordinary least squares case is then particularly easy 
since R;Q;Q,R,B = R;Q;Y or R,b = Q;Y, which is triangular system. The relative 
error of its solution is small if the regression residuals are small and is given by 
T/,lC”2 + TJ2K(Y- x&Y- x,)/j& where n, and n2 are functions of machine 
precision and K is the condition number of X’X [Jennings (1980)]. Moreover, 
X’X= R’R and R is a Cholesky factorization of X’X. Two alternative methods 
are often employed to obtain the QR decomposition. 

(a) The Householder transformation. Let P = I - 2vo’, where 2) is a column 
vector and where ~‘0 = 1. Then P is a Householder transformation. Define 
X(r) = X and let X(P+ 1) = p(P)X(P), where P(P)= Z-2vpvi, v$, = 1, and vp is 
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chosen to make X$‘+‘)=O for j=p+l,...,n. Then R=X(“+‘) and Q= 
Pck)Pck - I). . . P(l). For an application of Householder transformations to estimat- 
ing regression coefficients subject to linear restrictions see Dent (1980). 

(b) Gram-Schmidt orthogonalization. Two such procedures are in use: the 
classical and the modified methods. The former can be found in numerous 
algebra texts [Hoffman and Kunze (1961)]. The latter is preferred from the 
computational point of view, although in the absence of rounding errors they 
produce identical answers [Golub (1969)]. For the modified method replace Q’R 
by PS, where S has unity on the diagonal and P’P = diagonal. Now define 

x(p)= (p ,,.._, pp_,,xy ,-.., .zq 

where pi is the ith column of P and x(P) are columns defined below. Then at the 
pth step we let pp = xp) and set dp = p;pp, spr = p;x!P)/d,, and x!*+‘) = x!P) - 
sprpp for p + 12 r s k. 

Some recent experimental results (Wampler (1980)) indicate that the QR 
method with either the Householder transformation or the modified Gram- 
Schmidt orthogonalization gives more accurate results than the Cholesky factori- 
zation. For application see Belsley (1974), Dent (1977), and Jennings (1980). 

2.2. Singular value decomposition [Belsley (1974) and Chambers (1977)] 

Any n x k matrix X can be decomposed as 

where the columns of U and V are orthonormal eigenvectors of XX’ and of X’X, 
respectively, and where 2 is diagonal and contains the square roots (positive) of 
the eigenvalues of X’X and XX’. If X has rank r < k, then (2.4) can be written 
with U as n X r, E as r X r, and V’ as r X k. 

The singular value decomposition can be employed to compute the pseudoin- 
verse of any matrix X, defined as X+ satisfying (a) XX+ X = X, (b) X+ XX+ = X+, 
(c) (XX+)’ = XX+, and (d) ( X+ X)’ = X+ X. By substituting in (a) through (c) it 
can be shown that X+ = VP u’, where 2’ is the same as 2 except that its 
diagonal elements are the reciprocals of the non-zero diagonal elements of 2. 

Consider a regression model Y = Xf3 + u and the normal equations X’XB = X’Y. 
Assume a case of exact multicollinearity so that the rank r of X satisfies r < k. 
Replacing X by its singular value decomposition leads to 

v-v/3 = x+ Y. (2.5) 
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Substitution of b = Xf Y in the transformed normal equations (2.5) shows that 
they remain satisfied and that X+ Y is a least squares estimate. It can be shown 
further that B has shortest length in the set of all least squares estimates. The 
singular value decomposition thus permits the computation of the shortest least 
squares coefficient vector in the presence of multicollinearity. It can also be 
employed for the computation, via the pseudoinverse, of least squares estimates 
subject to linear restrictions on the coefficients [Gallant and Gerig (1980)]. For 
the calculation of the singular value decomposition see Golub (1969) and 
Bussinger and Golub (1969). 

2.3. Sparse matrix methods 

In some applications, such as optimal control problems or in seemingly unrelated 
regression models, there may occur matrices in which the non-zero elements are a 
small fraction of the total number of elements. Computational efficiency can be 
gained by not storing and manipulating the matrices in their full size but only 
their non-zero elements and identification as to the location of these. The 
resulting techniques are called sparse matrix techniques [see Drud (1977/78) and 
Belsley (1980)]. Their use can result in dramatic reductions in computer time. Fair 
(1976) reports that the time required to evaluate the Jacobian in full-information 
maximum likelihood (see Section 3) was reduced by a factor of 28 when sparse 
methods were employed. 

3. Common functions requiring optimization 

The computation of econometric estimates characteristically requires the maximi- 
zation or minimization of some function. Some of these possess first-order 
conditions that are linear in the parameters to be estimated, and the matrix 
techniques discussed in Section 2 have wide applicability in these cases. In many 
other instances, however, the first-order conditions for an optimum cannot be 
solved in closed form. In these cases one must either solve the equations 
representing the first-order conditions by numerical methods or apply numerical 
methods to the direct optimization of the function in question. The present 
section briefly outlines some of the principal types of objective functions. 

3.1. Likelihood functions 

Specific assumptions about the distribution of error terms characteristically 
permit the derivation of the likelihood function. Maximum likelihood estimates 
are desired because of their favorable asymptotic properties. 
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One of the most common models requiring numerical maximization for the 
attainment of maximum likelihood estimates is the linear simultaneous equations 
model 

Yr+ XB=U, (3.1) 

where Y is an n X g matrix of endogenous variables, X an n X k matrix of 
predetermined variables, U an n X g matrix of error terms, r a g X g non-singular 
matrix, and B a k X g matrix of coefficients. If it is assumed that the rows of U 
are distributed identically and independently as N(0, z), where I: is a g X g 
positive definite matrix, the likelihood function is 

L = (2a)_ g”‘21E(-‘/2(absI~j)“exp{-~tr[E-‘(Yr+ XB)‘(Yr+XB)]}, 

(3.2) 

where I . I denotes taking the determinant and where lrl is the Jacobian of the 
transformation U + Y [Schmidt (1976)]. The logarithm of the condensed likeli- 
hood function is 

log,L = constant- :loglsl + tlog[ lrl12, (3.3) 

where S has elements sjk = cy_ ,tiijCik and where aij is the ith residual in thejth 
equation. If the system is non-linear and is given by 

.Zj(.Yi, xi,P> = uij9 i=l ,*.., n; j=l ,.**, g, (3.4) 

eq. (3.3) becomes 

logL=constant-510glsl++ 5 1og[15,1]2, 
i=l 

(3.5) 

where 4. is the Jacobian matrix corresponding to the i th observation with typical 
element Jik, = &+/ilyi,. For a modification of (3.5) to perform robust estima- 
tion, see Fair (1974a). It should be noted that most linear simultaneous equations 
estimators that superficially might not be thought to be related to the maximiza- 
tion of (3.5) are in fact approximate solutions to the first-order conditions 
corresponding to (3.5) [Hendry (1976)]. 

Another very common example is provided by the ordinary regression model 
first-order Markov process ui = pui _ , + q, E - with error terms that obey a 

N(0, a2Z). The log likelihood is 

+ilog(l-d)--$(Y- XP)‘R’R(Y- xp>, 

(3.6) 

log L = constant - flog u 2 
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where R is the matrix 

709 

R= 

I (1-p2)“2 0 0 . . . 

-P 1 0 . . . 
0 -p 1 . . . 

. . . . . . . . . . . . . . . . . . . 
0 0 0 . . . 

0 0 

0 0 
0 0 

. . . . . . 

-P 1 

Additional specific likelihood functions are discussed in subsequent sections as 
necessary. 

3.2. Generalized distance functions 

A number of estimates are obtained by minimizing a suitable distance function. A 
simple example is the non-linear least squares estimator of the parameters of 

.Yi=f(xj>B)+ui> (3.7) 

obtained by minimizing 

DCl~,(~i-f(xi~P))‘* 

More complicated examples arise in simultaneous equation estimation. 
If eqs. (3.4) are in reduced form, 

Yj=gj(xj,Pj)+ojP j=l ,***, g, (3.8) 

where y/ = ( y, j,. . . , ynj) and where xi and pj are the predetermined variables and 
coefficients in the j th equation, a non-linear two-stage estimator is given by 
minimizing 

D= [r,-g,(~/,fl~)]‘X(X’X)-‘X’[~-g~(x~,~~)]. 

Stacking the equations in (3.7) as 

r=g(KB)+V 

where y’= (y;,..., y;), we obtain an analogue of three-stage least squares by 
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minimizing. 

D= [Y-g(X,8)]'[j2_'ex(x~x)-'X~][Y-g(x,p)l, 

where fi is a consistent estimate of s2 in E( VP’) = 5281. [See Jorgenson and 
Laffont (1974), Berndt, Hall, Hall and Hausman (1974), and Parke (1979).] 

3.3. Functions in optimal control 

Consider a set of structural equations 

fj(Yj9x~9zi>P)=uij3 j=l ,-..,g, . i=l ,-.-, n, (3.9) 

where the y, are vectors of g endogenous variables to be controlled, xi are vectors 
of exogenous variables, and zi are vectors of control variables. Then the optimal 
control problem is to minimize some loss function W( y,, . . . ,y,; x,, . . .,x,; z,, . . . , 
zn) subject to eqs. (3.9). A frequent assumption is that the loss function is 
quadratic as in 

where the vectors ai and matrices Ki are given [Fair (1974b), Chow (1975), and 
Chow and Megdal (1978)]. 

4. Algorithms for optimizing functions of many variables 

4. I. Introduction 

The present section deals with the fundamental ideas of optimization algorithms. 
Refinements and special problems encountered in individual cases are discussed 
in Sections 5, 6, and 7. For the sake of convenience we adopt the convention that 
functions are to be maximized; hence the problem is to 

maximizeF(x,,...,x,) (4-l) 

with respect to the elements of the vector x = (x,, . . . , x,,).~ Under normal 

*Obvious alterations of the algorithms to be discussed turn them into methods for minimizing 
functions. Equivalently, one may maximize - F(x). 
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circumstances F(x) is taken to be twice continuously differentiable; however, 
under some circumstances this assumption may be violated (see Section 7). Most 
often maximization is unconstrained and the present section is exclusively re- 
stricted to this case. Some techniques for dealing with constraints are discussed in 
Section 7. Since 13F/ax = 0 is a necessary condition for maximizing F(x), 
optimization methods can be adapted in a natural way to solving systems of 
equations. 

Numerical methods of optimization characteristically assume that an initial 
value x0 is given for vector of variables.3 ‘Algorithms are iterative procedures or 
sequences of steps with the k th step defined by 

Xk+’ = Xk + hkdk 
3 (4.2) 

where dk is a direction vector and hk a suitable constant. Algorithms differ in the 
way in which they select Xk and dk. 

The classification of algorithms could be based on numerous criteria. We adopt 
a simple classification according to whether the algorithm requires the evaluation 
of no derivatives, or of first partial derivatives, or of first as well as second partial 
derivatives. 

Algorithms have many characteristics of interest and the choice of an algorithm 
represents a trade-off among these. Clearly, no “best” algorithm exists and the 
mix of characteristics possessed by an algorithm will vary from problem to 
problem to a greater or lesser extent. Two fundamental characteristics of algo- 
rithms are of interest here: (a) their robustness, i.e. the degree to which they are 
capable of providing an estimate 2 of the true maximum x* such that 112 - x*(1 < E 
for some prespecified positive E, and (b) their cost. This latter measure is not 
uniquely given by the specification of the algorithm but is dependent on the 
actual charging scheme in effect for the various resources of a computer such as 
execution time, core, I/O requests, etc. Cost is frequently and heuristically taken 
to be proportional to the number of iterations (a concept not well defined when 
comparing different algorithms) or the number of function evaluations. In any 
event, the speed with which an algorithm can be expected to converge is a 
relevant consideration. An algorithm is said to be quadratically convergent if it 
attains the maximum of a quadratic function in a finite number of steps. Various 
criteria exist for defining the speed of convergence. One of these may be stated in 
terms of c=limksuplxk-x ( * Ilk Convergence is sublinear, linear, or superlinear . 

3The choice of x0 may itself be a non-trivial task. Clearly, even approximate information about the 
shape of the function is valuable in that convergence to the maximum is likely to be the faster the 
closer x0 is to the location of the maximum. It is often asserted that in estimation problems x0 must 
be a consistent estimate. This may well be essential for statistical reasons as in the computation of 
linearized maximum likelihood estimates [Rothenberg and Leenders (1964)], but is not necessary for 
computational reasons. 
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when xk converges to x* according to whether the asymptotic rate of convergence 
satisfies c = 1, 0 -C c < 1, or c = 0. Sublinear convergence to zero is provided by 
l/k, linear by 2-k, and superlinear by k - k [Brent (1973)]. The notion of 
quadratic convergence is important, for in the neighborhood of the maximum the 
function F is approximately quadratic in the following sense. Let the Hessian 
matrix of F(x) be G(x) = [ L?2F(x)/~xiaxj] and let G satisfy the Lipschitz 
condition 

for all x’, x2 in some domain R of F containing x* in its interior, where [lx’ - x211 
is the Euclidean norm and M is a matrix of constants and where IG(x’)- G(x2)1 
denotes a matrix the elements of which are the absolute values of a2F(x’)/8xi axj 
- I~~F(x~)/c?x~~?x~. Then 

F(x) = F(x*)++(x - x*)‘G(x*)(x -x*)+Q(x) (4.3) 

for x E R, where IQ(x)1 5 Mllx - x*l13. For x sufficiently near x* the first two 
terms on the right-hand side of (4.3) provide a good approximation to F(x). 

4.2. Methodrr employing no derivatives 

In principle, such methods are appealing because the computation of derivatives 
is almost always computationally costly. Nevertheless, relatively few algorithms of 
this type are in frequent use, particularly on problems of more than moderate 
size. 

One class of derivative-free algorithms employs the notion of searching on a 
suitable grid of lattice points. A simple procedure is to start at some point x0 and 
evaluate the function at x0 and at the 2n lattice points x0 + hei, where e, 
(i=l , . . . ,n) is a vector with unity in the i th position and zeros elsewhere and 
where h is the preassigned lattice width. A step is taken from x0 to x’, where x’ is 
the value of x0 f he, for which F(x’) = sup F(x” f hei). The procedure is 
repeated starting from x1 until no improvement is found for the given value of h. 
The value of h is then reduced and the search renewed. When h is finally reduced 
to the preassigned level of accuracy, the search is terminated and the last value of 
x taken as the location of the maximum. An algorithm in this class is that of 
Berman ( 1969). 

Although the above algorithm is guaranteed to converge to a local maximum, 
in practice it is prohibitively expensive to employ. A different and more efficient 
version of search algorithms is that of Hooke and Jeeves (196 1). The Hooke and 
Jeeves algorithm employs exploratory moves which are parallel to the coordinate 
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axes and pattern moves which represent the average direction of several past 
moves together. If an exploratory move and a subsequent pattern move together 
result in function improvement, they are both accepted; otherwise only an 
exploratory move is made. Computation again begins with a prespecified value of 
h and ends when h has been reduced to the desired accuracy. 

Search methods do have advantages over methods using (first and second) 
derivatives. These are the assurance of eventual convergence and their indepen- 
dence of the concavity or convexity of the function F(x). Nevertheless, in practice 
they are not employed frequently. They tend to converge slowly even in the 
immediate vicinity of the location of a maximum and, as a rule, are computa- 
tionally very expensive. An even more serious problem is that algorithms that 
change only one variable at a time may fail to converge altogether. Consider the 
simple algorithm that changes at each iteration one variable according to 

f-b k+l) = maxF(x: ,..., xt_i,x,xi+i ,..., xt). 
X 

Methods of this type are in common use; see for example the Cochrane-Orcutt 
iterations used to maximize (3.6). These methods frequently work well if precau- 
tions are taken to terminate iterations when function improvement becomes 
small. Nevertheless, the gradient may remain strictly positive over the path taken 
by an algorithm and Powell (1973) has given examples in which this algorithm 
could cycle indefinitely around the edges of a hypercube. 

An alternative direct search method is the Simplex method of Nelder and Mead 
(1965).4 The function is first evaluated at the n + 1 vertices x0,. . .,x” of an 
(irregular) simplex in the space R” of variables. The corresponding function 
values, denoted by 6 (i = 0,. . . , n), are assumed to be ordered F, > F,_, >,..., > 
F,. Among the points thus examined, x” is currently the best, x0 the worst. 
Compute the centroid c of the points not including the worst: c = x7= ,xj/n. The 
steps of the algorithm are as follows: 

(1) Reflect the simplex about the subsimplex given by x1,. . . ,x” by choosing a 
point xr = c + a(c - x0) where (Y > 0 is a coefficient chosen for the algorithm. If 
F,, the function value corresponding to x’, is such that F, -C F, < F,, then x’ 
replaces x0 and we return to Step 1. 

(2) If F, > F,, then the simplex may profitably be stretched in the direction of x’ 
and an xs is defined by xs = c + p(x’ - c), where /I > 1 is a coefficient chosen for 
the algorithm. If F, > F,, xs replaces x0. Otherwise x’ replaces x0. In either event 
we return to Step 1. 

4 Not to be confused with the simplex method of linear programming. See also ‘Swum (1972) and, 
for variants and computational experience, Parkinson and Hutchinson (1972). 



714 R. E. Quundt 

(3) If F, < F,, then the simplex should be contracted. A positive y < 1 is chosen 
and xc set to c+ y(x” - c) if F, < F, and to c + y(x’- c) if F, > F,. If F, > 
max(F,, F,), xc replaces x0 and we return to Step 1. Otherwise the points other 
than the best point x” are shrunk toward x” by a preselected proportion and we 
return to Step 1. 

The algorithm is useful because it does not require derivatives. Unfortunately, 
its performance depends on the values of the various (expansion, contraction, 
reflection) coefficients and it is not easy to develop sound intuition as to desirable 
values. 

An even more useful algorithm is the conjugate gradient method of Powell 
(1964). The basic motivation of this method is its behavior in the case of 
quadratic functions and its application to more general functions rests on 
analogy, or at least the heuristic observation, that near a maximum well-behaved 
functions are approximately quadratic.5 

Two direction vectors, p and q, are said to be conjugate relative to a symmetric 
matrix A if p'Aq = 0. The essence of the algorithm is a sequence of n linear 
searches of the function in n linearly independent, mutually conjugate directions. 
Assume that n such directions, d,k, . . . , d,k, are given at the beginning of the kth 
iteration and that the most recent estimate of the location of the maximum is xk. 
The steps of an iteration are as follows. 

(1) Calculatevaluesv,(r=l,..., n) sequentially such that F(xk +C;,,v,d,b) is a 
maximum. 

(2) Replace d,k by d,k,, (r=l,...,n - 1). 

(3) Replace d,k by cJ= ,vjdF. 

(4) Calculate v such that F(xk + Cy= Ivjdf + v(C& ,vjdjk)) is a maximum and let 
xk+’ be given by x k+l = xk +C;,,v/djk + v(Cj”=,vjd;). 

The justification of the algorithm rests upon its convergence in the case of 
quadratic functions F(x) = x’Ax + b’x + c and is established by the following 
theorems due to Powell (1964). 

Theorem 4. I 

Let d,,..., d,, m 5 n, be mutually conjugate directions in a subspace of dimen- 
sion m and let x0 be the starting point in that subspace. Then the maximum of the 
quadratic function F(x) in the subspace is found by searching along each 
direction only once. 

‘For details beyond those provided here see also Goldfeld and Quandt (1972), Brent (1973), Murray 
(1972), and Fletcher (1965). 
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Proof 

The location of the maximum can be written x0 + cy= ,vidi and parameters vi are 
chosen so as to maximize F(x” + cy_ ,vidi). Substituting x0 +cy= ,vidi into the 
quadratic it can be seen that terms involving d$4dj vanish by the assumption of 
conjugacy. Hence, the maximum with respect to vi does not depend on the value 
of any vj, j * i, proving the assertion. 

Theorem 4.2 

Let x0 and x1 be the locations of the maxima when the function is searched twice 
in the direction d from two starting points. Then the direction x1 - x0 is conjugate 
to d. 

Proof 

Any point x is the location of the maximum in the direction d if 

$F(x+vd)=O atv=O. 

Performing the differentiation and alternately substituting x1 and x0 yields 

(2(x’)‘A + b’)d = (2(x0)/A + b’)d = 0 

or 

(x’ - x”)‘Ad = 0. 

The convergence of the algorithm can then be proved by induction. Assume 
that on the k th iteration of the algorithm the last k directions searched were 
mutually conjugate. The xk which is the starting point of the next iteration and 
the xk +Cv,d,k defined in it represent maxima involving the same search direc- 
tions, hence their difference is also conjugate to the previously conjugate direc- 
tions by the parallel property stated in Theorem 4.2. Thus, after two iterations 
two conjugate directions exist, and after n iterations n such directions will exist, 
each of which will have been searched once. Q.E.D. 

The conjugate gradient method is usually initiated by taking the columns of an 
identity matrix as the search directions. In practice it is often a useful method, 
although it has been conjectured that for problems in excess of lo-15 variables it 
may not perform as well. The principal reason for this may be [see Zangwill 
(1967)] that at some iteration the optimal value of vi in the linear search may be 
zero. The resulting set of directions d,, . . . , d, then become linearly dependent and 
henceforth the maximum can be found only over a proper subspace of the 



716 R. E. Qmdt 

original n-space. Near linear dependence and slow convergence can occur if vi is 
approximately zero. There are at least three devices for coping with this, with no 
clear evidence as to which is preferable. 

(1) If the search directions become nearly linearly dependent, we may reset them 
to the columns of the identity matrix. 

(2) We may skip Step 3 of the algorithm and search again over the same n 
directions used previously. 

(3) We may replace the matrix of direction vectors with a suitably chosen 
orthogonal matrix [Brent (1973)]. These vectors are computed on the assumption 
that F( -) is quadratic and negative definite as follows. 

Let A be the matrix of the (approximating) quadratic function. A is generally 
unknown (although it could be obtained at significant cost by evaluating the 
Hessian of F). Let D be the matrix of direction vectors. Then, since the directions 
are mutually conjugate with respect to A, 

D’AD = M, (4.4) 

where M is diagonal with negative diagonal elements. The linear search in each of 
the n directions may be accomplished by evaluating F(xk + c{= ,vid:) at three 
points v,!, vi’, and $ (j = 1,. . . , n) and fitting a parabola to the function values 
(see Section 6). Thts involves computing the second differences of the function 
values which are easily shown to be 

d;Adi = pi, (4.5) 

where di is a column of D and pi is a diagonal element of M. Define R = 
D( - M)1’2 and H=A-‘. Then H= DM-‘D’= - RR’. Since D and M are 
known from the iteration, H can be computed. It remains to compute Q such that 

Q’HQ=M-’ (4.6) 

and the columns of Q are orthogonal eigenvectors of A. If the quadratic 
approximation is good, the resulting search directions are conjugate to a matrix 
that is approximately the true Hessian and, hence, convergence can be expected 
to be fast. In order to avoid bad rounding errors in the computation of 
eigenvectors for a badly conditioned matrix it may be desirable to find the 
singular value decomposition Q’R’S of the matrix R’, where Q is the matrix of 
directions sought. 
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4.3. Methods employing first and second derivatives 

A reasonable starting point for very general methods is to approximate F(x) by a 
second-order Taylor approximation about x0: 

F(x) = F(x’)+g(x’)‘(x - x0)+4(x - x')'G(x')(x - x0), (4.7) 

where g(x’) denotes the gradient of F(x) evaluated at x0. Maximizing F by 
setting its partial derivatives equal to zero yields 

g(x’)+G(x’)(x-x0)=0, (4.8) 

or, replacing x0 by the current value of x at the k th iteration and replacing x by 
x“+ ‘, the new value sought is 

xk+l --xk 
- [G(xk)]-‘g(xk), (4-9) 

which forms the basis of iterating according to Newton-type algorithms.6 A very 
general class of algorithms is obtained by writing (4.9) as 

xk+l =xk 
- AkHkg(xk), (4.10) 

where Xk is a suitable constant and Hk is a matrix. Eq. (4.10) is of the same 
general form as (4.2) with - Hkg(xk) being the search direction. It can be shown 
that search direction dk guarantees an improvement in the function if and only if 
it can be written as - Hkg(xk), with the matrix Hk being negative definite [Bard 
(1974)]. Numerous choices are available for hk as well as Hk; Ak = 1 and 
Hk = [G(xk)] -’ yields Newton’s method. It is a method with the best asymptotic 
rate of convergence c = 0.’ It is, however, clearly expensive since it requires the 
evaluation of n first and n( n + 1)/2 second derivatives. Moreover, (4.8) corre- 
sponds to a maximum only if the second-order conditions are satisfied, i.e. if 
G (x k, is a negative definite matrix. Obviously this may be expected to be the case 
if xk is near the maximum; if not, and if G(xk) is not negative definite, iterating 
according to (4.9) will move the search in the “wrong” direction. A much simpler 
alternative is to set Hk = - I. The resulting method may be called the steepest 
ascent method. It locally always improves the value of the function but tends to 

6Chow (1968, 1973) recommended this method for maximizing the likelihood for systems of 
simultaneous linear equations. Instead of directly maximizing the likelihood, he suggested the method 
for solving the first-order condition. It is also called the Newton-Raphson method. See also Hendry 
(1977) for various applications. 

7See Parke (1979). Parke also discusses the asymptotic rates of convergence of the steepest ascent 
and univariate search methods. See also Dennis and More (1977). 
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behave badly near the optimum in that it tends to overshoot (indeed, for arbitrary 
fixed A it is not guaranteed to converge) and near ridges in that it induces motion 
that is orthogonal to the contours of the function; these directions may well be 
nearly orthogonal to the desirable direction of search. Newton’s method is useful 
precisely where the steepest ascent method is likely to fail. If - G is positive 
definite, we have the decompositions 

G = 5 A,P,P,‘, G-’ = ;$, P;P;,Ai, (4.11) 
i=l 

where the hi are the eigenvalues and the Pi the orthogonal eigenvectors of G. The 
eigenvectors point in the direction of the principal axes of the ellipsoid defined by 
- y’Gy = constant and the quantities (- 1/Xi)‘12 give their lengths. Since the 
eigenvectors are linearly independent, we can write g = c:= ,&P,. Hence, the step 
defined by (4.9) can be expressed as 

If one of the h’s, say the kth, is very small, i.e. if the quadratic approximation 
defines ellipsoids that are highly elongated in the direction Pk, then the compo- 
nent Pk receives a weight proportional to l/A, and the step will be nearly parallel 
to the ridge. 

Several modifications exist for coping with the possibility that G might not be 
negative definite. 

(1) Greenstadt (1967) replaces G by -~~=,IX,IP,P/. 

(2) Marquardt (1963) suggests replacing G by G - arA, where (Y is a small 
positive constant and A is a diagonal matrix with a,, = 1 Gii] if Gii f 0 and ai, = 1 
otherwise. 

(3) In maximum likelihood problems, in which log L is to be maximized, it may 
be possible to compute the value of [E( a210g L/&9&9’)] - ‘, where ti is the vector 
of variables with respect to which one wishes to maximize. Setting Hk equal to 
this matrix yields the method of scoring [Rao (1973), and Aitcheson and Silvey 
(1960)]. 

(4) In non-linear least squares problems [see eq. (3.7)] the objective function is 
D = cy= , ( yi - f( xi, fi)) 2. The second derivative matrix is 

a20 -= 
WW’ 

2 5 a_f(xi7P) af(xi,B) 

i=l [ aP W’ 
-(.Y-j(xi,P)) a2i$iB)]. 

(4.12) 
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If Hk is set equal to the first term of (4.12), it is guaranteed to be positive definite 
and the resulting method is known as the Gauss or Gauss-Newton method 
[Goldfeld and Quandt (1972), and Bard (1974)]. 

A quadratic hill-climbing algorithm due to Goldfeld, Quandt and Trotter 
(1966) attacks the non-negative-definiteness of G directly and replaces G by 
G - al, where (Y is chosen so that G - al is negative definite. In practice LY = 0 
when G is negative definite and (Y > A,,, where A,, is the largest eigenvalue of 
G, when G is not negative definite. The justification for the algorithm is based on 
the behavior of quadratic functions and is contained in the following theorems.’ 
Let Q(x) be an arbitrary quadratic function of x, let Q’(x) denote the vector of 
first partial derivatives, and Q”(x) the matrix of second partial derivatives. 
Define the iteration 

(4.13) 

and 

r(o) = ]]Xk+’ - xk]J. 

Then the following are true: 

Theorem 4.3 

For any ar such that Q”(xk)- C-XI is negative definite and any x such that 
I]x - xkll = r(a), Q(xk+‘) 2 Q(xk). 

Theorem 4.4 

For all Q’(xk) f 0, the radius I$ a) is a strictly decreasing function of (Y for all 
a > x,,. 

Theorem 4.5 

Let R, = {xlllx - xkll 4 r(a)), and assume Q’(xk) * 0. Then the maximum of 
Q(x) on R, is at the boundary point x k+’ if (Y > 0 and at the interior point = 
xk -[Q”(xk)]-‘Q’(xk) otherwise. 

The algorithm thus basically works as follows: at each step G(xk) is examined 
for negative definiteness. If G is negative definite, a step equal to 
-[G(xk)]-‘g(xk) is taken.’ Otherwise the step taken is -[G(xk)-(~11~‘g(xk), 
where (Y is taken to be X,, + Pllg(xk)ll. The quantity p is itself adjusted from 

‘For proof see Goldfeld, Quandt and Trotter (1966). 
91n practice, the direction -[G(xk)]-‘g(xk) IS computed and a one-dimensional line search is 

performed since line searches arc computationally efficient ways of improving the function value. 
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iteration to iteration since the radius r(a) $ p- ‘. At each step the actual improve- 
ment in the function is compared with the improvement in the quadratic Taylor 
series approximation to it; if the comparison is unfavorable, p is increased and the 
radius is shrunk. It should be noted that the resulting changes of CY not only 
change the step size (which may be overridden anyway by a subsequent line 
search) but also change the direction of movement. In any event, the direction 
will tend to be intermediate between that of a Newton step (CX = 0) and that of a 
steepest ascent step (CX --) co). It also follows that if (Y is very large, convergence is 
certain, albeit slow since xk+ ’ = xk + g(xk)/a. The comparison of the present 
method with Greenstadt’s suggests that the latter may make a non-optimal 
correction in the step if F has “wrong” curvature in some direction. Assume, for 
example, that X, = sup hi > 0. Using (4.1 l), the step according to the quadratic 
hill-climbing method is given by 

xk+‘=xk_ 

and according to Greenstadt’s suggestion by 

xk+‘=xk_ (4.14) 

Since (Y is chosen so that A, - (Y -C 0, we have 1 l/(X, - CX)~ > I l/(Aj - a)1 for all 
j=2 , . . . , n and hence the step will contain the direction P, with relatively largest 
weight, a fact that need not hold for (4.14). Thus, the step will be relatively closer 
to the direction in which the function is convex [Powell (1971)]. 

A further refinement of the quadratic hill-climbing algorithm rests on the 
observation that recently successful directions of search may well be worth further 
searches. Thus, if the step from xk -’ to xk is given by xk - xk -’ = &Yk, then the 
decomposition of any vector into its projection on 5 and its orthogonal comple- 
ment permits the component parallel to 5 to be emphasized. To distinguish an 
actual xk from arbitrary members of the coordinate system prevailing at the jth 
iteration, we use the notation x(j). Thus, the coordinate system prevailing at the 
jth iteration may be transformed into a system prevailing at the (j + 1)th by 

x( j+ 1) = Bjx( j), 

where Bj = I +(l - p)Mj and where 0 <p -C 1 and Mj = [j(S~Sj)-‘~~. A sequence 
of such transformations allows the original coordinate system and the one 
prevailing at the jth iteration to be related by x(j) = Bx(0). Applying the 
hill-climbing algorithm thus alters the original procedure from maximizing at 
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each step on a sphere to maximizing on a suitably oriented ellipsoid, since 
x(j)‘x(i) = x(O)‘B’Bx(O). Writing the function in the jth coordinate system as 
F(x( j)) and differentiating, aF(x( j))/ax(O) = B’JF(x( j))/ax( j). Hence, the 
gradient of F(x( j)) in terms of the original system is g(x( j)) = 
(B - ‘)‘~YF’(x(j))/ax(O). By similar reasoning the Hessian is (B - ')'G(x(j))B - ‘. 
It follows that the step taken can be expressed in the x(j)-coordinate system as 
-[(B-‘)‘G(x(j))B-‘- cyI]-‘(B-‘)‘g(x(j)). Premultiplying by B-’ yields the 
step in the x(O)-coordinate system and is -(G(x(j))-aB’l3)‘g(x(j)) and is 
equivalent to replacing I in (4.13) by a positive definite matrix BIB.” 

4.4. Methods employing first derivatives 

A general theory of quadratically convergent algorithms has been given by Huang 
(1970).” The objective of Huang’s theory is to derive a class of algorithms with 
the following properties: (a) searches at each iteration are one-dimensional; (b) 
the algorithms are quadratically convergent; (c) they calculate only function 
values and first derivatives; and (d) at the kth iteration they only employ 
information computed at the k th and (k - 1)th iterations. 

Requirement (a) states that at each iteration k = 1,2,. . . a direction dk be 
chosen and a scalar X, be determined such that 

aF( Xk + h,dk)/ah, = 0. (4.15) 

This determines a displacement Axk = Xkdk or xk+’ = xk + Xkdk. Restricting 
attention [by Property (b)] to quadratic functions F(x) = X’AX + b’x + c, it 
follows that 

F(xk+‘) = F(xk)+g;Axk + Axk’AAxk, (4.16) 

where g, denotes the gradient g(xk) at xk. From the first order condition (4.15) it 
follows that g;+ ,dk = 0. Since g k+, = g, +2AAxk and Axk = hkdk, the optimal 
A, is given by 

A,= - dk’& 
2dk’Adk * 

“A final modification pertains to the case when g = 0 to the required accuracy without having 
achieved a negative definite G (x k). This is the case in which x k is a saddlepoint. Although such cases 
may be only rarely encountered, the following proposition ensures that the algorithm does not 
terminate prematurely. If g(xk) = 0 and if Amax > 0, the maximum of F within the sphere (lx - xk(l =< r 
occurs at xk f rP,,, where P,, is the eigenvector corresponding to the X,,. Thus, in such instances 
a search direction is provided by the appropriate eigenvector. 

“See also detailed discussion in Powell (1971), Broyden (1972), and Dennis and More (1977). 
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Substituting for Axk and hk in (4.16) yields 

R. E. Quad 

F(Xkf’)- F(Xk) = - $:y$, 
which is positive if A is negative definite, thus ensuring that the function is 
monotone increasing over successive iterations. If it is further required that the 
successive search directions be conjugate with respect to A, quadratic convergence 
can be proved in straightforward fashion. Taking the search direction dk to be a 
matrix multiple of the gradient 

dk = H”g, 

produces an algorithm of the general form of (4.10) and for that reason these 
algorithms may be called quasi-Newton algorithms. The conjugacy condition 
places restrictions on the matrix H k; however, the restrictions will be observed if 
Hk is updated according to 

Hk+’ = Hk + B,AxkAxk’+ tl,HkAgkAg;Hk 

+ e,[AxkAg;Hk + HkAgkAxk’], (4.17) 

where Ag, = &+ 1 - g,. Different choices for 8,, t$, and 0, yield different mem- 
bers of this class of algorithms. In any event, 0, and t9, m&satisfy 

1+ fl,Ag;HkAgk + 83Axk’Agk = 0. 

At the start, H’ is usually initialized to - Z (or Z for minimization). 
alternatives are as follows. 

(4.18) 

Some of the 

(1) If 0, = l/Axk’Agk, t$ = - l/Ag;HkAgk, and 0, = 0, the resulting algorithm 
is known as the Davidon-Fletcher-Powell (DFP) algorithm [Davidon (1959), and 
Fletcher and Powell (1963)]. In this case F(x) is not required to be quadratic for 
convergence but very strict concavity conditions are required. If F(x) is not 
concave, there is no assurance that convergence will take place. It should be noted 
that the quantity giHkgk increases monotonically over the iterations; since 
gLHkgk is negative for concave functions, this implies that the search direction 
tends to become more nearly orthogonal to the gradient which can interfere with 
speedy convergence. 
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An important feature of DFP is contained in the following: 

Theorem 4.6 

If F(X) is quadratic, then H” = G - ‘. The convergence of H to the inverse Hessian 
in the quadratic case is used in practice to obtain estimates of asymptotic 
variances and covariances in the presence of maximum likelihood estimation. 
However, care must exercised for if apparent convergence occurs in less than n 
iterations, H will not contain usable quantities. It is important, therefore, that 
computer implementations of DFP contain a restart facility by which computa- 
tions can be (re)initiated not only with H’ = - I, but H’ = a previously computed 
Hk. 

(2) In order to make Hk approximate the inverse of the true Hessian G(x“), one 
may set 

e,hk’dgk + e3Ag;HkAgk = 1 (4.19) 

and also require (4.18) to hold. Obviously, the DFP algorithm satisfies (4.19). In 
that case the required approximation holds because (4.18) and (4.19) imply 
Hk + ‘Ag, = Axk, which is just the Taylor series approximation gk+ I = g, + 
G(xk)Axk. A special case is the rank-one correction formula, according to which 

Hk+, = Hk + [Axk - HkAsk] bxk - Hk‘kkl’ 
dxk’dgk - Ltg;HkAgk * 

Several other algorithms are defined by Huang and Powell and the reader is 
referred to Huang (1970) and Powell (197 1) for details.‘2 

Computational experience with many members of this class of algorithms is 
lacking. The best documented member of the class is almost certainly DFP. 
Overall its performance is good enough to make it a reasonable first choice for 
many problems, although it is both generally less robust than some variants of 
Newton’s method (particularly near the maximum) and less efficient computa- 
tionally than algorithms especially tailored to a problem [see Parke’s (1979) 
Algorithm A] or possessing special ad hoc features such as MINOPT [Belsley 
(1980)]. The latter in particular makes a choice at each iteration whether to 
employ a steepest ascent step or a Newton step, allowing the former to guide 
computations at an initial point far from the optimum and the latter near it. It 
can thus perform more efficiently than DFP. In general, however, DFP and other 
members of the class must continue to be regarded as viable alternatives for many 

12A recent new member of the class is due to Davidon (1975) and is designed to work without any 
line searches. 
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problems. Two related reasons why members of the quasi-Newton class may fail 
or perform poorly in practice are: (a) Hk+’ may become (nearly) singular and (b) 
Hk+’ may fail to provide a good approximation to G -‘. The latter affects the 
speed of convergence as a result of the following: 

Theorem 4.7 

If F(x) is a negative definite quadratic function and x* the location of the 
maximum, then ~(‘(X*)-F(X~+‘))$[(K(R,)-~)/(K(R,)+~)](F(~*)-F(X~)), 
where K( Rk) is the condition number of the matrix R, = G’12HkG112. 

Hence, K(R,) should be small and decreasing which will be the case if Hk 
increasingly approximates G - ‘. Oren and Luenberger (1974) designed a “self- 
scaling” algorithm in this class which guarantees that K( Rk+ ,) 4 K( Rk), with 
updating formulae given by 

[ 

Axk ok = ( dg;Hkdgk)“’ ~ - HkA& 
A&Ax, I Ag;HkAgk ’ 

where e,k and e6k are parameters to be chosen. In recent experiments various 
self-scaling and other quasi-Newton algorithms gave satisfactory results [Van der 
Hoek and Dikshoom (1979)]. 

5. Special purpose algorithms and simplifications 

There is no hard-and-fast dividing line between general and special purpose 
algorithms. In the present section we discuss some algorithms that are either 
especially suited for problems with a particular structure or contain more or less 
ad hoc procedures that appear to be useful in particular contexts. 

5. I. Jacobi and Gauss - Seidel method 

Both of these procedures are designed to solve systems of (linear or non-linear) 
equations. In the context of maximizing a likelihood function, they are applied to 
solving the first-order conditions, the likelihood equations. Both Jacobi’s method 
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and the Gauss-Seidel method presuppose that the equation system can be solved 
in a particular manner. In the former case we require a solution 

x =f(x), (5.1) 

where x is a vector of unknowns and f(x) a vector-valued function. Jacobi’s 
method iterates according to 

The Gauss-Seidel method is similar, except that the ith equation in (5.1), 
i=l , . . . ,n, is assumed to have the structure xi = fi(x,, . . . ,xi _ ,, xi+ ,, . . . ,x,). A 
further distinction may be obtained depending on whether in a given iteration of 
the algorithm all n x’s are computed and then used only in the next iteration, or 
whether an xi computed in a given iteration is used immediately in the computa- 
tion of other x’s in that same iteration. There is some reason to think that the 
latter procedure is more efficient [Fromm and Klein (1969)]. 

Jacobi’s method was applied to Klein’s Model I by Chow (1968). As shown in 
Section 3, the condensed log-likelihood function for a system of simultaneous 
linear equations Yr + XB = U can be written as 

where r is the matrix of coefficients associated with the jointly dependent 
variables and S is the estimated covariance matrix of residuals with typical 
element 

‘ij = i kc, UikUjk. 

S itself is a function of the parameters in r and B and setting derivatives of L 
with respect to the non-zero elements of r and B equal to zero yields equations of 
the form of (5.1). Jacobi’s method or the Gauss-Seidel method are also routinely 
applied to solving non-linear systems of simultaneous equations as is required for 
the solution of stochastic control problems [Chow and Megdal (1978)] or for 
simulating non-linear econometric models after estimation [Duesenberry et al. 
(1969), and Fair (1976)]. 

The objectives of simulation may be to assess the sources of uncertainty and 
the quality of the predictions over several models or to estimate the effects and 
the uncertainty of various policy variables [Fair (1980a, 1980b)]. Simulations are 
stochastic if repeated trials are made in which either the error terms, or the 
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coefficients employed in computing predictions, or exogenous variable values, or 
all of these are drawn from some appropriate distribution. Whatever simulation 
variant is chosen, the simulated endogenous variable values must be obtained by 
solving the system of econometric equations, which is typically non-linear. 

A particularly interesting application is due to Fair (1979) in which models 
with rational expectations in bond and stock markets are simulated. In these 
models two layers of Gauss-Seidel alternate: for certain initial values of some 
variables, Gauss-Seidel is used to solve the system for the remaining ones. These 
solution values are used to obtain new values for the initial set of variables and 
the system is solved again for the remaining variables, etc. 

Neither Jacobi’s nor the Gauss-Seidel method can be expected to converge in 
general. A sufficient condition for convergence is that f(x) be continuous and a 
contraction mapping; that is, given the distance function d over a compact region 
R, f(x) is a contraction mapping if for x f x*, X, x* E R, and d(f(x), f(x*)) < 
d(x, x*). An example of such a contraction mapping is provided by Ito (1980) in 
connection with solving a two-market disequilibrium model with spillovers for 
values of the endogenous variables. The equations of such models are 

yd=(Yb,X,+(Y,(z-?S)+E,, 

y”=cwbzxz+a,(f-kd)+E2, 

y = in( yd, f), 

Id=P~*Z,+P,(Y-~S)+&3, 

fs=p~,z,+Pz(r-~d)+&q, 

I = rnin(Zd, I”), 

where jjd = C&x, + E,, Y” = c&X~ + E*, Id = &,z, + Es, and p=/3&z2 + .Q. The 
x’s and z’s are exogenous variables and the E’S random errors. The yd, ys, Id, and 
I” are effective goods and labor demand and supply, respectively, the same 
symbols with a tilde (‘) represent notional demands and supplies, and y and I 
represent the actually transacted quantities. Ito shows that values of y and 1 may 
be calculated by Jacobi’s method (for given values of x’s, z’s, and E’S) by starting 
with arbitraryy and iif (Y,,(Y~,P,,&>O and if ~-cw,/~~>O for all i=1,2 and 
j = 1,2. 

Some algorithms that appear to be principally gradient methods exploit the 
idea of a Jacobi or a Gauss-Seidel iteration. Thus, for estimating the parameters 
of systems of simultaneous equations, Dagenais (1978) first computes a Jacobi 
iteration of the parameter vector and then further displaces the parameter vector 
in the direction of the difference between the original value and the Jacobi iterate. 



Ch. 12: Computational Problems 121 

This yields an iteration of the form x k+’ = xk + XHkgk, where Hk is a positive 
definite matrix and A a scalar. 

5.2. Parke’s Algorithm A 

An algorithm particularly suited for estimating the coefficients of linear or 
non-linear simultaneous equations by full-information maximum likelihood or by 
three-stage least squares is Parke’s (1979) Algorithm A, Algorithms that are 
especially useful for simultaneous equation estimation have been used before. A 
case in point is the procedure implemented by Chapman and Fair (1972) for 
systems with autocorrelations of the residuals: their algorithm is a sequence of 
pairs of Newton steps in which the first operates only on the coefficients of the 
equations and the second on the autocorrelation coefficients. 

Algorithm A performs sequences of searches at each iteration in order to 
exploit two empirical generalizations about the structure of simultaneous equa- 
tions models: (a) that the coefficients in any one equation are more closely related 
than those in separate equations, and (b) that change in the values of the residuals 
of the equations usually has a substantial effect on the objective function. The 
algorithm uses searches, no derivatives, and performs numerous searches at each 
iteration; these facts make it superficially resemble the Powell (1964) class of 
algorithms. 

The sequence of searches in an iteration may be briefly summarized as follows. 

(a) For each equation in turn the coefficients of the equation are perturbed one 
by one (and in a particular order) with the constant term being continually 
readjusted so as to stabilize the residuals in the sense of holding the mean residual 
constant. Finally, the constant term itself is perturbed and then the change in the 
full set of coefficients for that equation is used as a search direction. 

(b) After (a) is complete, the change in the coefficients for the system as a whole 
is used as a search direction. 

(c) The last (equation-by-equation) search directions in (a) and the direction in 
(b) are searched again. 

Searches in (a) are linear for linear equations but non-linear otherwise, since 
the constant term is not, in general, a linear function of the other coefficients 
when mean residuals are kept constant. The algorithm also provides for the case 
in which there are constraints on the coefficients. 

General theorems about the convergence properties of Algorithm A are dif- 
ficult to come by. On a small number of test problems the convergence rate of 
Algorithm A compares favorably with a simple steepest ascent or a simple 
univariate relaxation algorithm that searches parallel to the coordinate axes. No 
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claim is made that Algorithm A’s convergence rate can approximate that of 
Newton’s method (although the latter is very much more expensive per iteration 
than the former), nor that Algorithm A will necessarily perform well on problems 
other than simultaneous equation estimation. Computational experience so far is 
fairly limited and appears to consist of estimates of two versions of the Fair 
(1976) model [see Fair and Parke (1980) and Parke (1979)]. In spite of the scant 
evidence the algorithm appears to be quite powerful in a rather sizeable model: in 
the model of Fair and Parke (1980), Algorithm A estimates 107 coefficients. 

5.3. The EM algorithm 

A particularly effective algorithm becomes possible in models involving incom- 
plete data or latent or unobservable variables. The basic properties of the 
algorithm are given in Dempster, Laird and Rubin (1977); particular applications 
are treated in Hartley (1977a, 1977b) and Kiefer (1980). 

The incomplete data problem may be stated as follows. Consider a random 
variable x with pdf f( x ( d) and assume the existence of a mapping from x to y(x). 
It is assumed that x is not observed but is known to be in a set X(y), where y 
represents the observed data. The y-data are incomplete in the sense that a 
y-observation does not unambiguously identify the corresponding x, but only 
X(y). The y-data are generated by the density function 

A simple example is a multinomial model with k possible outcomes but with the 
restriction that for some pair of possible outcomes only their sum is observed. 
Another example is the switching regression model with the structure 

yi =&xi + uti with probability X, (5 -4) 
yi = &xi + uZi with probability 1 - A. 

In this model the xi are exogenous variables, the pi unknown parameters, the ui 
the usual error terms, and the yi the observed values of the dependent variables 
[see Hartley (1977a) and Kiefer (1980)]. The probability X is unknown and we do 
not observe whether a particular yi observation is generated by regime (5.4) or by 
(5.5). Other cases where the method is applicable are censored or truncated data, 
variance component estimation, estimation in disequilibrium models, etc. 

The essential steps of the EM algorithm are the E-step and the M-step which 
are carried out at each iteration. At the k th iteration we have: 

E-step: Given the current value Bk of the parameter vector and the observed data 
y, calculate estimates for x k as E(x ]y, ti k). 
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M-step: Using the estimated values xk, maximize the likelihood for the complete- 
data problem n~=,f(x~l0) to determine 19~+l. 

The most important feature of the EM algorithm is that if it converges to a 8*, 
then 8* is a stationary point of the likelihood function L(B) = clogg(y,lQ. It 
has been suggested as a technique preferable to outright maximization of Z,( .) in 
instances (see Section 7) in which the likelihood function is unbounded in 
parameter space or, possibly, cases in which false apparent maxima exist. Whether 
these problems can typically be avoided by using the EM algorithm is not yet 
clear; nevertheless it is a powerful algorithm which may simplify as well as speed 
up convergence in the class of problems to which it is applicable. As an example 
we discuss the application to the switching regression model by Kiefer (1980). 

Assume that n observations are generated by (5.4) with i.i.d. normal errors and 
the additional restriction that u: = oz. 2 Let IV, be a diagonal matrix of order n 
where the i th diagonal element wi represents the expected weight of the i th 
observation in the first regime and let IV, = Z - IV,. Then, maximizing the 
likelihood n;=,f(rilxi, e), where B = (h, &, p,, a2) yields 

pj = (x~~x)-‘x~~Y, j=1,2, 

e2= 5 (Y- XPj)‘?(Y_ XPj), (5.5) 
j=l 

where X and Y are the matrices of observations on the x’s and on y. Regarding 
regime choice as a Bernoulli experiment, h is estimated as 

X = tr(IV,)/n. 

Given these estimates for 8, representing the M-step, one can obtain new 
estimates for IV, since for the ith observation 

(5.6) 

by Bayes’ Theorem. Since the right-hand side of (5.6) is easily computable, we can 
alternate between E and M steps as required. 

5.4. Simplified Jacobian computation 

If we are seeking FIML estimates for the coefficients of a system of simultaneous 
linear equations, the transformation from the pdf of the error terms to the pdf of 
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the jointly dependent variables involves the Jacobian 1 rl of the transformation as 
in eq. (5.2). In the event that the equation system is non-linear the term 
(n/2)log[ ]rl]’ in (5.2) is replaced by 

where Ji is the Jacobian corresponding to the i th observation. Clearly, the 
evaluation of (5.7) is likely to be much more expensive than the corresponding 
term in a linear system. Parke (1979), Fair and Parke (1980), and Belsley (1979) 
report good success with approximations that do not compute all n terms in the 
summation of (5.7). Various alternatives can be employed, such as approximating 
(5.7) by (n/2)(log]J, I+ log]J,l) or by computing a somewhat larger number of 
distinct Jacobians and interpolating for the missing ones. Fair and Parke report 
an example in which computations start with the simpler approximation and 
switch to a somewhat more expensive one with six Jacobians being computed for 
98 data points. Belsley employs three Jacobian terms. All authors report that the 
approximations work quite well. The two- and six-term Jacobian approximations 
lead to substantially similar coefficient estimates and the corresponding objective 
functions rank the coefficient vectors consistently. The three-term approximation 
produces essentially the same results as the full Jacobian. It is difficult to predict 
how this type of approximation will perform in general. The acceptability of the 
approximation will surely depend on the degree of non-linearity: I3 the greater the 
non-linearity the worse the approximation may be expected to be. The time 
saving in computation may, however, be appreciable enough to recommend the 
procedure in most if not all instances of non-linear models. 

6. Further aspects of algorithms 

The previous two sections dealt with general as well as with special purpose 
optimization algorithms in rather broad terms, i.e. in terms that emphasized the 
general strategy and the key ideas of the algorithms in question. Most of these 
algorithms share certain detailed aspects which have been neglected up to now. 
The present section considers some of the salient aspects in this category. We 
specifically discuss (a) the computation of derivatives, (b) the techniques of linear 
searches, (c) stopping criteria, and (d) the problem of multiple optima. 

I3 For some measures of non-linearity see Beale (1960) and Guttman and Meeter (1965). 
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6.1. Computation of derivatives 

As shown above, many algorithms require that at least the first partial derivatives 
of the function be calculated; Newton-type methods also require the computation 
of second partial derivatives. Derivatives may be calculated analytically, i.e. by 
writing computer programs that evaluate the formulae that result from formal 
differentiation of the function in question or numerically by finite differencing. 
The evidence is clear that, other things equal, the former is vastly preferable. Not 
only do the various convergence properties presume the use of analytic deriva- 
tives, but in terms of the required computer time analytic derivatives clearly 
dominate their numerical counterparts, particularly for Newton-type methods 
[Belsley (1980)]. Unfortunately, for all but the smallest problems the calculations 
of analytic derivatives is highly labor intensive and in practice numerical deriva- 
tives are often employed, although some computer programs for symbolic differ- 
entiation exist (e.g. FORMAC). For numerical evaluation at least two choices 
have to be made: (a) Should derivatives be evaluated symmetrically or unsymmet- 
rically? (b) How should one choose the length of the interval over which function 
differences are computed for arriving at a derivative approximation? First partial 
derivatives at x0 are given by 

JF(xO) F(xP )...) xy+q )...) xn”)-F(xP )...) xn”) -= 
8Xi ‘i 

(6-l) 

if evaluated unsymmetrically about x0, and by 

aF(xO) F(xP )...) x;+q )...) Xn”)-F(xF )...) x9--Ei )...) XII) -= 
f3Xi 2Ei (6.2) 

if evaluated symmetrically. If the value of F(x’) is already available (i.e. having 
already been computed by the algorithm), (6.1) requires n and (6.2) 2n additional 
function evaluations. Second direct partial derivatives are 

d*F( x0) 
8X,? 

F(xy ,..., x; - ei ,..., x,O)-2F(x; ,..., xn”)+ F(xy ,..., x; + ei ,..., xn”) = 
&f 
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Second cross partial derivatives are 

a2F(Xo) = axi ax, [ ( F x; ,..., xv + .ci ,..., x0 + E. 
I J J,..., 4 

- F(xp ,..., xi” + ~~ ,..., xn”) 
- F(x: ,..., x; + q ,..., xn”)+ F(x; ,..., x;)],‘eiej (6.4) 

or 

x; + Ej ) . . . )  x,0 ) 
-F(x: ,..., x;-E, ,..., xj”+ej ,..., xn”) 
- F(x: ,..., x; + q ,..., x; - ej ,..., x;) 
+ F( x;, . . . ,x; - ei,. . . ,xi” - ej,. . . ,x,o)]/4eiej. (6.5) 

The symmetric version (6.5) requires (n - l)n/2 more function evaluations than 
(6.4). The total number of function evaluations required for derivative calcula- 
tions is: 

Unsymmetric 
Symmetric 

First derivatives 

2:: 

Second derivatives Total 
(3n2 + n)/2 3n(n + 1)/2 

2n2 2n(n + 1) 

Further compromises are clearly possible and often implemented, such as when 
first derivatives are calculated analytically and second derivatives numerically by 
differencing first derivatives. 

An important question is how the values of &i and &j ought to be chosen. In 
practice they are chosen as small but arbitrary proportions of xy and XT. For 
example, Chow and Megdal(l978) choose &j = max( &xj, 6,) where rS, and 8, are 
both 0.001. A procedure has been developed by Stewart (1967) for choosing the 
intervals optimally. Consider for simplicity a function (p(x) of a single variable 
and assume it to be the quadratic. Then, expanding +(x + E) about x and 
evaluating at x = 0, the function can be written as 

+(&) = (Y. + LX,& + &Y2&2. 

The first derivative can then be approximated by 

(6.6) 
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The approximation (6.6) may be in error because it and all difference approxima- 
tions to derivatives are Taylor series approximations and thus involve truncation 
error. The relative magnitude of this error is 

which clearly increases in the interval length E. Another error is introduced if E is 
small since in the numerator of (6.6) two numbers of comparable size are 
subtracted: in fixed word length computing serious rounding error may arise. We 
need to know an error bound ?j such that the computed value C#I~ and true value $I 
are related by (p, = +(l + n), where 19 15 i’j. Then G(E) and (Y,, can be computed as 
(P,(E) = (P(e)(l+ 77,) and aoc = a,(1 + nZ), where lq, 1 and 1~~1 s ?j. If E is small so 
that a0 = @I(E), (P,(E)- aoC = e(e)- a0 + n3cuo, where 1~1 5 2q. It follows that the 
relative cancellation error is 

which is decreasing in E if G(E) - CX~ is increasing in E. Stewart suggests choosing E 
so that the errors from the two sources are equal, which can be determined as the 
solution of one of the cubic equations below, where E, = IsI : 

Simplified versions of (6.7) as well as optimal solutions based on symmetric 
approximations exist and are generally desirable. 

The computational cost of second derivative methods is significant enough to 
make them less than fully practical for large problems. Fair (1973) has applied 
such methods to problems with up to 40 variables, but problems not much larger 
than these may well represent the practical upper bound for using Newton-type 
methods for most researchers. How to economize on second derivative evalua- 
tions has been a problem of high priority. A simple solution that works in practice 
is to evaluate the matrix of second partial derivatives not at every iteration but at, 
say, every second or third iteration. The degradation of convergence that may 
occur is often more than made up by the savings in function evaluations.‘4 An 

141f the same Hessian is used for a number of iterations and happens to be a good estimate of 
E[ a210g L/H&S”], the method is an approximation to the method of scoring. 
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important modification based on statistical theory is that of Berndt, Hall, Hall 
and Hausman (1974) and is applicable to the maximization of likelihood func- 
tions. The negative inverse of the matrix of second partial derivatives required for 
computation is a sample estimate of 

-[q.gL-‘= p!!zp!g]-1. 

The (negative) expected value of the Hessian is thus, at the optimum, the 
covariance matrix of the gradient. It may therefore be inexpensively approxi- 
mated by using the first derivatives of the likelihood function. Given, for 
example, the system of simultaneous non-linear equations 

fi(.Yi~Xi~e)=Ui~ i=l ,***, n, 

where fi is a row vector with a component for each of g equations, yi the vector of 
jointly dependent variables, and xi the vector of predetermined variables, the 
log-likelihood function can be written analogously to (5.2) as 

L = const - +log ]f’f] + k log ]Ji 1, 
i=l 

where f is the n x g matrix containing as its rows fi, and where Ji = 
af,(y,, xi, B)/Jy,. It is easy to show that the matrix of second partials can be 
approximated by 

i=l 

where pi = 8 log ]Ji I / 83 and qi = ( a& / afl)(zf,‘f,) - %(. The use of this approxima- 
tion can be powerful by eliminating many of the function evaluations required for 
numerical derivatives. In addition, the approximation is positive definite and 
iterations will move uphill along the likelihood function. In practice it appears to 
work very well in many problems [Belsley (1980)], although it need not always 
provide a good approximation to the Hessian, particularly in small samples and 
at points not close to the optimum. 

In spite of the several useful techniques discussed above, it may occur that a 
numerical approximation to the Hessian at the optimum is not negative definite. 
Although some algorithms may, in principle, converge to saddlepoints, this must 
generally be regarded as an unlikely event. The most plausible conclusion is that 
the numerical approximation to the Hessian has failed. Such an outcome is most 
frequent in cases where the function is extremely flat. It is clearly not an 
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acceptable outcome in any event, but particularly not in the case of maximum 
likelihood estimation for then the negative inverse of the Hessian is used as an 
estimate of the asymptotic covariance matrix. A heuristic technique that may 
occasionally be employed with success in such cases is as follows. Choose 
alternative values of the intervals .si over some fairly wide range and evaluate the 
Hessian for each. For large si the truncation error, and for small si the cancella- 
tion error, may predominate. For extreme values of the .si the estimates of the 
Hessian are likely to be unstable in the sense that the values of si that are near to 
each other do not yield Hessians that are comparable. There may exist a (problem 
dependent) range of &i over which the estimates of the Hessian appear to be 
stable. If such a range exists, it is likely to be associated with numerically more 
accurate estimates of the Hessian. 

6.2. Linear searches 

Many algorithms require at each iteration, say the k th, the computation of h, 
such that F( x k + Xkdk) is maximized. It is clearly too expensive to require that 
(4.15) be satisfied exactly. In fact, normally it appears not worthwhile to calculate 
h, very accurately because of the excessive number of function evaluations this 
tends to require. Three procedures are discussed briefly. 

(1) Fibonacci search [Spang (1962)]. Assume that the location of a unique 
maximum after p cycles of the linear search is known to be between x + h$d and 
x + hid. Then two more test values, X{ and h$, are selected (Xi < h{ < $ < Xi). 
If F(x + Afd) > F((x + X$d), the maximum is between x + X{d and x + h$d; the 
new lower and upper limits are XP,+ ’ = hP, and X$+ ’ = X$, and the procedure is 
repeated with the new interval. (The corresponding actions are obvious if the 
inequality is reversed or if equality should be attained.) The values of X, and h, 
after the pth shrinking of the interval are obtained as 

and 

x:=&v-h:)+A”, 
where V, denotes the i th Fibonacci number and N is a predetermined number of 
shrinkages. The rationale for Fibonacci search rests on the relationship between 
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the number of function evaluations and the size of the region covered when the 
error in finding the maximum satisfies a certain bound. Assume specifically that 
F(x + Ad) has a unique maximum in the interval [0, A,], where A, allows the 
maximum to be found with an error bounded by unity in no more than N 
function evaluations. Define X, as inf(A,). Then one can prove the following: 

Theorem 6.1. 

The sequence X, is the Fibonacci sequence. Thus, for a given error bound of 
unity, the area searched increases with N fastest for the Fibonacci sequence; 
conversely, for a bounded area the error declines fastest. However, in practice this 
requires a prior determination of N. If the initial interval is large, the temptation 
may be to use a large value of N which will result in a large number of function 
evaluations at each line search. The method has been successful in applications 
[ Daganzo, Bouthelier and Sheffi ( 1977)]. 

(2) Successive quadratic approximation [Powell (1964)]. Evaluate the function at 
x + X, d, x + A 2d, and x + X, d and determine the stationary point of the quadratic 
function of X fitted exactly to those points. The stationary point occurs at 

h =I (A;-A<)F(x+X,d)+(A;-A;)F(x+A,d)+(A;-A2,)F(x+X3d) 
4 2 (A,-X3)F(x+X,d)+(h,-X,)F(x+A,d)+(X,-X,)F(x+A,d) ’ 

If the stationary point is a maximum and if the proposed step is not greater than 
a preassigned tolerance, the X corresponding to the smallest value of F(x + Ad) is 
discarded and the computation repeated with the surviving three h’s. If h, 
corresponds to a minimum or implies a step greater than the maximum allowed, 
X4 is chosen to correspond to the largest permitted step, the A-value farthest from 
X4 is discarded and the computation repeated. If a computed A, is within a 
preassigned s-distance of X,, h z, and X,, it is accepted as the maximum and the 
line search is terminated. [A more elaborate cubic interpolation scheme is 
suggested by Davidon (1959). Dagenais (1978) first fits a quadratic from two 
function values and the gradient, adds a third point which is the maximum of the 
fitted quadratic, and then fits a cubic.] 

(3) Powell (1971) and Bemdt, Hall, Hall and Hausman (1974) recommend the 
following approximate procedure. First select an E such that 0 c E < f . Then find 
hk such that 

ES 
F(xk + Akdk)-F(xk) ~ 1 _ E 

Akg;dk 
(6.8) 
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Since the fraction in (6.8) approaches 1 as Xk -+ 0 and approaches zero or a 
negative number as Xk -+ cc, a suitable value of Ak exists and can be found by 
successive evaluations; the first Xk that satisfies (6.8) is then used. 

6.3. Stopping criteria 

An important part of every algorithm is the criterion it employs for terminating 
computations. The ideal of reaching a point xk such thatLJF(xk)/dxi = 0 (i = 
1 , . . . , n) is not attainable in practice and the question is what compromise is most 
reasonable. In the neighborhood of the maximum any algorithm is likely to take 
small steps in the sense that Ix,!+’ - x,6] is likely to be small for all values of i 
and in the sense that ]F(x“’ ‘)- F(xk) 1 is likely to be small; accordingly both of 
these quantities have been employed as stopping criteria. In fact, it is theoretically 
possible for either difference to become small while the other is large; it is thus 
preferable to use both and continue iterating unless both criteria are satisfied. In 
addition, since at the exact maximum the gradient in zero, gj& is also an obvious 
choice for judging closeness to the maximum. Perhaps the most common is to test 
the relative change in the variables and accordingly computations terminate if 

Ix;+’ -x:1 
maxmax(e,, Ix:]) ‘e2’ 

where E, and &2 are preassigned tolerances [see Powell (1964) and Berndt, Hall, 
Hall and Hausman (1974)]. A variant is to terminate if 

where E, is machine precision defined as p’-’ (for truncated arithmetic) or p’-‘/2 
(for rounded arithmetic), where p is the base of arithmetic and r the number of 
floating point digits [Brent (1973)]. Some algorithms employ a combination of 
criteria and may terminate when any of the criteria are satisfied. Belsley (1980) 
criticizes the gradient criterion as not being scale independent and ignoring 
statistical considerations in the sense that a gradient component in the direction 
of an insignificant parameter has the same weight as one in the direction of a 
statistically significant one. He criticizes the relative variable-change criterion as 
treating all variables equally (although the criterion is scale invariant). The 
relative function-change criterion is not invariant with respect to the scaling of the 
function. Belsley suggests a weighted-gradient stopping criterion - g; H- ‘g, < E, 
where H- ’ is the inverse Hessian. A similar suggestion in a least squares context 
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is contained in Dennis, Gay and Welsch (1979). This criterion is clearly scale 
invariant and in maximum likelihood estimation it can be interpreted to weight 
parameter estimates according to their (asymptotic) significance. Moreover, the 
criterion may be recognized as the Lagrange multiplier test statistic and accord- 
ingly iterations continue until the test statistic confirms that the gradient is small. 
Computational experience with the criterion appears to be quite satisfactory and 
it results in terminations that are relatively model independent.15 

6.4. Multiple optima 

All algorithms discussed so far (with the possible exception of appropriately 
designed grid searches) locate only local maxima. There is no guarantee that only 
one maximum exists or, if more than one exists, that the maximum found is the 
global maximum. There are, of course, numerous instances in which the likeli- 
hood function can be proved to be globally concave, in which case a unique 
maximum exists. Cases in point are the likelihood function associated with the 
classical normal regression model or that of the probit or logit models. For the 
latter two, in the simplest case, the dependent variable value at the ith observa- 
tion, yi, is dichotomous: 

with probability 1 - @(xl/I), 

with probability @(x,/I), 

where XI is the (row) vector of independent variables, p a (column) vector of 
parameters, and @ a distribution function, normal for the probit model and 
logistic for the logit model. The likelihood is 

L = ;jj [@(x;p)]yi[l - @(xjp)]‘-yg, 

and it is not difficult to show that 

where e(z) = d@(z)/dz is the probability density function, is negative definite 
[Dhrymes (1978)]. 

15A termination criterion that is qualitatively different from all of the ones discussed is the criterion 
employed in the Nelder and Mead (1965) algorithm. According to this criterion computations stop if 
the sample variance of the function values at the vertices of the current simplex falls below a preset 
tolerance. 
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In some cases the existence or the possibility of multiple maxima can be shown 
analytically. Some illustrative examples are provided by Goldfeld and Quandt 
(1972); a realistic example pertaining to pooling cross-section and time-series data 
is discussed by Maddala (1971). Numerous instances exist in which a global 
maximum has not necessarily been found [see Fair (1974a)]. When several 
maxima exist, it is important to attempt to find the global maximum since it is 
(customarily if not uniformly) implicit in the asymptotic justification for maxi- 
mum likelihood estimation that the global maximum is attained. 

Unfortunately, mostly ad hoc methods are employed for locating multiple 
optima. (a) The most common method is to select several (or many, if cost 
considerations permit) starting values for the vector of unknowns and to reopti- 
mize repeatedly using the algorithms discussed previously. If all starting points 
lead to the same local optimum, the tendency is to declare it to be the unique 
maximum with substantial confidence. (b) Assume that a local maximum has 
been found at x0. Goldfeld and Quandt (1972) propose to find a solution to 
F(x) = F(x’)+ E for small positive E; if there exists a solution to the equation, x0 
cannot correspond to a global maximum. (c) A deflation method is suggested by 
Brown and Gearhart (197 1) and explored by Salmon (1978) with a view towards 
solving large-scale econometric models. It appears feasible to apply the method to 
solving the first-order conditions of a maximum problem. The first-order condi- 
tions are 

g(x) = 0 (6.9) 

and assume that (6.9) has been written as 

x = (P(x), (6.10) 

as wouId be required to obtain a solution by the Jacobi or Gauss-Seidel method. 
Let x0 be a solution obtained by one of these methods. Define 

IIx-xo]]p= ;~t(xi-xO)P]“P3 
[ 

p normally > 1, and consider solving 

g*(x) = 
llx 

dx) =x-+*(,+0. 
- xOllp 

This suggests iterations according to xk+t = $*(xk), where 
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leading to iterations defined by 

Xk+l, l- 

i 

1 

1 

1 

llXk - xOllp Xk + llXk - xOllp 
$4X”)> (6.11) 

which shields the algorithm from the previously obtained solution x0. Additional 
solutions give rise to similar deflators of g(x) until no further solutions are found. 
Experience with the method appears to be limited to test examples and to solving 
the Australian Treasury NlF7 macro model with 128 equations. Although the 
method will share the difficulties of the Gauss-Seidel method and need not 
converge after deflation even if a second solution exists, it appears to be an 
interesting candidate for further study. 

7. Particular problems in optimization 

In addition to the standard features of optimization algorithms and problems, 
there occur in practice several particular problems that may be difficult to cope 
with. Most of these are associated with special models; accordingly, their treat- 
ment will be relatively brief. 

7.1. Smoothing of non-differentiable functions 

These are several related contexts in which non-differentiable likelihood functions 
may arise. One is the switching regression model 

yi = &xi + uli if 7r’zi 5 0, 

yi =&xi + uZi if 7r’zi > 0, (7.1) 

where &, &, and rr are unobserved parameter vectors and xi and zi are exogenous 
variable vectors. Define D = D(a'z,) = 0 if ‘IT’Z~ 5 0 and Di = 1 otherwise. Eqs. 
(7.1) may then be rewritten as 

yi= (l- Di)&xi+ D&xi+ uli(l- Di)+u,,Di. P-2) 

If uli and uZi are distributed as N(0, u:) and N(0, a:), the likelihood function is 

L = (2r)-n’2( 0F)-‘/‘exp ( -i~,(~i-(l-Di)8;Xi-48;‘r)i/zo.i), 

(7.3) 



Ch. 12: Computational Problems 141 

where uf is defined as uf(1 - Di)2 + u;Df. The unknowns in this problem are &, 
P a:, c,2, and the Di which are discrete; hence, derivatives with respect to the Di 
dz not exist. 

An alternative model, first suggested by Tishler and Zang (1977) and shown to 
be a special case of a general disequilibrium model by Goldfeld and Quandt 
(1978), is 

Yli = Pixti> 

Y2i = Pix2i 3 (7.4) 

y~=~n(y,i,Y2i)+Ui7 

where yli and yzi are not observed and yi is observed. The likelihood function 
corresponding to (7.4) is 

(7.5) 

Rewriting &xl, - &xzi 5 0 as n’ti 5 0 shows that (7.5) is formally identical with 
(7.3) with the added restriction that u, 2 = u:. The function (7.3) is not differentia- 
ble everywhere because of the discrete Di and function (7.5) exhibits the same 
problem whenever the B’s pass through values at which the sorting of observa- 
tions between the two types of products changes. Various types of smoothing 
have been suggested to cope with this problem. The technique employed by 
Goldfeld and Quandt (1972) replaces Di with the approximation 

where u2 is a new parameter that has been interpreted as a measure of the extent 
to which the approximation can reproduce the exact sorting of the data. Clearly, 
other distribution functions might be used in the place of (7.6). Tischler and Zang 
(1979) recommend several spline approximations of which the most promising 
appears to be the quintic given by 

I 1 if as 7r’zi, 
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where (Y is a new (positive) parameter to be determined. In practice both types of 
approximation appear to work well. 

7.2. Unbounded likelihood functions and other false optima 

Ordinarily the value of the likelihood function is bounded. In certain classes of 
models, usually dealing with unobserved or latent variables, the likelihood func- 
tion may become unbounded. This is a serious difficulty in that any algorithm 
that happens to locate a neighborhood within which the function is unbounded is 
likely to break down; moreover, the point or points in parameter space at which 
unboundedness occur have no desirable statistical properties. Three examples are 
given. 

The first is a case in which unboundedness may occur under special circum- 
stances but is unlikely to do so in general. It is the well-known tobit model: 

y; = P’x; + u; if /Yxi + ui > 0, 
y, = 0 if p’xi + ui 2 0. (7.8) 

The likelihood function is 

L=H---- 
i.El dkexp (-yi-~‘“i)2)i~[l-@(&q, (7.9) 

where I and r are the sets of indices for which the two inequalities in (7.8) hold, 
respectively, and where @( .) is the standard cumulative normal distribution. 
Assume that p has k elements and that the number of elements in I is less than k. 
Then if the xi (i E I) are linearly independent, there exists a value p* such that 
yi -p*‘xi = 0, i E I. Assume further that /3*‘xi 5 0, i E f; i.e. that p*‘x is a 
supporting hyperplane for the convex hull of the xi, i E 1 Then consider the 
sequence of points obtained by letting u + 0. The product of terms for i E I 
becomes unbounded, whereas the product of terms for i E r remains bounded 
away from zero; hence L + CO. 

The second example is the well-known switching regression model [Quandt 
(1972), and Quandt and Ramsey (1979)]: 

y, =/3:x,, + uli with probability A, 

y, = &xl, + uzi with probability 1 - h. 
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The likelihood function with normal errors is 

L=fi [ &exp{ -+( yi-~‘xij2) 

+$$exp( -f( yim$xir)]. (7.10) 

Choose a j3f such that the k th observation y, - fi:‘x, = 0 and let uf + 0. Then 
hexp( - (yk - p*‘xk)*/2e3}/~u, b ecomes unbounded, but (1 - A)exp{ - ( yi - 
P;xi)2/2u,2)/J2 7~ a2 remains bounded away from zero for all i; hence L + co. 

The third example is that of a simple disequilibrium model: 

Ylj = Pix,i + uliY 

Y*r = Pix2i + u2i3 

Yi = ~n(h, Y2i). 

The likelihood function with normal errors and uli and u2i independent is 

r 
L=fii--&exp( -+( Yi-~;xli~)(l-O( Yi-~x2i)) 

(7.11) 

(7.12) 

An argument very similar to that employed in the case of the switching regression 
model can be used to show that the simple disequilibrium model has an un- 
bounded likelihood function [Quandt (1978a)]. In most instances there is an 
infinity of points at which the likelihood function becomes unbounded: thus, for 
example, j3: in (7.10) can be chosen in infinitely many ways so as to make one 
residual exactly equal to zero. No completely satisfactory methods are known to 
avoid the computational problems. A device employed frequently is to constrain 
the variances by uf = cwuf, where (Y is selected a priori. This guarantees to solve 
the computational problem at the cost of introducing m&specification. Other 
methods [Hartley, (1977a, 1977b)] have suggested that adaptations of the EM 
algorithm may tend to avert the problem. Although the problem is not encoun- 
tered very frequently in practice, it must be considered a difficult one. 

Another problem with potentially equally bad computational consequences is 
the appearance of “false optima”. A case in point is the likelihood function 
corresponding to (7.11) when E(u,~u~~) = u,* + 0. Define rij = (y, - &xi)/uj as a 
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normalized residual. Then the following can be shown [Goldfeld and Quandt 
(1978)]. 

(a) If values of p,, &, a:, and uf have been selected such that ril + riZ < 0 for all 
i, then the likelihood function increases as the correlation, p, between U, and u2 
approaches - 1. 

(b) If ri2 - ri, > 0, when exp( - r;:)/uz > exp( - r,:)/a, and ri2 - ri, < 0 other- 
wise, then the likelihood function increases as P -+ 1. 

The practical consequences of the result is that if values of parameters happen to 
be achieved that satisfy the above conditions during the iterations of an algo- 
rithm, then the algorithm may attempt to push the value of p arbitrarily close to 
f 1. Since the likelihood function is not defined at p = f 1, computation normally 
fails at some point in such a neighborhood. Such a point is not a true local 
maximum since the likehhood function is defined only over the open interval 
- 1~ p < 1, but it may computationally appear as one. There is as yet no obvious 
method to guard against the occurrence of this problem. One might wish to 
impose constraints so that the inequalities required by the difficulty do not hold. 
However, this may be unsatisfactory since the inequalites may be satisfied even if 
the true values of the /3’s and u ‘s are substituted. 

7.3. Constraints on the parameters 

Classical constrained optimization problems arise if there are equality or inequal- 
ity constraints on the parameters arising from the intrinsic aspects of the problem. 
A case in point would be the requirement that the exponents of a Cobb-Douglas 
production function add to unity. Another example, discussed by MacKinnon 
(1979), is when economic considerations require that the Jacobian term in a 
likelihood function have a particular sign (even though it is the absolute value of 
the Jacobian that enters the likelihood function). Equality constraints, the more 
common case, may often be handled adequately by using the constraints to 
eliminate variables of optimization from the objective function.i6 In general, 
problems of this type need to be handled by the methods of non-linear program- 
ming. We briefly discuss only two classes of algorithms. 

16This has the added advantage of reducing the number of variables in the optimization. It follows 
that whenever a subset of the first-order condition can be solved for a subset of variables, the 
(likelihood) function should be condensed. It is not hard to show that the negative inverse Hessian of 
the condensed log-likelihood function is the appropriate estimator of the asymptotic covariance matrix 
of the variables that have not been condensed out. 
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Consider the constrained optimization problem: 

maximize F(x) 

subject to #;(x) 2 0, i=l ,..., m. (7.13) 

If none of the constraints in (7.13) is binding, then an iterative step may be taken 
as if one were dealing with an unconstrained problem. If, however, one or more 
constraints are binding, the question arises of how to choose a search direction. A 
particular approach to this problem is provided by the Rosen gradient projection 
method [Rosen (1960, 1961) and Walsh (1975)]. Assume that m, 5 m of the 
constraints are binding and consider the subspace spanned by the constraint 
gradients v#~, i=l,..., m,. The key of Rosen’s algorithm is to choose as the 
search direction the projection of the gradient of F(x), g, on the orthogonal 
complement of the subspace spanned by the VI/J~. Denoting the matrix the 
columns of which are v#~ by ‘k, the search direction is d = (I - ‘k( \k’\k)- ‘9’)g. 

A different class of algorithms converts a constrained maximization problem 
into a sequence of unconstrained ones. This is usually accomplished by penalizing 
the objective function for (near) violations of the constraint by adding to it 
penalty or barrier functions [Fiacco and McCormick (1964), Osborne (1972), and 
Walsh (1975)]. Thus, one might define &#,,. ..,J/,) = cy=“=,l~gJ/~(x) and con- 
sider the unconstrained maximization of 

w= +)+YwbN 

for some positive number y. Solve this unconstrained problem repeatedly for a 
sequence of y + 0. It can be shown under general conditions that the correspond- 
ing sequence of solutions, X, converges to the solution of (7.13). The obvious 
advantage of this approach is that it converts the original problem into one which 
is generally easier to solve. The disadvantage is that the single constrained 
optimization problem has been replaced by a sequence of unconstrained prob- 
lems, which can result in high computational cost. 

An interesting variant of this uses an augmented Lagrangean expression [Pierre 
and Lowe (1975)]. Consider the standard Lagrangean: 

L(x,a) = F(x)+a’J,(x), (7.14) 

where q(x) is the vector with elements qi(x) and (Y a vector of constants. Form 
the augmented Lagrangean 

Jqv,P,,P*) = L( x9a)-P1 C #i(x>2-P2 C 4i(x)2, (7.15) 
i E I, i E I2 
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where /3, and & are preassigned weights and where 1, = (i 1 (Y~ > 0), I, = (i 1 (Y~ = 0, 
and qi(xi) 2 O}. The algorithm alternates between two steps: the maximization 
step in which an unconstrained maximum of (7.15) is found and an adjustment 
step in which the Lagrange multipliers are adjusted so as to equate the gradient of 
the augmented Lagrangean to that of the simple Lagrangean and in which p, and 
& may be increased. The procedure obtains its justification from the following: 

Theorem 7. I 

If x*, cy* solves the appropriate Kuhn-Tucker conditions, then x* satisfies 
sufficient conditions for an unconstrained maximum for L(x, (Y*, /?) and suffi- 
ciently large fi if and only if x*, (Y* solves the non-linear programming problem. 

Constraints on the variables can also arise in a different manner. During the 
optimization the variables may stray into a region in which the function is not 
defined. This may occur in a number of different ways. In maximizing a function 
such as (7.10) it is not possible to condense out the variances and an algorithm 
may wish to take a trial step that would make a variance negative. Alternatively, 
an equation to be estimated may involve functional forms that are defined only 
for certain parameter values, say as in y, = log( 1 + axi) + ui. Technically, another 
case is provided by a simultaneous linear equation model in which the number of 
endogenous and exogenous variables is greater than the number of observations, 
in which case the estimated covariance matrix of residuals will be singular and 
consequently the likelihood function undefined [Parke (1979)]; in this case, 
however, one would not actually attempt optimization. 

At least three ad hoc remedies may be employed, although none of them is 
assured of success. First, in some cases it may be possible to reparameterize the 
variables. Thus, if in (7.10) u: has a tendency to become negative, one may 
replace it by ew. This may exchange one problem for another: in the transformed 
space the likelihood function may become very flat. Alternatively, one may 
continually test whether the current values of the variables are attempting to enter 
a forbidden region and inhibit the algorithm from proceeding in such a direction, 
either by returning to the algorithm an extremely unfavorable (pseudo-) function 
value associated with the illegitimate point, or by shrinking the step size. The 
former technique gives seriously erroneous estimates of derivatives. The latter 
may slow down convergence considerably. In spite of these difficulties, these 
ad hoc techniques are often employed and often work reasonably well. What must 
be stressed, however, is that the latter two may be employed only to guard against 
attempts to evaluate the function at points at which it is not defined; they ought 
not be used to substitute for general non-linear programming in cases in which 
the constraints represent economic restrictions. There is no a priori reason to 
believe that just because an algorithm strays into a forbidden region in an 
economic sense, the location of the maximum will also be in a forbidden region. If 
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several local constrained optima exist, a casual use of the constraint within an 
otherwise unconstrained maximization algorithm may well jeopardize locating the 
desired point. 

8. Numerical integration 

Normally, there are two econometric contexts in which numerical integration 
becomes necessary. The first is Bayesian analysis in which, say, the moments 
of the posterior density are required. An example is provided by Kloek and 
Van Dijk (1978) who deal with the linear simultaneous equation model: 

Yr+ZB=U. (8.1) 
Denoting those elements of r and B that are not constant terms by 8 and the 
prior density of 13 by p( 0) and assuming (a) that the constant terms have uniform 
prior, (b) that the prior of the covariance matrix 2 is of the form 121 -(G+‘)/2, 
where G is the number of equations, and (c) that the constant terms and 
covariance matrix elements have been integrated out, the marginal posterior of 8 
can be shown to be proportional to 

(8.2) 

where K(ol Y, Z) depends on the structural parameters other than constant terms 
and on the observations. The moments are functions of 8, say g(B), and can be 
written as 

Kloek and Van Dijk (1978) consider various alternatives for p(d) in a small 
model such as the normal and beta distributions for which the integrals in (8.3) 
are not available in closed form. 

The second context in which numerical integration is required is in finding 
maximum likelihood estimates in models with qualitative dependent variables, i.e. 
variables that are endogenous and involve essential elements of discreteness. 
Models of this type invariably contain some features that are not observable. 
Simple cases in point are the following models, where greek letters denote 
parameters, x’s exogenous variables, i indexes observations, and @( 0) denotes the 
standard cumulative normal integral. 
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(a) The Probit Model: 

y, = 1 if p’xi + ui > 0, 
y, = 0 otherwise, 

where ui - N(0, 1). The likelihood function is 

(b) The Tobit Model which is stated in (7.8) with likelihood function (7.9). 

(c) The Simple Disequilibrium Model which is stated in (7.11) with likelihood 
function (7.12). 

In all of these likelihood functions @( .) appears which is not available in closed 
form. Fortunately, simple and accurate approximations for the cumulative normal 
integral exist in the univariate case as given, for example, by the FORTRAN 
subroutines ERF and DERF. The problem becomes much more difficult in 
problems in which multiple integrals of multivariate densities are required [see 
Hausman and Wise (1978)]. An important example is provided by discrete choice 
models in which an individual must chose among m possibilities. Let the i th 
individual’s utility from choosing altemativej be 

where ej = V(Cij, &) represents the systematic part of utility and where Cij are 
objective measures of the individual’s and the alternative’s characteristics, /3 are 
parameters, and &ij is a random variable. Then the probability that alternative k is 
chosen is 

Pik=Pr{sijsqk-q,+eik forahjfk}. 

If h(Ei,,..., eim) is the joint density of the eij, Pik is 

Pik= m / / (I,& - Q, + Ei& 
. . . G’-Gm+Eith(ei ,,..., eim)deim...dci,deik (8.4) 

-m --oo / -C0 

or 

pik =/_‘~-“‘e e e lU;k-U;mhk(rli,k,...,~i~k)dqil*... dnimk, 
--oo 

(8.5) 
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where nijk = eij - &ik and where /zk(.) is the joint density of the (m - 1) qijk. 
Hence, with m alternatives, an (m - 1)-fold integral must be evaluated. If there 
are n individuals, the likelihood of a sample of observations is 

where y,, = 1 if the i th individual chooses alternative j and zero otherwise and 
where the Pij are replaced by the expressions in (8.4) or (8.5). Eq. (8.6) must then 
be maximized with respect to the parameter vector /3; hence, every function 
evaluation requires the evaluation of multiple integrals. If the errors &ij are 
multivariate normally distributed with non-diagonal covariance matrix, as is 
assumed by Hausman and Wise (1978), the integrals must be obtained numeri- 
cally. A similar situation arises in the multimarket disequilibrium model of the 
type given in Section 5: in general, the density function for the observable 
variables in an m-market disequilibrium model involves an m-fold integral of the 
m-variate normal distribution. 

In general, one would expect to make greater demands for accuracy in the case 
of likelihood maximization for models with qualitative dependent variables than 
in the case of computing the moments of posterior densities. In the latter case it 
might be acceptable to have a 10 percent error from the point of view of 
providing economic interpretation for the results. In the case of likelihood 
maximization an average error of 10 percent in evaluating the likelihood function 
is likely to cause serious problems of convergence. Hence, methods that are 
suitable for one type of problem are not likely to be suitable for the other. In 
what follows we do not distinguish systematically between univariate and multi- 
variate integration. 

8.1. Monte Carlo integration 

Assume that we require the integral 

I= bf(x)dx. / (1 

Let g(x) be a probability density defined over (a, b). Then 

(8.7) 

and if g(x) is uniform, 
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If n pointsx,,..., x, are selected randomly, cy=, f( x,)/n converges in probability 
to E( f( x)) and I can be approximated by I, defined as 

z a =e i f(Xi). 
i=l 

(8.8) 

Clearly, E(Ia) = I and 1, is the sum of n i.i.d. random variables with mean 1/n 
and variance w2 = (b - a)2a2/n2, where a2 = varf(x,) and may be estimated by 
the sample variance. By the Central Limit Theorem, with probability a, 

I&-4$Z, 
(b-a)a 

6 ’ 

where z, satisfies @(z,)- @( - ZJ = a. The error decreases as n-II2 and is 
independent of the dimensionality of the integral [Hammersley and Handscomb 
(1964) and Shreider (1964)]. 

A variance reducing technique is importance sampling. Write (8.7) as 

where g(x) is a pdf over (a, b) as before. If points x,, . . . ,x, are generated with 
pdf g(x), I is now estimated by 

I.=L$L& 
n 

I 

(8.10) 

The variance of f(x)/g(x) can be made to equal zero by setting g(x) = 
If(x)I/./:If(x)I d x, which is not practical for it requires knowledge of the 
integral in question. As a practical matter, g(x) is chosen so as to make the 
variation in f(x)/g(x) small: the implication is that x will be sampled relatively 
more frequently in regions in which f(x) is large or important. Examples of 
importance sampling are in Kloek and Van Dijk (1978) and Quandt (1978b). 

8.2. Polynomial approximations 

If a function f(x) is approximated by a polynomial of degree n such that the 
approximating polynomial agrees with it at n + 1 equally spaced points, it can be 
written as 

f(x)= 2 ~k(MXkL 
k=O 
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where the X,(x) are the Lagrangean polynomial coefficients. A class of integra- 
tion formulae employ the integral of the approximating polynomial and are called 
Newton-Cotes formulae. Simpson’s Rule is a special case of Newton-Cotes 
integration. [For an application see Richard and Tompa (1980).] 

Although simple to implement, Newton-Cotes formulae can be subject to 
serious error and there are cases where the approximation does not converge to 
the true integral as n + cc. More stable are Gaussian Quadrature formulae using 
n points of evaluation for which the approximation is exact if f(x) is polynomial 
of degree s 2n - 1 [Hildebrand (1956) and Stroud and Secrest (1966)]. Gaussian 
formulae are obtained from approximating polynomials, the coefficients of which 
are derived by requiringf(x) and the approximation to have the same values and 
derivatives at n points. In more than one dimension it is customary to take the 
Cartesian product of the points calculated by one-dimensional quadrature for- 
mulae. If n is the number of points used in one dimension, the integrand will have 
to be evaluated at nk points, where k is the multiplicity of the integral; hence, 
multidimensional polynomial quadrature formulae tend to be too expensive in 
problems such as likelihood function maximization in which the integrals have to 
be computed many times. For a bivariate Simpson’s Rule see Zelmer (1971). 

8.3. Evaluation of multivariate normal integrals 

Possibly the most common multivariate integration problem is that of integrating 
the multivariate normal density. Let N( x ) 0,Z) be a multivariate normal density 
for the k-dimensional vector variable x with mean 0 and covariance matrix 2. We 
require 

(8.1 1) 

Many fundamental relations concerning the bivariate, trivariate, and multivarii tte 
normal integrals are contained in Johnson and Kotz (1972). The bivariate case 
can be handled effectively by using Hausman and Wise’s (1978) modification of a 
technique due to Owen (1956). For purposes of the method, one expresses the 
bivariate integral as 

Z(h, k;p) = ’ 
24 1 - py2 

x$” /” exp{-+(x2 -2pxy+y2)/(1-p2)}dxdy. 
--oo -c0 
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If this is differentiated with respect to p, it can be integrated with respect to x and 
y and the result reintegrated with respect to p. The result is 

h-pk 

k(l-p’)“’ 

ifhk>Oorifhk=OandhorkhO; 

I(h,k; p)=;@(h)++@(k)-T 

ifhk<Oorifhk=Oandhork<O, 

where 

and 

cj=(-q’_ 2jl+1 l-exp(-$u2) i g . 
[ 1 i=o 2’i! 

The Hausman-Wise modification works very fast and is suitable for use in 
optimizing likelihood functions. 

Dutt (1976) represents I by Kendall’s tetrachoric series which leads to 

I=(~)k-(f)kp’ i D:,i+(i)k-2t t Dz*,jjf 0-e +D:,ij..,k, i< j, 
i=I i=l k=2 

where the individual terms are defined in Dutt (1976) and involve Gaussian 
quadratures. The technique is recommended for up to k = 4, beyond which it is 
likely to become expensive. Rules of thumb are suggested for selecting the degree 
N of the Hermite polynomials needed in the computation of the D*‘s. In practice 
it appears that poor choices of N can result either in costly computations or in 
poor approximations. In any event, for k 2 3 it is likely to be too expensive a 
method if integrals are required repetitively, as when a likelihood function is 
being maximized. 

The multivariate normal integral (8.5) gives the probability that maxj[qj - q.,] 
$0. This observation allow5 Daganzo, Bouthelier and Sheffi (1977) to exploit an 
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approximation due to Clark (1961). Consider random variables x,, x2,. . . ,xk 
distributed as N(p, E). It is not difficult to obtain exact formulae for 
E(max(x,,x,)), var(max(x,,x,)), and cov(max(x,,~~),xs). If one were to as- 
sume that max(x,, x2) is normally distributed, which it is not, then one can 
recursively calculate the moments of max(x,, _ . . ,xk) and, by the (incorrect) 
distributional assumption, the univariate normal distribution which proxies that 
of max(x,,..., xk), from which the required probability is easily obtained. The 
behavior of the Clark probabilities is tested by Manski and Lerman (1981) in 
choice problems involving three or five alternatives. They compare the computa- 
tion of choice probabilities according to this method with a particular Monte 
Carlo procedure. The Clark probabilities agree remarkably well with the Monte 
Carlo results and are obtained with substantially smaller computational cost. It is 
estimated that for comparable accuracy, the Monte Carlo approach may be as 
much as 100 times more expensive. However, the Clark approximation tends to 
be unsatisfactory when the variances of the x’s are relatively unequal [Danganzo 
(1979)]. Why the Clark probabilities are as accurate as they are in other cases, 
given that they are derived from a false assumption, is not known. 

8.4. Special cases of the multivariate normal integral 

The normal integrals occurring in discrete choice models may have simpler 
representations than (8.4) or (8.5) under certain circumstances. Two of these will 
be examined briefly [Hausman (1980)]. As before, the subscript i denotes the ith 
individual. 

Case 1. If all .sij, j.= 1,. . . , m, in (8.4) are i.i.d. normal with mean zero and unit 
variance, (8.4) becomes 

(8.12) 

which is substantially easier to evaluate than (8.4) without the simplifying 
assumption, since it requires only a single-dimensional numerical integral [with 
@( .) being efficiently evaluated by a partial fraction expansion routinely available 
in program libraries]. 

Case 2. Consider the special case in which 

Qj = Zij/3, (8.13) 
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where z:j is a vector of p observable variables and j3 a coefficient vector. Assume 
that j? is a random vector distributed normally with mean p,, and covariance 
matrix Es. Let q = (q,, . . . , qm) be normal with mean zero and covariance matrix 
EE and independent of p. The probability that the kth alternative is chosen is 
then 

Pik = Pr{( zik - zij)‘/3 1 njjk Vj * k} 

= Pr{ ( zik - zij)‘P, 2 njjk + ( zij - zi,)‘( /3 - /$) Vj * k}. (8.14) 

Define the right-hand side in 
vector Elk = (Eilk,...,Simk) is 
,ZE = AZ,A' + ZE,Z’, where 

-1 

1 -1 
-1 
-1 

-1 

the last probability in (8.14) as Eijk. The random 
normal with mean zero and covariance matrix 

is (m - 1) x m and has zeros except on the main diagonal and the k th column and 
where 

z= 

(‘il - ‘i/c)’ I : CZim “i/c)’ 
and is (m - 1)x p. If we assume that ,ZB and ZE are both diagonal, it is easy to 
verify that 2, can be written as 

where ,ZBCkj is the matrix EE from which its k th row and column have been 
deletedand Q=(zE2/2:uEI_i), i’=(l l...l). Let (v,w)‘=(u ,,..., uk_i,uk+ ,,..., 
~~tsn,~I,...,~p+I ) be a vector of m + p elements independently and normally 
distributed with mean zero and unit variance. Then 
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and substituting on the right, (8.14) becomes 

(8.15) 

If F and G are the distribution functions of scalars v and w, respectively, the 
following convolution formula holds [ Marsaglia ( 1963)] : 

Pr{v<c-w}=/Pr{v<c-w]w)dG=E[F(c-w)], 

where c is a constant vector and the expectation is taken with respect to G. It 
follows that (8.15) is 

’ @ ii (‘i, - 'ij)'P, + ‘2’ 4jlw, /“e, 
I-1 i 

]xexp{ F)d*,...dt,,,. 

(8.16) 

Hence, an (m - 1)-fold numerical integral has been transformed into a ( p + I)-fold 
numerical integral which is computationally advantageous if m is relatively large 
and p is small. [See Webster (1970) and particularly Hausman (1980) for details 
and extensions.] 

It is an open question as to which method of integration of the multivariate 
normal density is best in several dimensions from the combined points of view of 
accuracy and cost. The issue is even less settled when multivariate integrals of 
other density functions are required. 

9. The generation of random numbers 

Monte Carlo or sampling experiments are the most common instances in econo- 
metrics in which it is necessary to generate (pseudo-) random numbers. An 
example is the following problem. Assume that an estimator 8(x,, . . . ,xn) can be 
calculated from a sample {x,, . . . , xn}, where the xi are i.i.d. with pdf f(x). If 
obtaining the sampling distribution of 4 analytically is an intractable problem, 
one may prefer to obtain experimental evidence about its behavior by repeated 
simulated drawings of samples of x’s and by examination of the resulting 4 ‘s. In 



756 R. E. Quandr 

order to enable one to perform such experiments, one must be able to sample 
from arbitrary distributionsf(x) [Cragg (1968)]. 

The present section is devoted to the principal features of generating random 
numbers and sampling from various distributions. It deals with the computational 
features of various techniques, but not with the principles of the design of 
sampling experiments [see, for example, Naylor (1971)]. Among the computa- 
tional features of greatest interest are the accuracy with which f(x) is sampled 
and the computational cost of the methods. 

9.1. The generation of uniformly distributed variables 

A fundamental step in generating a variable, x, with pdf f(x), is first to generate 
u distributed uniformly on (0,l). A common method of generating x is based on 
the observation that the quantity y = F(x) = /Em f (t) d t is distributed as U(0, 1) 
for any continuous f (x). Letting x, y denote random variables and X, jr particular 
values, the assertion follows from 

Given a sample of u,,..., u, from U(0, l), a corresponding sample x,, . . .,x,, for 
f(x) is obtained by solving 

ui = F( Xi), i=l n. ,***, (9.1) 

Other uses of uniform deviates occur when some other function of uniform 
variables has the required distribution (see next subsection for generating nor- 
mally distributed variables) or when Monte Carlo integration is to be performed 
(see Section 8). 

The most commonly employed generators of U(0, 1) variables are based on the 
recurrence relation 

Ri+I=hRi+p (modM), (9.2) 

where X, 1-1, M and R, are integers chosen by the user. Uniform variables are 
obtained by calculating Ri+,/M, Ri+2/M, etc. Generators of the form of (9.2) 
are congruential generators; they are called mixed or linear if p f 0 and simple or 
multiplicative in the reverse case. All generators of type (9.2) have finite periods p 
such that Ri+p = R,; the magnitude of p depends on X, CL: and M. It is obviously 
desirable to choose these in such a manner as to make p large. The maximal p is 
easy to find if M is of the form 2”. For p * 0, the maximalp is 2” and is obtained 
if X = 1 (mod 4) and p is odd; for p = 0 the maximal period is 2”-’ if X = 3 or 5 
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(mod 8) and R, is odd [Newman and Ode11 (197 l), Chambers (1977), and 
Atkinson (1980)]. In practice, for computers with a word-length of 32 bits, M is 
frequently chosen to be 231 or 2 3’ - 1. The latter is particularly attractive since it 
is prime and has period 2 3’ - 2 which can be attained if A is a primitive root of M 
[Hoaglin (1976)]. 

The extent to which numbers R,/M can be thought to have been drawn from 
U(0, 1) can be tested by numerous statistical techniques, such as run tests, tests 
based on serial correlation properties including computation of the spectral 
density function, x*-tests, Kolmogorov-Smirnov tests, lattice tests, and many 
others. None of these may reveal adequately the following number-theoretic fact: 
that all n-tuples (Ri+,,..., R,,,) lie on at most a certain number of parallel 
hyperplanes in n-dimensional space. The extent to which the generated numbers 
approximate the uniform distribution will depend on the separation between the 
hyperplanes which can either be calculated explicitly or approximated from the 
n-dimensional spectrum of the Ri. Computations by Hoaglin (1976) indicate that 
for M= 231 - 1 and p = 0, suitable values of h are 764261123, 1323257245, 
1078318381, 1203248318, 397204094, 2027812808. Comparable information for 
M = 23’ does not yet appear to be available. 

Several ways exist to improve the quality of random number generators. A 
simple device is to shuffle blocks of k successive random numbers R = ( Ri+ , , . . . , 
Ri+k)) into a set R*= (R*i+,,..., R*i+k)’ by R* = PR, where P is a permutation 
matrix and may itself be altered from time to time. A somewhat more time-con- 
suming but desirable technique is shuffling with replacement [Hill and Holland 
(1977)]. Two random number sequences R,, . . . , R, and S,, . . . ,S, are generated 
from two different congruential generators. Select an integer k and set m = 2k. In 
the present application k will determine storage requirements and normally one 
wouldsetk$8.SetT,=R ,,..., T, = R,. Now examine a predetermined set of k 
bits in S, which form an integer j’ such that for j = j’+ 1, 15 j $ m. The first 
random number to be selected is then 5. The content of q is replaced by R,, , 
and the bits of S, are examined to select a new member of the array T,, . . . , T,. 
Thus, elements of the sequence S provide index values for selecting from among 
the elements of T which are then replenished by the next unused element of the 
sequence R . 

9.2. The generation of norma@ distributed variables 

Equation (9.1) is cumbersome to solve if F(xi) is the cumulative normal distribu- 
tion and various alternative techniques are employed. A method for generating 
variables distributed approximately as N(0, 1) is by appealing to the Central Limit 
Theorem. The required variable might thus be computed as cl_ ,u,/n - 
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0.5)/(1/&%). Thi s method is currently regarded as not being sufficiently 
accurate. 

Much more popular are transformations of pairs of uniform variables. One of 
the most frequently used of these is the Box-Mtiller transformation yielding two 
independent N(0, 1) variables x, and x2 according to the transformation [Box and 
Mtiller (1958)]: 

x, = (-210g u1)1’2sin(2ru2), 

x* = (- 210g U,)“2cos(2~U2), 
(9.3) 

where u, and u2 are independent U(0, 1). The joint pdf of U, and u2 isf(u,, u2) = 1 
and the pdf of x, and x2 is g(x,, x2) = lJ_‘(f(u,, u,), where J is the Jacobian 
8(x)/a(u). Its absolute value is easily shown to be ~?T/u,, and it follows that 
g(x,, x2) = exp(-(xf + $)/2}/21r. 

Since (9.3) requires the evaluation of trigonometric functions in addition to 
logarithms, the Box-Mtiller method is fairly slow. What is more serious is that the 
exact distribution of variables generated from (9.3) with the aid of uniform 
variables obtained from a congruential generator such as (9.2) is not normal and 
contains 2X discontinuities [Neave (1973)]. A more accurate and faster alternative 
to (9.3) is to generate x,, x2 according to the Marsaglia-Bray transformation: 

where u, and v2 are U( - 1,1) and are conditioned by V: + ~2” < 1. An argument 
similar to that used above verifies that x, and x2 are independent N(0, 1) variables 
[Marsaglia and Bray (1964)]. 

By far the most effective techniques are the decomposition and the acceptance- 
rejection methods, often used in combination. The basic rationale of these 
techniques are described by Newman and Ode11 (1971); various details and 
computational experience with different methods of this as well as of other types 
are given by Ahrens and Dieter (1972) and Kinderman and Ramage (1976). 

Both techniques allow one to exploit the fact that it may be much easier to 
generate random variables from one distribution than from another. Assume we 
wish to sample from f(x) over some interval (a, b) and that #(x) is some other 
pdf over the same interval (from which it may be particularly easy to sample). 
Determine a coefficient (Y such that f(x) 5 C@(X) over (a, b). Then we may 
sample fromf(x) by the following procedure. (1) Draw an x from +(x), say x (2) 
Draw a uniform U(0, I) variate U. If u 6 f(a)/@(Y), then we accept K Other- 
wise we return to the first step. It is clear that the probabilities Pr{x s x0) will be 
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proportional to I,“0f(x)dx for all x0 with the factor of proportionality simply 
measuring the frequency with which step (2) leads to acceptance of x; hence, an 
easy-to-sample distribution is employed, instead of the possibly difficult-to-sam- 
ple f(x), to yield the same result. 

An interesting variant is the ratio-of-uniforms method [Robertson and Walls 
(1980)]. To sample from pdf f(x), define the region R = {(u, w) 10 =< u $ 
f I”‘( v/u)}. Generate u and 0 uniformly over R. Defining u = y and ZJ = xy, it is 
easy to show that v/u is distributed with pdf f (x). The required procedure then is 
(1) to generate u and 0, (2) reject (u, u) if (u, u) does not fall in the region R, or 
(3) accept (u, v) and form x = u/u otherwise. Efficiency requires that step (2) not 
be encountered too often. Robertson and Walls (1980) consider in detail sampling 
from the normal, Cauchy, t-, and gamma distributions. 

A similar idea is exploited by decomposition methods in that they replace a 
difficult-to-sample distribution with a finite mixture of relatively easy-to-sample 
distributions. Consider f(x) and $,(x), with +,(x) being easy-to-sample. Then 
choose (Y > 0 such that f(x)- a+,(x) 2 0. Unlessf(x) and +,(x) coincide, 

la (f(x)- acp,(x))dx = 1 - (Y > 0. 
-. 00 

Hence, defining &(x) = (f(x)- @,(x))/(l- CX), it is clear that f(x) = a+,(x)+ 
(1- (Y)$~(x), an (a, 1- cu) weighted mixture of $P,,+~. If (p,(x) is easily sampled 
and if a: can be chosen to be relatively large, we may sample from f( x) efficiently 
by generating x from +,(x) with probability (Y and from cpz(x) with probability 
1 - (Y. Clearly, the same type of decomposition may be applied to &(x) and a 
decomposition scheme may set f(x)=~~_,aj$(x), O<ol,<l, j=l,...,m. A 
simple algorithm for sampling from N(0, 1) is given by Newman and Ode11 (1971). 
Let u,, u2, and ug denote independent U(0, 1) variates. The normal density is 
decomposed into four components with probabilities 

IY, = 0.8638554642, 

a2 = 0.110817965, 

a3 = 0.002699796063, 

a4 = 0.02262677245. 

For each of the four possibilities we generate x as follows: 

(1) x = 2(u, + 242 -t f.$ - 1.5). 

(2) x = 1.5(u, + lf2 - 1). 

(3) x = the first normal variate from repeated Box-Mtiller transformations for 
which Ix]> 3. 
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(4) Generate x = 6u, - 3 and y = 0.3 181471173~~ repeatedly if necessary until 
y 5 q(x), and then accept x, where 

I 
ae-x’/2-b(3-x2)-c(1.5-~x~), lxI< 1, 

#(x) = ae-x’/2-d(3-~x~)2-c(1.5-~x~)2, ljlxl<1.5, 

se-x2/2 - d(3- I,x~)~, 1.5j(x(<3, 

0, otherwise, 

where a = 15.75192787, b = 4.263583239, c = 1.944694161, and d = 2.1317916185. 
More complicated algorithms are described by Kinderman and Ramage (1976) 
and by Peterson and Kronmal (1982). 
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