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0. Introduction 

This is intended to be an account of certain salient themes of the Limited 
Dependent Variable (LDV) literature. The object will be to acquaint the reader 
with the nature of the basic problems and the major results rather than recount 
just who did what when. An extended bibliography is given at the end, that 
attempts to list as many papers as have come to my attention - even if only by 
title. 

By LDV we will mean instances of (dependent) variables-i.e. variables to be 
explained in terms of some economic model or rationalizing scheme for which (a) 
their range is intrinsically a finite discrete set and any attempt to extend it to the 
real line (or the appropriate multivariable generalization) not only does not lead 
to useful simplification, but befouls any attempt to resolve the issues at hand; (b) 
even though their range may be the real (half) line (or the appropriate multivari- 
able generalization) their behavior is conditioned on another process(es). 

Examples of the first type are models of occupational choice, entry into labor 
force, entry into college upon high school graduation, utilization of recreational 
facilities, utilization of modes of transport, childbearing, etc. 

Examples of the latter are models of housing prices and wages in terms of the 
relevant characteristics of the housing unit or the individual-what is commonly 
referred to as hedonic price determination. Under this category we will also 
consider the case of truncated dependent observations. 

In examining these issues we shall make an attempt to provide an economic 
rationalization for the model considered, but our main objective will be to show 
why common procedures such as least squares fail to give acceptable results; how 
one approaches these problems by maximum likelihood procedures and how one 
can handle problems of inference-chiefly by determining the limiting distribu- 
tions of the relevant estimators. An attempt will be made to handle all problems 
in a reasonably uniform manner and by relatively elementary means. 

1. Logit and probit 

1.1. Generalities 

Consider first the problem faced by a youth completing high school; or by a 
married female who has attained the desired size of her family. In the instance of 
the former the choice to be modelled is going to college or not; in the case of the 
latter we need to model the choice of entering the labor force or not. 
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Suppose that as a result of a properly conducted survey we have observations 
on T individuals, concerning their socioeconomic characteristics and the choices 
they have made. 

In order to free ourselves from dependence on the terminology of a particular 
subject when discussing these problems, let us note that, in either case, we are 
dealing with binary choice; let us denote this by 

Alternative 1 Going to College or Entering Labor Force 
Alternative 2 Not Going to College or Not Entering Labor Force 

Since the two alternatives are exhaustive we may make alternative 1 correspond to 
an abstract event 8 and alternative 2 correspond to its complement 2. In this 
context it will be correct to say that what we are interested in is the set of factors 
affecting the occurrence or nonoccurrence of 8. What we have at our disposal is 
some information about the attributes of these alternatives and the (socioeconomic) 
attributes of the individual exercising choice. Of course we also observe the choices 
of the individual agent in question. Let 

Yt =1 if individual t chooses in accordance with event 8, 
= 0 otherwise. 

Let 

w= (w,,w*,...,w,), 

be a vector of characteristics relative to the alternatives corresponding to the 
events 6 and 2; finally, let 

rt.=(rtl,..., ,m , r ) 

be the vector describing the socioeconomic characteristics of the tth individual 
economic agent. 

We may be tempted to model this phenomenon as 

Yt = x,.P + Et, t =1,2 ,..., T, 

where 

x,.= (w, r,.). 

/3 is a vector of unknown constants and 

e,:t=1,2 ,..., T, 

is a sequence of suitably defined error terms. 
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The formulation in (1) and subsequent estimation by least squares procedures 
was a common occurrence in the empirical research of the sixties. 

1.2. Why a general linear model (GLM) forwylation is inappropriate 

Although the temptation to think of LDV problems in a GLM context is 
enormous a close examination will show that this is also fraught with considerable 
problems. At an intuitive level, we seek to approximate the dependent variable by 
a linear function of some other observables; the notion of approximation is based 
on ordinary Euclidean distance. That is quite sensible, in the usual GLM context, 
since no appreciable violence is done to the essence of the problem by thinking of 
the dependent variable as ranging without restriction over the real line-perhaps 
after suitably centering it first. 

Since the linear function by which we approximate it is similarly unconstrained, 
it is not unreasonable to think of Euclidean distance as a suitable measure of 
proximity. Given these considerations we proceed to construct a logically con- 
sistent framework in which we can optimally apply various inferential procedures. 

In the present context, however, it is not clear whether the notion of Euclidean 
distance makes a great deal of sense as a proximity measure. Notice that the 
dependent variable can only assume two possible values, while no comparable 
restrictions are placed on the first component of the right hand side of (1). 
Second, note that if we insist on putting this phenomenon in the GLM mold, then 
for observations in which 

y,=l, 

we must have 

(2) 

while for observations in which 

y,=o, 

we must have 

Et = - x,,p. (3) 

Thus, the error term can only assume two possible values, and we are immediately 
led to consider an issue that is important to the proper conceptualization of such 
models, viz., that what we need is not a linear model “explaining” the choices 
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individuals make, but rather a model of the probabilities corresponding to the 
choices in question. Thus, if we ask ourselves: what is the expectation of E,, we 
shall be forced to think of the probabilities attaching to the relations described in 
(2) and (3) and thus conclude that 

&,=1-Q, 

with probability equal to 

P,l= KY, =a (4 
and 

with probability 

Pr*=~bt=o)=l-P,1. (5) 
What we really should be asking is: what determines the probability that the t th 
economic agent chooses in accordance with event 8, and eq. (1) should be viewed 
as a clumsy way of going about it. We see that putting 

where f( .) is a suitable density function with known parameters, formalizes the 
dependence of the probabilities of choice on the observable characteristics of the 
individual and/or the alternatives. 

To complete the argumentation about why the GLM is inapplicable in the 
present context we note further 

E(E1) = F(x,.P)(l-x,./3)+ [l- F(x,.P)]( - x,.B) = F(O)-x,.P, 

(8) 

Var(q) = F(x,.P)[l- F(x,.P)]. (9) 

Hence, prima facie, least squares techniques are not appropriate, even if the 
formulations in (1) made intuitive sense. 

We shall see that similar situations arise in other LDV contexts in which the 
absurdity of least squares procedures is not as evident as it is here. 
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Thus, to recapitulate, least squares procedures are inapplicable 
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i. because we should be interested in estimating the probability of choice; 
however, we are using a linear function to predict actual choices, without 
ensuring that the procedure will yield “predictions” satisfying the conditions 
that probabilities ought to satisfy 

ii. on a technical level the conditions on the error term that are compatible with 
the desirable properties of least squares estimators in the context of the GLM 
are patently false in the present case. 

1.3. A utility maximization motivation 

As before, consider an individual, t, who is faced with the choice problem as in 
the preceding section but who is also hypothesized to behave so as to maximize 
his utility in choosing between the two alternatives. In the preceding it is assumed 
that the individual’s utility contains a random component. It involves little loss in 
relevance to write the utility function as 

q=u(wJ,.;~)+EI, t =1,2 ,..., T, 

where 

u(w, rt.; e) = E(Ulw, q.), Et.=Ut- u(w,r,.; e>. 

For the moment we shall dispense with the subscript t referring to the tth 
individual. 

If the individual chooses according to event 8, his utility is (where now any 
subscripts refer to alternatives), 

u, = u(w, r; el)+el. (10) 

The justification for the parameter vector 0 being subscripted is that, since w is 
constant across alternatives, 8 must vary. While this may seem unnatural to the 
reader it is actually much more convenient, as the following development will 
make clear. 

If the individual chooses in accordance with 2, then 

u, = U( W, r; e,)+ + 01) 

Hence, choice is in accordance with event d if, say, 
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But (12) implies 
Alternative 1 is chosen or choice is made in accordance with event 8 if 

1573 

E2-E11U(W,r;e1)-U(W,r;e2), 03) 

which makes it abundantly clear that we can speak unambiguously only about the 
probabilities of choice. To “predict” choice we need an additional “rule” - such 
as, for example, 

Alternative 1 is chosen when the probability attaching to event 8 is 0.5 or 
higher. 

If the functions u( .) in (13) are linear, then the t th individual will choose 
Alternative 1 if 

Et2 - &,l 5 x,.P, 

where 

x,. = (WY q>, p=e,-e,. 

Hence, in the notation of the previous section 

04) 

0% 

P(y,=l)=P(q*- et1 I x,.P) = /+?,@)d6= F,(xt.P), 
-m 

(16) 

where now f, is the density function of at2 - e,i. 
If 

then we have a basis for estimating the parametric structure of our model. Before 
we examine estimation issues, however, let us consider some possible distribution 
for the errors, i.e. the random variables stl, E,~. 

Thus, suppose 

Et,. - N(0, -q, 2= [;:: p], x>o, 

and the E,.‘s are independent identically distributed (i.i.d.). We easily find that 

Et2 - &,l - NO, a2), a2 = lJ*2 - 2ai2 + (Ill. 

Hence 
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where 

and F(p) is the c.d.f.’ of the unit normal. Notice that in this context it is not 
possible to identify separately /I and u * by observing solely the choices individu- 
als make; we can only identify /3/a. 

For reasons that we need not examine here, analysis based on the assumption 
that errors in (10) and (11) are normally distributed is called Probit Analysis. 

We shall now examine another specification that is common in applied re- 
search, which is based on the logistic distribution. Thus, let q be an exponentially 
distributed random variable so that its density is 

dd=e-q 4 E w47 (17) 

and consider the distribution of 

u=ln(q)-‘=-lnq. 08) 

The Jacobian of this transformation is 

J( r + q) = e-O. 

Hence, the density of u is 

h(u) = exp - uexp -e-” uE(-co,co). (19) 

If the &ti, i = 1,2 of (14) are mutually independent with density as in (19), then the 
joint density is 

(20) 

Put 

Ul+U2=&*, 

U2 = El. (21) 

The Jacobian of this transformation is 1; hence the joint density of the ui, i = 1,2, 
is given by 
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Since 

v1=E2-Et, 

the desired density is found as 

exp-(v,+2v,)exp-(e-“Z+e-“1-“z)dv,. 

To evaluate this put 

l+e-‘l=t, s = tee”2 

to obtain 

g( vr) = 5 /mSeCsdS = 
e-“1 

0 (1 +e-uq2 . 

Hence, in this case the probability of choosing Alternative 1 is given by 

1575 

P(y, = 0) = 1- F(x,J) = 1 ;e;;.P. 

This framework of binary or dichotomous choice easily generalizes to the case of 
polytomous choice, without any appreciable complication - see, e.g. Dhrymes 
(1978a). 

1.4. Maximum likelihood estimation 

Although alternative estimation procedures are available we shall examine only 
the maximum likelihood (ML) estimator, which appears to be the most ap- 
propriate, given the sorts of data typically available to economists. 

To recapitulate: we have the problem of estimating the parameters in a 
dichotomous choice context, characterized by a density function f( -); we shall 
deal with the case where f( .) is the unit normal and the logistic. 

As before we define 

Y, =L if choice corresponds to event E 
= 0 if choice corresponds to event 2 
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The event 8 may correspond to entering the labor force or going to college in the 
examples considered earlier. 

P(Y, =I) = F(x,.P), 

where 

x,.= (V-J, 

w is the s-element row vector describing the relevant attributes of the alternatives 
and rr, is the m-element row vector describing the relevant socioeconomic 
characteristics of the t th individual. 

We recall that a likelihood function may be viewed in two ways: for purposes 
of estimation we take the sample as given (here the Yt’s and x,.‘s) and regard it as 
a function of the unknown parameters (here the vector j3) with respect to which it 
is to be maximized; for purposes of deriving the limiting distribution of estima- 
tors it is appropriate to think of it as a function of the dependent variable(s) - and 
hence as one that encompasses the probabilistic structure imposed on the model. 
This dual view of the likelihood function (LF) will become evident below. 

The LF is easily determined to be 

L*= fi P(xJqY’[l- F(X,.pp’. 
f=l 

As usual, we find it more convenient to operate with its logarithm 

lnL*=L= i {Y,lnF(x,.P)+(I-Y,)ln[I-F(x,.P)I}. 
r=1 

(22) 

(23) 

For purposes of estimation, this form is unduly complicated by the presence of 
the random variables, Yt’s. Given the sample, we will know that some of the Y,‘s 
assume the value one and others assume the value zero. We can certainly 
rearrange the observations so that the first TI I T observations correspond to 

y,=l, t=1,2 ,..., T,, 

while the remaining T, < T correspond to 

Yr,+r = 0, t=1,2 ,..., T2, 

If we give effect to these statements the log likelihood function becomes 

L = 5 lnF(x,J)+ ‘i” ln[l- F(x,.P)], 
t=1 t=T,+l 

(24) 
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and as such it does not contain any random variables1 - even symbolically! Thus, 
it is rather easy for a beginning scholar to become confused as to how, solving 

aL 0 -= 
ap 9 

will yield an estimator, say 8, with any probabilistic properties. At least the 
analogous situation in the GLM 

y=xp+u, 

using the standard notation yields 

s = (X’X)_‘X’y, 

and y is recognized to be a random variable with a probabilistic structure 
induced by our assumption on the structural error vector u. 

Thus, we shall consistently avoid the use of the form in (24) and use instead the 
form in (23). As is well known, the ML estimator is found by solving 

f(xJ) ~=,~l[y~F(x,.s) - - (1 yf) 1 fkB’a) ]Xf = 0. 
f 

(25) 

We note that, in general, (25) is a highly nonlinear function of the unknown 
parameter j3 and, hence, can only be solved by iteration. 

Since by definition a ML estimator, 8, is one obeying 

L(b) 2 L(a), foralladmissiblefi, (26) 

it is important to ensure that solving (25) does, indeed, yield a maximum in the 
form of (26) and not merely a local stationary point - at least asymptotically. 

The assumptions under which the properties of the ML estimator may be 
established are partly motivated by the reason stated above. These assumptions 
are 

Assumption A.l.1. 

The explanatory variables are uniformly bounded, i.e. x,, EH*, for all t, where H, 
is a closed bounded subset of R s + m, i.e. the (s + m)-dimensional Euclidean space. 

Assumption A.1.2. 

The (admissible) parameter space is, similarly, a closed bounded subset of R,+,,,, 
say, P* such that P* 3 N(/3O), where N( /3’) is an open neighborhood of the true 
parameter point PO. 

‘For any sample, of course, the choice of TI is random. 
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Remark I 
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Assumption (A.l.l.) is rather innocuous and merely states that the socioeconomic 
variables of interest are bounded. Assumption (A.1.2.) is similarly innocuous. The 
technical import of these assumptions is to ensure that, at least asymptotically, 
the maximum maximorum of (24) is properly located by the calculus methods of 
(25) and to also ensure that the equations in (25) are well defined by precluding a 
singularity due to 

F(x,./3) = 0 or l-F(x,.P)=O. 

Moreover, these assumptions also play a role in the argument demonstrating the 
consistency of the ML estimator. 

To the above we add another condition, well known in the context of the 
general linear model (GLM). 

Assumption A. 1.3. 

5et 

x= (XJ t =1,2 ,..., T, 

where the elements of x,. are nonstochastic. Then 

rank(X)=s+m, 
l i m  X’X 

-=M>O. 
T-cc T 

With the aid of these assumptions we can easily demonstrate (the proof will not 
be given here) the validity of the following 

Theorem I 

Given assumption A.l.l. through A.1.3. the log likelihood function, L of (24) is 
concave in p, whether -F( .) is the unit normal or the logistic c.d.f.. 

Remark 2 

The practical implication of Theorem 1 is that, at any sample size, if we can 
satisfy ourselves that the LF of (24) does not attain its maximum on the boundary 
of the parameter space, then a solution to (25) say B, obeys 

L(b) 2 L(P) for all admissible p. 

On the other hand as the sample size tends to infinity then with probability one 
the condition above is satisfied. 
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Unfortunately, in the case of the discrete choice models under consideration we 
do not have a statistic that fits all three characterizations above. We can, on the 
other hand, define one that essentially performs the first two functions. 

In order to demonstrate these facts it will be convenient to represent the 
maximized (log) LF more informatively. Assuming that the ML estimator corre- 
sponds to an interior point of the admissible parameter space we can write 

+ third order terms. (29) 

The typical third order term involves 

It is our contention that 

plim +T = 0. 
T+CO 

Now, 

is a 

1 a3L 
Tptt T ap,ap,ap, @*)=G,,, 

well defined, finite quantity, where 

But then, (30) is obvious since it can be readily shown that 

1 a3L 
TpFz ~3/= apiapjap, =Op 

and moreover that 

(30) 
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are a.c. finite. Hence, for large samples, approximately 
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On the other hand, expanding aL by Taylor series we find 
JP 

i aL o 
-- 

J7;@ - (PI -[ f-&(P”)]h(B-a”)_ 
Thus, 

and, consequently, for large samples 

Hence 

2m3)-m”)I - -(B-P~$j-#“)(B -PO> -x5+,. (31) 

Consider now the hypothesis 

Ho: p=o, 

as against 

HI : pie. 

Under Ho 

L(PO) = 5 { y,lnF(O)+(l- y,)ln[l- F(O)]} = rln(+), 
t=1 

and 

2[L(B)-Tlnil - x?+~, 

(32) 
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is a test statistic for testing the null hypothesis in (32). On the other hand, this is 
not a useful basis for defining an R2 statistic, for it implicitly juxtaposes the 
economically motivated model that defines the probability of choice as a function 
of 

and the model based on the principle of insuficient reason which states that the 
probability to be assigned to choice corresponding to the event 6’ and that 
corresponding to its complement C? are both $. It would be far more meaningful 
to consider the null hypothesis to be 

i.e. to follow for a nonzero constant term, much as we do in the case of the GLM. 
The null hypothesis as above would correspond to assigning a probability to 
choice corresponding to event 8 by 

J=F(flo) or B, = F-‘(J), 

where 

Thus, for some null hypothesis Ho, let 

QP) = SUPW). 
HO 

By an argument analogous to that leading to (31) we conclude that 

wm- UB)] - -(S-p”)’ &(“.)(a -PO> 

+(a-p”)‘~;;g L(B”)(P -PO). (33) 

In fact, (33) represents a transform of the likelihood ratio (LR) and as such it is a 
LR test statistic. We shall now show that in the case where 

Ho: P&=0, 
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In the special case where 
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i.e. it is the constant term in the expression 

x,.P, 

so that no bona fide explanatory variables “explain” the probability of choice, we 
can define R2 by 

R”+$ (42) 

The quantity in (42) has the property 

1. 

ii. 

. . . ul. 

R2 E [O,l) 
the larger the contribution of the bona fide variables to the maximum of the 
LF the closer is R2 to 1 
R2 stands in a one-to-one relation to the &i-square statistic for testing the 
hypothesis that the coefficients of the bona fide variables are zero. In fact, 
under HO 

-X(&R2 - x:+,,-~. 

It is desirable, in empirical practice, that a statistic like R2 be reported and that a 
constant term be routinely included in the specification of the linear functional 

Finally, we should also stress that R2 as in (42) does not have the interpretation 
as the square of the correlation coefficient between “predicted” and “actual” 
observations. 

2. Truncated dependent variables 

2.1. Generalities 

Suppose we have a sample conveying information on consumer expenditures; in 
particular, suppose we are interested in studying household expenditures on 
consumer durables. In such a sample survey it would be routine that many 
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households report zero expenditures on consumer durables. This was, in fact, the 
situation faced by Tobin (1958) and he chose to model household expenditure on 
consumer durables as 

_Y* = Xt.P + l.4 ,’ if x,.p + 24, > 0 
= 0 otherwise . (43) 

The same model was later studied by Amemiya (1973). We shall examine below 
the inference and distributional problem posed by the manner in which the 
model’s dependent variable is truncated. 

2.2. Why simple OLS procedures fail 

Let us append to the model in (43) the standard assumptions that 

(A.2.1.) The {u,: t=l,2 ,... } is a sequence of i.i.d. random variables with 

u, - NO, e2>, a2 E (0,cCJ). 

(A.2.2.) The elements of x,. are bounded for all t, i.e. 

lx,il < ki, for all t, i=1,2 n, 7.0.) 

are linearly independent and 

exists as a nonsingular nonstochastic matrix. 
(A.2.3.) If the elements of x,. are stochastic, then x,., uI, are mutually indepen- 

dent for all t, t’, i.e. the error and data generating processes are mutually 
independent. 

(A.2.4.) The parameter space, say H c Rn+2, is compact and it contains an open 
neighborhood of the true parameter point (PO’, $)I. 

The first question that occurs is why not use the entire sample to estimate /3? 
Thus, defining 

x= (x,. 1, t =I,2 ,..., T, 

u= (u442,...,4’, Y (l)= (Yl, Yz,..., YJ, y@‘= (O,...,O)‘, 

y = ( yw’, y(V)‘, 
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we may write 
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y=xfi+u, 

and estimate /3 by 

fi = ( XlX) -lx/y. (44 

A little reflection will show, however, that this leads to serious and palpable 
specification error since in (43) we do not assert that the zero observations are 
generated by the same process that generates the positive observations. Indeed, a 
little further reflection would convince us that it would be utterly inappropriate to 
insist that the same process that generates the zero observations should also 
generate the nonzero observations, since for the zero observations we should have 
that 

u, = - x*.p, t=T,+,,...,T,+T,, 

and this would be inconsistent with assumption (A.l.l.). 
We next ask, why not confine our sample solely to the nonzero observations, 

Y(l) = x,p + yl), 

and thus estimate p by 

#d = ( xix,) -lx;y(l). 

This may appear quite reasonable at first, even though it is also apparent that we 
are ignoring some (perhaps considerable) information. Deeper probing, however, 
will disclose a much more serious problem. After all, ignoring some sample 
elements would affect only the degrees of freedom and the t- and F-statistics 
alone. If we already have a large sample, throwing out even a substantial part of it 
will not affect matters much. But now it is in order to ask: What is the process by 
which some dependent variables are assigned the value zero? A look at (43) 
convinces us that it is a random process governed by the behavior of the error 
process and the characteristics relevant to the economic agent, x,.. Conversely, 
the manner in which the sample on the basis of which we shall estimate fi is 
selected is governed by some aspects of the error process. In particular we note 
that for us to observe a positive y,, according to 

Y, = x,.P + a,, (45) 
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the error process should satisfy 
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u, > - x,.p. (46) 

Thus, for the positive observations we should be dealing with the truncated 
distribution function of the error process. But, what is the mean of the truncated 
distribution? We have, if f( .) is the density and F( .) the c.d.f. of U, 

E( U,]U, > - x,.P) = 
1 

/ O” 5f(Odk 
l-F(-x,.P) -x,.B 

If f( .) is the iV(0, u*) density the integral can be evaluated as 

f co>? 

and, in addition, we also find 

I - F( - x,./3> = F(x,.P). 

Moreover, if we denote by +(. ), G(e) the iV(0, 1) density and c.d.f., respectively, 
and by 

X*.P y=- t u ’ 

then 

&t> E( u,Ju, > + x,./3) = u- 
@(v,) = a+t* 

(47) 

Since the mean of the error process in (45) is given by (48) we see that we are 
committing a misspecification error by leaving out the “variable” +( v,)/@(v,) 
[see Dhrymes (1978a)]. 

Defining 

(49) 

we see that {u,: r=l,2,...} is a sequence of independent but non-identically 
distributed random variables, since 

Var(u,)=a2(1-v,$,--1C/:). (50) 

Thus, there is no simple procedure by which we can obtain efficient and/or 
consistent estimators by confining ourselves to the positive subsample; conse- 
quently, we are forced to revert to the entire sample and employ ML methods. 
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2.3. Estimation of parameters with ML methods 

1589 

We are operating with the model in (43), subject to (A.2.1.) through (A.2.4.) and 
the convention that the first Ti observations correspond to positive dependent 
variables, while the remaining T2, (Tl + T2 = T), correspond to zero observations. 

Define 

c, =1 if yr > 0, 
= 0 otherwise, (51) 

and note that the (log) LF can be written as 

L= 5 ((1-c,)lnB(v,)-c,[+ln(2n)+flno2+-$(~~-x~.~)”]). 
t=l 

(52) 

Differentiating with respect to y = (fi’, u2)‘, we have 

8L 
ap= 

-; i {(l-~~)~-,(y~-~~.pi)x,.=o, 
r=1 

aL 1 -=_- 
au2 

i {c~[l-~(~~-x~.8,‘1-(1-c~)~) =O, 
2e2 t=i 

(53) 

and these equations have to be solved in order to obtain the ML estimator. It is, 
first, interesting to examine how the conditions in (53) differ from the equations 
to be satisfied by simple OLS estimators applied to the positive component of the 
sample. By simple rearrangement we obtain, using the convention alluded to 
above, 

x;x,p = x;y(l) - u i q(- v,)x;., (54) 
r=T,+l 

where 

+(v,> SW = qv,> Y 

445) c-5) = @(_vt). 

(55) 

(56) 

Since these expressions occur very frequently, we shall often employ the abbrevia- 
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ted notation 

P. J. Dhrymes 

#, = ~(V,>~ #T=IC,(-VA. 

Thus, if in ‘some sense 

is negligible, the ML estimator, say j?, could yield results that are quite similar, 
from an applications point of view, to those obtained through the simple OLS 
estimator, say fi, as applied to the positive component of the sample. From (54) it 
is evident that if z$.. of (57) is small then 

is also small. Hence, under these circumstances 

which explains the experience occasionally encountered in empirical applications. 
The eqs. (53) or (54) and (55) are highly nonlinear and can only be solved by 

iterative methods. In order to ensure that the root of 

aL 
-&=o, Y = (P’, a=)‘> 

so located is the ML estimator it is necessary to show either that the equation 
above has only one root-which is difficult-or that we begin the iteration with an 
initial consistent estimator. 

2.4. An initial consistent estimator 

Bearing in mind the development in the preceding section we can rewrite the 
model describing the positive component of the sample as 

Yr=Xr_P+a~t+Ut=u(v,+~,)+u,, (58) 

such that 

{u,: t=1,2 ) . . .  } ,  
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is a sequence of mutually independent random variables with 

ECU,) = 0, Va&) = e2(I- v,JI, - +:>, 
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(59) 

and such that they are independent of the explanatory variables x,. 
The model in (58) cannot be estimated by simple means owing to the fact that 

4, is not directly observable; thus, we are forced into nonstandard procedures. 
We shall present below a modification and simplification of a consistent 

estimator due to Amemiya (1973). First we note that, confining our attention to 
the positive component of the sample 

y:=u2(v,+~t)2+U:+2ut(vt+~r)a. (60) 

Hence 

E( y:lxt., u, > - x,.p) = u2( v: + v,#,)+ rJ2 
=x,.PE(ytlx,.,Ur> -x,.P)+u2. (61) 

Defining 

Et = y,2 - E( Ytk., u, ’ - x,.b), (62) 

we see that {Ed: t=l,2,...} is a sequence of independent random variables with 
mean zero and, furthermore, we can write 

w, = yt2 = x,.py, + u* + Et, t =1,2 ,..., T,. (63) 

The problem, of course, is that JJ~ is correlated with E, and hence simple 
regression will not produce a consistent estimator for p and u2. 

However, we can employ an instrumental variables (IV.) estimator3 

7 = (x:x*)-‘X&w, w= (Wgv2,...,W~J’, (64) 

31t is here that the procedure differs from that suggested by Amemiya (1973). He defines 

j, =x,. ( xpJ1x;y’“, 

while we define 

~,=+.a, 

for nontrivial vector a. 
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where 

X, = (D,X,,e), 

P. J. Dhrymes 

(65) 

and 

jt = x,.a, D~=diag(g,,~~,...,~,,), Dy = (~1, Y,,..., YT,), (66) 

for an arbitrary nontrivial vector a. 
It is clear that by substitution we find 

We easily establish that 

2, x = XP&JX, XlV 
* * 

Y’X, e’e 1. 
Clearly 

Now 

r, 
gx;“, = + c x:.ut, 

1 1 t=1 

and 

{x;..,: t=1,2 )... }, 

is a sequence of independent random variables with mean 

E(x;.u,) = ax;.+,, 

and covariance matrix 

cov(x;.u,) = a*(1 - v,$br - ~,)x:.x,. = O&.Xt., 

(67) 

(68) 

(69) 
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where 
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w, = a2(1 - v,J/, - +:>, 

is uniformly bounded by assumption (A.2.2) and (A.2.4). Hence, by (A.2.2) 

lim f; 
r, + 00 

w&.x,., 
1 t=1 

converges to a matrix with finite elements. Further and similar calculations will 
show that 

converges a.c. to a nonsingular matrix. Thus, we are reduced to examining the 
limiting behavior of 

(70) 

But this is a sequence of independent nonidentically distributed random 
variables with mean zero and uniformly bounded (in x,. and j3) moments to any 
finite order. Now for any arbitrary (n + 2 x 1) vector (Y* consider 

where 

and note that 

is well defined where 

S$’ = z afVar( et). 
r=1 

(71) 

(72) 



1594 

Define, further 

P. J. Dhrynes 

se2 
g,=+, 

1 

and note that 

S; = T;/2ST,. 

But then it is evident that Liapounov’s condition is satisfied, i.e. with K a uniform 
bound on Ela,.~,[~+’ 

lim t=1 
s*2+s SK lim Tl 

T+m T1+s/2S;,+a 
= lim 

K 0. 
TI - cc TI 1 

T,-tm T;/2S2i8 = 

By a theorem of Varadarajan, see Dhrymes (1970), we conclude that 

- &f: E- N(0, H), 

where 

; (x,.a)2x:.xt.Var(Et) 5 (x,.a)x:.Var(&,) 

H= lim 1 ‘=‘r, t=1 

T-cc Tl 
5 Var(Et) 1 ’ 

(73) 

t=1 

Consequently we have shown that 

\IT,(? - Y) - ~(0, Q-QQ-I), 

where 

Q=lim ( zc x*> 
a.c. Tl . 

(74) 

Moreover since 
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where 3 is an a.c. finite random vector it follows that 

which shows that 7 converges a.c. to ya. 
We may summarize the development above in 

Lemma 1 

Consider the model in (43) subject to assumptions (A.2.1.) through (A.2.4.); 
further consider the I.V. estimator of the parameter vector y in 

w, = (Xt.Y,J)Y + &I, 

given by 

w, = Y,‘, 

4 = (X&X*)_lk;w, 

where k,, X, and w are as defined in (65) and (66). Then 

i. 7 converges to yO almost certainly, 

ii. JT,(v - ~a) - N(0, Q-lHQ,-l), 

where Q and H are as defined in (74) and (73) respectively. 

2.5. Limiting properties and distribution of the ML estimator 

Returning now to eqs. (53) or (54) and (55) we observe that since the initial 
estimator, say 9, is strongly consistent, at each step of the iterative procedure we 
get a (strongly) consistent estimator. Hence, at convergence, the estimator so 
determined, say p, is guaranteed to be (strongly) consistent. 

The perceptive reader may ask: Why did we not use the apparatus of Section 
1.d. instead of going through the intermediate step of obtaining the initial 
consistent estimator? The answer is, essentially, that Theorem 1 (of Section 1.d.) 
does not hold in the current context. To see that, recall the (log) LF of our 
problem and write it as 

L,(y)=+ f ((1-c,)ln@(-v,)-c, 
t=l 

(75) 
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Proof 

Consider the log LF of (75) and in particular its t th term 

1597 

Er= (l-c,)ln@(-Y,)-c, +l(2n)+ +no2+ -&, - XJ?)” 
I 

) 

t =1,2,... . (77) 

For any x-realization 

{&: t =1,2,...}, 

is a sequence of independent random variables with uniformly bounded moments 
in virtue of assumption (A.2.1) through (A.2.3). Thus, there exists a constant, say 
k, such that 

V=(Sr) < k> for all t. 

Consequently, by Kolmogorov’s criterion, for all admissible y, 

{ MY)-@T(Y)I} =<o. Q.E.D. 

Remark 3 

The device of beginning the iterative process for solving (76) with a consistent 
estimator ensures that for sufficiently large T we will be locating the estimator, 
say j$, satisfying 

G(%-) = suP&-(Y). 
Y 

Lemma 2, can be shown to imply that 

L,(?,) a-(u,Yo). qu,YO)= suPqY,Y"). 
Y 

Moreover, we can also show that 

7 = yo. 

On the other hand, it is not possible to show routinely that fraz’yo. Essentially, 
the problem is the term corresponding to a2 which contains expressions like 

c bt - Q)” * a2 .’ 
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which cannot be (absolutely) bounded. This does not prevent us from showing 
convergence a.c. of pr. to y”. By the iterative process we have shown that qT 
converges to y” at least in probability. Convergence a.c. is shown easily once we 
obtain the limiting distribution of PT -a task to which we now turn. 

Thus, as before, consider the expansion 

(78) 

where y” is the true parameter point and 

1% - YOI 5 IY* - YOI. 

We already have an explicit expression in eq. (53) for the derivative dL,/dy. So 
let us obtain the Hessian of the LF. We find 

We may now define 

m> Yt - x,.PO Elr=(l-c*)@(_vp) -cf uo i I ’ 

t2t=ct[l-( y~-;J”~]-(l-c,)~!~;) 
and 

&l,= (l-c,)~r”(lClfo-vP)+CI, 
L = t21r = Cl- c,)J/tO(l + VP - vM”>9 

(80) 

(81) 
(2214( y+yO) + (1- Ct)V$#=O(l + v#T” - vP2), 
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where, evidently, 
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d+P) q;O= @(_vp) 9 

x .PO VP=*> +(vP) #Y= +p> * 

With the help of the notation in (80) and (81) we find 

~(,0)_!_~ i a. 0 tit 
t=1 i I[] & 521 ’ (8’4 

and 

where 52, r is a matrix all of whose elements are zero except the last diagonal 
element, which is 

+ ,$r $-&.. 

Thus, for every T we have 

E(ti*,) =o. (84) 

Consequently, we are now ready to prove 

Theorem 3 

Consider the model of eq. (43) subject to assumption (A.2.1.) through (A.2.4.); 
moreover, consider the ML estimator, SIT, obtained by iteration from an initial 
consistent estimator as a solution of (76). Then 

JT(Pr-YO) - N(O,&-‘), 

where 
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From (79) we also verify that 

1601 

converges in probability to the null matrix, element by element. But the elements 
of 

are seen to be sums of independent random variables with finite means and 
bounded variances; hence, they obey a Kolmogorov criterion and thus 

We easily verify that 

E(&lJ = %f? E(~12,)=E(52,,)=~(~~)[l-~~~T"+~P2] 

=W 121 = W21r3 

EG22t) = W22t. 

Hence 

and, moreover, 

JT( f - yO) - N(O, 40 (Q.E.D.) 
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However, it would be much preferable to estimate C as 

1603 

with Gi ;, given as in (86) evaluated at PT. 

2.6. Goodness of $2 

In the context of the truncated dependent variable model the question arises as to 
what we would want to mean by a “goodness of fit” statistic. 

As analyzed in the Section on discrete choice models the usual R*, in the 
context of the GLM, serves a multiplicity of purposes; when we complicate the 
process in which we operate it is not always possible to define a single statistic 
that would be meaningful in all contexts. 

Since the model is 

YI = X*.P + u, if x,.p + U, > 0, 
= 0 if u,l - x~,@, 

the fitted model may “describe well” the first statement but poorly the second or 
vice versa. A useful statistic for the former would be the square of the simple 
correlation coefficient between predicted and actual Y,. Thus, e.g. suppose we 
follow our earlier convention about the numbering of observations; then for the 
positive component of the sample we put 

3, = x,.B + &, t =1,2 ,..., Tl. 638) 

An intuitively appealing statistic is 

where 

j=+ $Yt, 
1 t=1 

p+ &. 
1 t=l 

(89) 

(90) 
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As to how well it discriminates between the zero and positive (dependent 
variable) observations we may compute @( - P() for all t; in the perfect dis- 
crimination case 

@(- fi,J’ @(- 4,), t,=1,2 ,..., T,, t2=Tl+1,...,T. (91) 

The relative frequency of the reversal of ranks would be another interesting 
statistic, as would the average probability difference, i.e. 

We have a “right” to expect as a minimum that 

d> 0. (93) 

3. Sample selectivity 

3. I. Generalities 

This is another important class of problems that relate specifically to the issue of 
how observations on a given economic phenomenon are generated. More particu- 
larly, we hypothesize that whether a certain variable, say yz, is observed or not 
depends on another variable, say y12 *. Thus, the observability of y,T depends on the 
probability structure of the stochastic process that generates y,;, as well as on that 
of the stochastic process that governs the behavior of yzT. The variable y,; may be 
inherently unobservable although we assert that we know the variables that enter 
its “systematic part.” 

To be precise, consider the model 

t =1,2 >..., T, (94) 

where x2 ., x;C2. are rl, r,-element row vectors of observable “exogenous” variables 
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which may have elements in common. The vectors 
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u::= (u;,ur,), t=1,2,..., 

form a sequence of i.i.d. random variables with distribution 

uy- N(0, ix*), 2*>0. 

The variable yz is inherently unobservable, while y,T is observable if and only if 

An example of such a model is due to Heckman (1979) where y,T is an observed 
wage for the tth worker and y,; is his reservation wage. Evidently, y,; is the 
“market valuation” of his skills and other pertinent attributes, represented by the 
vector x2 ., while y$ represents, through the vector x; those personal and other 
relevant attributes that lead him to seek employment at a certain wage or higher. 

Alternatively, in the market for housing y,T would represent the “market 
valuation” of a given structure’s worth while yl; would represent the current 
owner’s evaluation. 

Evidently a worker accepts a wage for employment or a structure changes 
hands if and only if 

If the covariance matrix, Z*, is diagonal, then there is no correlation between yz 
and y;” and hence in view of the assumption regarding the error process 

{uf.‘: t=1,2 ) . . .  } ,  

we could treat the sample 

{(y&x;.): t=1,2 ,..., T}, 

as one of i.i.d. observations; consequently, we can estimate consistently the 
parameter vector 8.: by OLS given the sample, irrespectively of the second 
relation in (94). 

On the other hand, if the covariance matrix, Z*, is not diagonal, then the 
situation is far more complicated, since now there does exist a stochastic link 
between ytT and y$. The question then becomes: If we apply OLS to the first 
equation in (94) do we suffer more than just the usual loss in efficiency? 
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3.2. Inconsistency of least squares procedures 

In the current context, it would be convenient to state the problem in canonical 
form before we attempt further analysis. Thus, define 

* 
Y,l = Yll 3 

p.2=*p. 

* 
Yt2 = Y,l - Yt2 9 

* 
x,1.=x,1., x,2.= (x;.,x;.), 

* 

P.i=P.:, 
i i 

(95) 

-a’: ’ 
Utl=UX, *_ * 

ut2 = U,l u,23 

with the understanding that if x;“l. and x2. have elements in common, say, 

x:1.= (r,r, r:,), x,*2. = (Z,i., &>, 

then 

h-P”;2\ 

x,2.= zt+;P1.,z;.), ( P.2= P((;l 9 (96) 

\ - P.*22 1 

where /?.:i, /3.t2 are the coefficients of z,i in x;“l_ and xz respectively, 8; is the 
coefficient of zx. and p.;2 is the coefficient of zfrz. 

Hence, the model in (94) can be stated in the canonical form 

i 

Yt, = xt1.P.1 + u,17 

Y,, = x,2 4.2 + ut2 ) 
(97) 

such that x,~ contains at least as many elements as x,~ ., 

(u:.=(url,u,,)‘: t=1,2 )... ), 

is a sequence of i.i.d. random variables with distribution 

u;. - NO, z>, z>o, 

and subject to the condition that ytl is observable (observed) if and only if 

Y,, 2 0. 

If we applied OLS methods to the first equation in (97) do we obtain, at least, 
consistent estimators for its parameters? The answer hinges on whether that 
question obeys the standard assumptions of the GLM. 

Clearly, and solely in terms of the system in (97) 

{ u,i: t =1,2,...}, (98) 

is a sequence of i.i.d. random variables and if in (94) we are prepared to assert 
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that the standard conditions of the typical GLM hold, nothing in the subsequent 
discussion suggests a correlation between x,r. and u,~; hence, if any problem 
should arise it ought to be related to the probability structure of the sequence in 
(98) insofar as it is associated with observable ytI -a problem to which we now 
turn. We note that the conditions hypothesized by the model imply that (poten- 
tial) realizations of the process in (98) are conditioned on4 

u,2 2 -x,24.2. (99) 

Or, perhaps more precisely, we should state that (implicit) realizations of the 
process in (98) associated with observable realizations 

{Y*G t =1,2,...}, 

are conditional on (99). Therefore, in dealing with the error terms of (potential) 
samples the marginal distribution properties of (98) are not relevant; what are 
relevant are its conditional properties-as conditioned by (99). 

We have 

Lemma 3 

The distribution of realizations of the process in (98) as conditioned by (99) has 
the following properties: 

i. The elements { u,r, ut2 } are mutually independent for t f t’. 
ii. The density of u,r, given that the corresponding y,, is observable (ob- 

served) is 

where 

1 
YI2 

xt2.P.2 P12 =- 
l/2 ' 

7r =- I y,,+---u r1 ) 
022 

J/2 i l/2 
011 i 

42 2 =- P12 
~11~22 

a=l- pt2, 

and @( .) is the c.d.f. of a N(O,l). 

4Note that in terms of the original variables (99) reads 

We shall not use this fact in subsequent discussion, however. 

000) 

001) 
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Proof 
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i. is quite evidently valid since by the standard assumptions of the GLM we assert 
that (x:.,x,*.) and uF=(u;, u&) are mutually independent and that 

{ 24;‘: 1=1,2,...}, 

is a sequence of i.i.d. random variables. 
As for part ii. we begin by noting that since the conditional density of url given 

u,~ is given by 

and since the restriction in (99) restricts us to the space 

u,2 2 -x,2./3.2, 

the required density can be found as 

Completing the square (in 5) and making the change in variable 

s = (5 - f31)/(42cxY2, 
we find 

f(u,,lu,z~-x,2,~.2)=~1 
1 7 

@( Yt2) \/2?ra,, exp- z”“. 

To verify that this is, indeed, a density function we note that it is everywhere 
nonnegative and 

/ ( O” f 51142 2 - X,,.P.2M 
-CC 

1 4 =- ~ 
/ 

O3 1 
@(Yr2) _-oo \/j----& ii _J&P- $3~2 *exp- g-p,. I 
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Making the transformation 

f2 = .1’25* - P,231, 
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the integral is reduced to 

-exp- f<zd{2 =l. Q.E.D. 

Lemma 4 

The k th moment of realizations of the process in (98) corresponding to observ- 
able realizations { ytI: t =1,2, . . . } is given, for k even (k = 2,4,6,. . .), by 

(k -2s 

I,., = udk - Wc-2,, - 011 

k _ 1 

k’2~(k-2)‘2p:2y~21C,(y12) x0 [,,+,)( *)’ 

[2( y-r)]! 

*2+r(&p_,)!’ 
0021 

while for k odd (k = 3,5,7,. . . > it is given by 

&--I , 

where 

+bt2> -- 
4(%*) - qvt2) 3 I,,, =I, I,,, = d12P,24(V,2). 

003) 

004) 
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Remark 5 

P. J. Dhtymes 

It is evident, from the preceding discussion, that the moments of the error process 
corresponding to observable y,, are uniformly bounded in P.r, P. 2, urr, ur2, uz2, 
xI1, and x12, -provided the parameter space is compact and the elements of 
x,, ., x,~ are bounded. 

Remark 6 

It is also evident from the preceding that for (potential) observations from the 
model 

Yt, =x,14.1 + U,l, 

we have that 

(105) 

We are now in a position to answer the question, raised earlier, whether OLS 
methods applied to the first equation in (97) will yield at least consistent 
estimators. In this connection we observe that the error terms of observations on 
the first equation of (97) obey 

E(U,llU t2 2 - x,2. P.2) = 11, = 4’Pl24+,2)~ 

Vadu,llq2 2 - x,2.P.2> = 12t - 1: = ql- ~w212~~2ICI(~,2) 

- %P:2+2h2) 

= 011 - w:2~h,h2 + +(52)1. 

As is well known, the second equation shows the errors to be heteroskedastic - 
whence we conclude that OLS estimators cannot be eficient. The first equation 
above shows the errors to have a nonzero mean. As shown in Dhrymes (1978a) a 
nonconstant (nonzero) mean implies misspecification due to left out variables and 
hence inconsistency. 

Thus, OLS estimators are inconsistent; hence, we must look to other methods 
for obtaining suitable estimators for p_r, uir, etc. On the other hand, if, in (105), 
p12 = 0, then OLS estimators would be consistent but inefficient. 

3.3. The LF and ML estimation 

We shall assume that in our sample we have entities for which y,r is observed and 
entities for which it is not observed; if ytl is not observable, then we know that 



Ch. 27: Limited Dependent Variables 

yt2 -c 0, hence that 

u,z -c - xt2.P.2. 

1611 

Consequently, the probability attached to that event is 

Evidently, the probability of observing ytr is @( vt2) and given that ytI is observed 
the probability it will assume a value in some internal A is 

-+‘d.& 
exp- %r 

Hence, the unconditional probability that ytI will assume a value in the interval A 
is 

Define 

c, =l if y,, is observed, 
= 0 otherwise. 

and note that the LF is given by 

L*= fi [~(Y12)f(Y~1-x,,.P.llu,22 -Xt2.P.2)IC([~(-Y12)11-c,. (106) 
r=l 

Thus, e.g. if for a given sample we have no observations on y,, the LF becomes 

while, if all sample observations involve observable y,,‘s the LF becomes 

Finally, if the sample contains entities for which y,, is observed as well as entities 
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for which it is not observed, then we have the situation in (106). We shall examine 
the estimation problems posed by (106) in its general form. 

Remark 7 

It is evident that we can parametrize the problem in terms of /?.i, P. 2, utr, u22, a,,; 
it is further evident that j3.2 and a,, appear only in the form (/I.2/u:2/2) - hence, 
that a,, cannot be, separately, identified. We shall, thus, adopt the convention 

022 = 1. 

A consequence of (107) is that (105) reduces to 

KG?,., u,2 2 - x,,.P.,> = x,1.P.1+ fJl244d. 

The logarithm of the LF is given by 

L= g (l-c,)ln@(--v,,) 
t=1 

(107) 

008) 

+ c, - iln(27r) - +lnu,, 
] 

- --$,1-x,1.&)“] 2i 

+ln@[--$+2+~12( yrl-$$““))]}. (109) 

Remark 8 

We shall proceed to maximize (109) treating p.i, /3.2 as free parameters. As 
pointed out in the discussion following eq. (95) the two vectors will, generally, 
have elements in common. While we shall ignore this aspect here, for simplicity of 
exposition, we can easily take account of it by considering as the vector of 
unknown parameters y whose elements are the distinct elements of /3.1, j3. 2 and 
IJll, PI20 

The first order conditions yield 

(110) 

(111) 
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Putting 
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we see that the ML estimator, say ji, is defined by the condition 

g(p) = 0. 

Evidently, this is a highly nonlinear set of relationships which can be solved 
only by iteration, from an initial consistent estimator, say 7. 

3.4. An initial consistent estimator 

To obtain an initial consistent estimator we look at the sample solely from the 
point of view of whether information is available on y,i, i.e. whether ytl is 
observed with respect to the economic entity in question. It is clear that this, at 
best, will identify only /3.*, since absent any information on y,, we cannot 
possibly hope to estimate p.i. Having estimated B. 2 by this procedure we proceed 
to construct the variable 

t=1,2 ,..., T. 016) 

Then, turning our attention to that part of the sample which contains observa- 
tions on yti, we simply regress ytl on (x,i., 4,). In this fashion we obtain 
estimators of 

6 = (PC12 %2)’ (117) 

as well as of uii. 
Examining the sample from the point of view first set forth at the beginning of 

this section we have the log likelihood function 

L,= f [c,ln~(v,,)+(l-c,)ln~(-v,,)], 018) 
t=1 

which is to be maximized with respect to the unknown vector /3.2. In Section 1.d. 
we noted that L, is strictly concave with respect to p. 2; moreover, the matrix of 
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It is our contention that the estimator in (125) is consistent for p.l and a,,; moreover 
that it naturally implies a consistent estimator for oI1, thus yielding the initial 
consistent estimator, say 

which we require for obtaining the LA4 estimator. 
Formally, we will establish that 

fi(&&O)= q ( 1 ~-Yb.1- u12($ - $41 - NO, FL (130) 

for suitable matrix F, thus showing that 8 converges to 6’ with probability one 
(almost surely). 

In order that we may accomplish this task it is imperative that we must specify 
more precisely the conditions under which we are to consider the model5 in (94), 
as expressed in (97). We have: 
(A.3.1.) The basic error process 

{.:.: t=1,2 ,... }, u,.=(u,1,U,2), 

is one of i.i.d. random variables with 

and is independent of the process generating the exogenous variables 
x,1 ., x,2 .* 

(A.3.2.) The admissible parameter space, say H c Rn+3, is closed and bounded 
and contains an open neighborhood of the true parameter point 

(A.3.3.) The exogenous variables are nonstochastic and are bounded, i.e. 

Ixt2il < ki, i=0,1,2,...n 

for all t.6 

5A~ pointed out earlier, it may be more natural to state conditions in terms of the basic variables 
x,:., X; ., U; and uZ; doing so, however, will disrupt the continuity of our discussion; for this reason 
we state conditions in terms of x,~., q., u,~. and u,q. 
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(A.3.4.) The matrix 

X, = (x0.) t =1,2 ,..., T, 

P. J. Dhtymes 

is of rank n + 1 and moreover 

lip +x;x* = P, P>O. 

Remark 9 

It is a consequence of the assumptions above that, for any x12, and admissible 
P.2r there exists k such that 

- r I xt2 ,P.2 ~2 r, O-cr-ck, k<oo, 

so that, for example, 

44x,,&) WCk) ‘0, 
@(x,~.&) <@(k) ~1, 

@(xt2.P.~) >@(-+O. 

Consequently, 

+,dM v+J = @(Xt2.&) ’ 
+,,.P.d J/*w = @( - x,,.p.,> ’ 

are both bounded continuous functions of their argument. 
To show the validity of (130) we proceed by a sequence of Lemmata. 

Lemma 5 

The probability limit of the matrix to be inverted in is given by 

plim +X1 
T-CC 

*‘XI*= hm +Xta’XF=Q,,, Q,>O, 
T-+W 

(131) 

6 We remind the reader that in the canonical representation of (97), the vector xtl. is a subvector of 
x,* .; hence the boundedness assumptions on q2 imply similar boundedness conditions on xzl.. 

Incidentally, note that B.t is not necessarily a subvector of /X0,, since the latter would contain 
Pfl - /3.7! and in addition S.$, - a.*,“, , while the former will contain /?:y, 85,. 
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where 

Proof 

We examine 

s,+x~px.pp]=’ 
[ 

0 XlG - J/O) 
1 T (Jh”>‘x, (it+~“>(G~“) ’ (132) 

and the problem is reduced to considering 

(133) 

evaluated at /I. 2 = p.‘, , 

s* _ a2iG,h2) 
t- 

ad 
evaluated at /I. 2 = /3.$, 

IP.$ - PP,I < IP.2 -m. 

It is evident that, when the expansion in (133) is incorporated in (132) quadratic 
terms in (a. 2 - /X0,) will vanish with T. 

Hence we need be concerned only with the terms of the form 

or of the form 
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In either case we note that by assumption (A.3.4.) and Remark 9 

T 

lim + C oyx:,.x,,., 
T-+CC r=l 

has bounded elements; similarly, for 

Consequently, in view of (122) and (132) we conclude 

plim S, = 0, 
T+CC 

which implies 

plim +X1*/X1* = Tlim, +Xi@XF = Q,. 
T--CC 

P. J. Dhynes 

(134) 

Corollas 4 

The limiting distribution of the left member of (130) is obtainable through 

J?;( 8 - SO) - Q, lX;r+.l-al*(&40)], u.l=(u11,~21...~Tl)'. 

Indeed, by standard argumentation we may establish 

Theorem 4 

Under assumption (A.3.1) through (A.3.4) the initial (consistent) estimator of this 
section has the limiting distribution 

JT( 6 - 60) - N(0, I;), F= Q,‘PQ,‘, 

where 
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Q, is defined in (134) and 

J+:,) = (J11Wllt = 011 [ I- P%%; - Po11$?] . 
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Corollary 5 

The initial estimator above is strongly consistent. 

Proof 

From the theorem above 

where 5 is an a.c. finite random vector. 
Thus 

8 converges to 6’ a.c. 
Evidently, the parameter cril can be estimated (at least consistently) by 

l [a; + 6,,J$,2 + c$&:] f all= T 

3.5. Limiting distribution of the ML estimator 

In the previous section we outlined a procedure for obtaining an initial estimator, 
say 

and have shown that it converges to the true parameter point, say y”, with 
probability one (a.c.). 

We now investigate the properties of the ML estimator, say q, obtained by 
solving 
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To this effect define 
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P12 G2(d _ 
&2 @2(Tt) p12v,2 + $2 i )I ’ 

(139) 
1 

[ 

h) 
522r=;cr @(#+ @2(rt) m +(1-ct)~*(%2)[+*(~,2)--y1217 1 

I( 2 ) 
2 

-_!k~~++~, i i 

2 

,$,=C, A!$ 51 * 611 f J!& 011 

I d2 +2(d Ufl 2 

( )I a @2(q) u:1/2 ’ 
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. 

In the expressions of (138) and (139) we have replaced, for reasons of 
notational economy only, 

U?l 

i-i l/2 . 
011 

Remark 10 

The starred symbols, for example, t4:r, [;33r, &&, all correspond to components 
of the Hessian of the log LF having mean zero. Hence, such components can be 
ignored both in determining the limiting distribution of the ML estimator and in 
its numerical derivation, given a sample. We can, then, represent the Hessian of 
the log of the LF as 

where 52: contains only zeros or elements having mean zero. It is also relatively 
straightforward to verify that 

where the elements of A,, .$., and C2, have been evaluated at the true parameter 
point y”. 

To determine the limiting distribution of the ML estimator (i.e. the converging 
iterate beginning with an initial consistent estimator) we need 
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Lemma 6 

Let A,, E., be as defined in (139) and (138); then, 

where 

C* = rhm, f f A,Cov(E.,)A; = rhm, f $ E(Q,). 
I-l t-1 
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041) 

Proof 

The sequence 

{A,&: t=1,2 )... }, 

is one of independent nonidentically distributed random vectors with mean zero 
and uniformly bounded moments to any finite order; moreover, the sequence 
obeys a Liapounov condition. Consequently 

+ E(YO) - W,C*). (Q.E.D.) 

An explicit representation of 0, or C, is omitted here because of its notational 
complexity. To complete the argument concerning the limiting distribution of the 
ML estimator we obtain the limit of 

f-g(Y). y E H. 

Again for the sake of brevity of exposition we shall only state the result without 
proof 

Lemma 7 

Under assumptions (A.3.1) through (A.3.4) 

uniformly in y. 
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where { is a well defined a.c. finite random variable. Hence, 
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Corollary 7 

The matrix in the expansion of (135) obeys 

1 a=L T J--Y&~*) 2. lim 
TdCO 

+[ &YO,]. 

Proof 

Lemma 7 and Corollary 6. 

3.6. A test for selectivity bias 

A test for selectivity bias is formally equivalent to the test of 

Ho: p12 = 0 or Y= (B33!2GhO)’ 

as against the alternative 
Hi: y unrestricted (except for the obvious conditions, uri > 0, pi2e[0, 11). From 

the likelihood function in eq. (109) the (log) LF under Ho becomes 

L(YIH,) = i Cl-c,)ln@(- yt2)+4n@(vt2) 
t=l i 

- +ct [ ln(2~)+lna,, + &( y,, - x,,.~.,)’ Ii . (142) 

We note that (142) is separable in the parameters (/3!,, uri)’ and p.*. Indeed, the 
ML estimator of /3.= is the “probit” estimator, p,=, obtained in connection with 
eq. (118) in Section 3.d.; the ML estimator of (fi!i, (I&’ is the usual one obtained 
by least squares except that uir is estimated with bias - as all maximum likelihood 
procedures imply in the normal case. Denote the estimator of Y obtained under 
Ho, by y. Denote by y the ML estimator whose limiting distribution was 
obtained in the preceding section. 
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Thus 

is the usual likelihood rationtest statistic. It may be shown that 

-2x-x:. 

P. J. Dhrymes 

(143) 

Wt=. have thus proved 

Theorem 6 

In the context of the model of this section a test for the absence of selectivity bias 
can be carried out by the likelihood ratio (LR) principle. The test statistic is 

-2x-x:, 

where 

A = supL(y)- supL(y). 
HO Y 
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