
Simultaneous Equations Models

How is the Simultaneous Equations model different from the regular regression model with which
we are all familiar?

1. Multiple equations (referred to as a system of equations);

2. Dependent variables in some equations are explanatory variables in other equations (this
is a general form of the random regressors problem we encountered with lagged dependent
variables models). The dependent variables (the Y variables) feed off of each other – shocks
to one dependent variable reverberate through the model.

The generic form of a simultaneous equations model is written:

γ11yt1 + γ21yt2 + · · · + γM1ytM + β11xt1 + · · · + βK1xtK = εt1

γ12yt1 + γ22yt2 + · · · + γM2ytM + β12xt1 + · · · + βK2xtK = εt2
... (1)

γ1Myt1 + γ2MytM + · · · + γMMytM + β1Mxt1 + · · · + βKMxtK = εtM ,

where the yti (i = 1, . . . ,M) are the endogenous variables, and the xtj (j = 1, . . . , K) are the
exogenous variables. Note that M is also the number of equations in the model. Under most
circumstances, the model is “normalized” by setting the coefficient of the ith endogenous variable
in the ith equation equal to -1. After normalization, equations (1) can be rewritten as,

yt1 = γ21yt2 + γ31yt3 + · · · + γM1ytM + β11xt1 + · · · + βK1xtK + εt1

yt2 = γ12yt1 + γ32yt3 + · · · + γM2ytM + β12xt1 + · · · + βK2xtK + εt2
... (2)

ytM = γ1Myt1 + · · · + γM−1,Myt,M−1 + β1Mxt1 + · · · + βKMxtK + εtM .

We will most commonly encounter equations (1) in its matrix form,

Y
(T×M )

Γ
(M×M )

+ X
(T×K)

B
(K×M)

= U
(T×M)

(3)

or
Z∆ = U,

where
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Z =
[

Y X
]

and ∆ =
[

Γ
B

]

.

• Recall that the Y variables are affected by shocks to the system, while the X variables are
not. So we say that the Y variables are endogenous while the X variables are exogenous.

• Because of the random regressors problem (which is most evident when looking at the repre-
sentation of the system shown in equations (2)), we know that estimation of the system by ordinary
least squares will give us suboptimal results. In particular, if we make the usual assumptions about
the error structure of the model,

• E(εti) = 0 for i = 1, . . . ,M ;

• E(ε2ti) = σ2
i for i = 1, . . . ,M ;

• E(εtiεtj) = 0 for all i 6= j;

• E(εtiytj) = 0 for all i, j = 1, . . . ,M ,

it turns out that the error term is correlated with the independent variables. Thus, the strategy of
estimating each equation of the system separately by OLS yields inconsistent parameter estimates.

However, if we can somehow eliminate the endogenous variables from the set of regressors,
estimation by OLS would no longer be a problem. Using familiar methods from linear algebra, we
could “solve” system (1) to get:

yt1 = π11xt1 + · · · + πK1xtK + νt1
... (4)

ytM = π1Mxt1 + · · · + πKMxtK + νtM ,

or, in matrix form,

Y = XΠ + V

where Π = −BΓ−1 and V = UΓ−1. Note that the sampling properties of V are nearly identical
to those of U:

• For each equation i (i = 1, . . . ,M), E(Vi) = E(UiΓ−1) = 0, where 0 is an M -dimensional
zero vector.

• Var(Vi) = (Γ−1)′E(U′
iUi)Γ−1 = (Γ−1)′ΣΓ−1 ≡ Ω.
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Equations (4) are referred to as the ”reduced form” of system (2). The π’s in the reduced form
system are nonlinear combinations of the γ’s and β’s of the original system (2).

• Note: The π’s are referred to as the reduced form parameters, while the γ’s and β’s are called
the structural parameters. Similarly, the form of the model represented in equations (1) or (2)
is called the structural form of the model.

If we were to estimate the reduced form equations (4) by OLS, we would get parameter estimates

Π̂ = (X′X)−1X′Y

and
Ω̂ =

1
T −K

V̂′V̂

with the classical sampling properties (provided the error term obeyed the classical assumptions).
However, except for the case in which we would like a forecast of Y given X, we’re generally

not interested in the reduced form parameters. We’d like estimates of the structural parameters –
the γ’s and the β’s. However, this may be easier said than done. Why? Note the following:

1. The number of reduced form parameters is M ×K;

2. The number of γ’s is M × (M − 1) (assuming we normalize the system), while the number of
β’s is M ×K.

Adding the dimensions of the structural form, we get M× (K+M−1) structural parameters. This
means that if we can get the number of estimable structural parameters down to a mere M ×K, we
can estimate the reduced form of the system, and reconstruct the structural parameters from the
reduced form parameters (this is known as indirect least squares). The process of placing restrictions
on the structural parameters so as to get the estimable number of them down to M ×K is known
as the identification issue, and it is one of two major issues in simultaenous equations modelling
(the other being the estimation itself).

A simple example will illustrate the importance of identification. Suppose we construct the
following model of the market for some good:

Qd = α0 + α1P + ed

Qs = β0 + β1P + es (5)
Qs = Qd

where P is the price of some good, Qs is the supply of the good, Qd is the demand for the good,
and the subscripts on P , es and ed have been suppressed to avoid clutter. Equating supply and
demand yields:

3



α0 + α1P + ed = β0 + β1P + es

−→ P =
β0 − α0

α1 − β1
+
es − ed

α1 − β1
≡ π1 + ν1

and

Q =
α1β0 − α0β1

α1 − β1
− α1e

s − β1e
d

α1 − β1
≡ π2 + ν2.

Since P affects bothQs andQd, there is no way that we can reconstruct the structural parameters
from the reduced form parameters.

But now, add an income component to the demand equation:

Qd = α0 + α1P + α2Y + ed

Qs = β0 + β1P + es (6)
Qs = Qd

• Note that Y is assumed to affect demand, but not supply. In other words, if we were to write
the supply equation as Qs = β0+β1P +β2Y +es, we would be assuming that β2 = 0 in this example.
This is known as an identifying restriction.

Equating supply and demand in the second model yields:

α0 + α1P + α2Y + ed = β0 + β1P + es

−→ P =
β0 − α0

α1 − β1
− α2Y

α1 − β1
+
es − ed

α1 − β1
≡ π10 + π11Y + ν1

and

Q =
α1β0 − α0β1

α1 − β1
− α2β1Y

α1 − β1
− α1es − β1ed

α1 − β1
≡ π20 + π21Y + ν2.

At this point, we can be very clever and notice that

π21

π11
=

(
α2β1Y

α1 − β1

) /
α2Y

α1 − β1
= β1.

In other words, we have just “identified” β1. With a little more work, we can deduce that
β0 = π11 − β1π10. Thus, the entire structural supply equation has been identified. However, none
of the structural parameters of the demand equation can be identified. If we were to add a third
exogenous variable that was assumed to affect supply but not demand, we could, by a similar
process, identify the entire demand equation.

• Conditions for Identification
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Recall equations (6):

Qd = α0 + α1P + α2Y + ed

Qs = β0 + β1P + β2Y + es

Qs = Qd.

Our identifying restriction was setting β2 = 0; this allowed us to fully identify the supply
equation. Our restriction basically took the form of placing a zero in the matrix of slope parameters
where we might otherwise have had an estimable parameter. In other words, we have excluded the
income variable Y from the supply equation.

Exclusion of variables from certain equations (along with normalization) comprises one of the
primary techniques used to identify simultaneous equations models. Consequently, we will be
interested in just how many identifying restrictions we will need to make in order to be able to
recover the model’s structural parameters from its reduced-form parameters. There are two sets of
rules that we use to determine whether or not we have made enough identifying restrictions, called
the order and rank conditions.

• The Order Condition The order condition is a necessary condition for identification
– if the order condition is satisfied, we know that we can recover the structural parameters from the
reduced form paramters (though the solution may not be unique). In the discussion that follows,
any parameter or variable matrix marked with an asterisk (*) has been excluded from the equation
at hand.

Note that the jth equation of a simultanous equations model can be written as

yj = Yjγ j + Y∗
jγ

∗
j + xjβ j + x∗

jβ
∗
j + ε j, (7)

with the implication that γ ∗
j and β ∗

j are both equal to zero. We say that there are M∗
j excluded

endogenous variables and K∗
j excluded exogenous variables in the jth equation, and Mj included

endogenous variables and Kj included exogenous variables in the jth equation. This means that
M ∗

j +Mj + 1 = M (the total number of endogenous variables in the model) and K∗
j +Kj = K (the

total number of exogenous variables in the model).
Recall that the reduced form coefficient matrix is

Π = −BΓ−1,

which can be rewritten as
ΠΓ = −B,

of which the jth equation is
ΠΓj = −Bj. (8)

We can then separate equation (8) into two parts – those which contain included variables and
those which contain excluded variables:
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[
π j Π1

j Π2
j

π ∗
j Π∗1

j Π∗2
j

] 


1

−γ j

0



 =
[
β j

0

]

.

The Kj equations with included variables are:

π j − Π1
jγ j = β j (9)

(which is also the solution to B in terms of Γ, since these are where the nonzero parameters are
located). The K∗

j equations with excluded variables are:

π ∗
j −Π∗1

j γ j = 0,

or
Π∗1
j γ j = π ∗

j . (10)

If we can solve equation (10) for γ j, then we can plug the solution into (9) and obtain an
estimate of β j. If we can do this for all j equations in the model, we can fully reconstruct B and
Γ, the matrices of structural parameters. This then leads us to the Order Condition – namely, that
we need to be able to solve equations (9) and (10). In equation (10), there are K∗

j equations in Mj

unknowns. Rules from linear algebra require that there be at least as many equations as unknowns.
Consequently, we have the following:

The Order Condition for Identification: K∗
j ≥Mj. In other words, for the jth equation

to be identified, the number of exogenous variables excluded from the jth equation must be at least
as large as the number of endogenous variables included in the jth equation.

• The Rank Condition While the order condition for identification needed to be
satisfied in order to reconstruct the structural parameters from the reduced form parameters, such
a reconstruction may not be unique. In fact, if the strict inequality in the Order Condition holds,
and K∗

j > Mj, then the jth equation is identified, but it is overidentified – there will be more
than one way to reconstruct the structural parameters from the reduced form parameters. Consider
again equations (6),

Qd = α0 + α1P + α2Y + ed

Qs = β0 + β1P + es

Qs = Qd,

where we have imposed the identifying restriction that Y has no effect on Qs. Suppose that there
were a third variable which was thought to influence demand, such as the price of a substitute good
(call this variable P a). Further, suppose that the price of this substitute good was thought to have
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no influence on supply (this is probably unrealistic, but this is just an example). We would then
write equations (6) as

Qd = α0 + α1P + α2Y + α3P
a + ed

Qs = β0 + β1P + β2Y + β3P
a + es

Qs = Qd,

and impose the identifying restriction that β2 = β3 = 0. From our earlier example we have seen
that β1 can be derived from the reduced-form parameters as

β1 =
π21

π11
=

(
α2β1Y

α1 − β1

) /
α2Y

α1 − β1
.

However, we could also derive β1 a second way, namely

β1 =
(
α3β1P

a

α1 − β1

) /
α3P

a

α1 − β1
.

(In practice we would hope that β1 would be the same no matter which formula we used!) The
Rank Condition for identification tells us when there is only one way to reconstruct the structural
parameters from the reduced form parameters. The formal statement is the following:

Rank Condition for Identification rank[π ∗
j Π∗

j ] = rank [Π∗
j ] = Mj. This is just another

way of saying that equation (10) has a unique solution.
Note that, in practice, the Order Condition becomes more useful than the Rank Condition,

since the Rank Condition requires that Π∗
j be known, which may not always be true, especially

with a large number of equations and/or variables. The Order Condition, on the other hand, simply
amounts to the following collection of counting rules:

For the jth equation, if:

1. Mj +Kj < K, the equation is overidentified;

2. Mj +Kj = K, the equation is just identified (i.e., there is only one combination of the reduced
form parameters that will reconstruct the structural parameters in equation j);

3. Mj + Kj > K, the equation is not identified, and we cannot reconstruct the equation’s
structural parameters.
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• Estimation of Simultaneous Equations Models
1. OLS and Instrumental Variables
As we will see, because we generally will have endogenous variables as regressors when estimating

the model, OLS parameter estimates are biased and inconsistent.
Write the jth equation in the system as

yj = Yjγ j + Xjβ j + ej
≡ Zjδ j + ej (11)

The OLS estimate of δ j is

δ̂ j,OLS ≡ dj = (Z′
jZ)−1Z′

jyj.

= δ j +
[

Y′
jYj Y′

jXj

X′
jYj X′

jXj

]−1 [
Y′

jej
X′

jej

]

. (12)

Unfortunately, we see that dj is biased because no term in the inverse matrix above converges
to zero in the probability limit. While it is true that plim(1/T )X′

jej = 0, it is unfortunately also
true that

plim(1/T )Y′
jej = plim(1/T )Y′

jVΓj (since V = UΓ−1, so U = VΓ)
= Γjplim(1/T )V′

jV 6= 0.

Since OLS will not work well under the model’s assumptions, we turn instead to an instrumental
variables (IV) estimator. Again considering the jth equation of the system,

Zjδ j + ej ,

Let Wj be a T × (Mj +Kj) matrix satisfying the usual IV assumptions:





plim(1/T )W′
jZj = Σwz (Σwz a finite nonsingular matrix)

plim(1/T )W′
jej = 0

plim(1/T )W′
jWj = Σww (Σww a positive matrix).

Then, the IV estimator

δ̂ j,IV = (W′
jZj)−1W′

jyj (13)

is consistent and has

asym. var.(δ̂ j,IV) = (σjj/T )Σ−1
wzΣwwΣ−1

zw (14)
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σjj is consistently estimated as

σ̂jj = (1/T )(yj − Zjδ̂ j,IV)′(yj − Zjδ̂ j,IV).

For small samples, a degrees of freedom correction of T −Mj −Kj is sometimes suggested.
The IV method of estimation is the basic building block for nearly all of the methods of estima-

tion we will consider.

2. Indirect Least Squares
If a system of equations is just identified, an IV-based estimator called indirect least squares

(which we have briefly met beforehand) works well. Indirect Least Squares (ILS) uses the W
matrix

Wj = [X∗
j Xj] = X. (15)

A consistent estimator of δ j is:

δ̂ j,ILS = (X′Zj)−1X′yj. (16)

Note that the ILS estimator only works because there is one excluded exogenous variable serving
as an instrument for each included endogenous variable.

3. Two-Stage Least Squares (2SLS)
Strikingly similar to the regular IV estimate of equation (13), Two- Stage Least Squares (2SLS)

is an option when faced with an overidentified simultaneous equations model.
The 2SLS estimator uses predicted Ŷj values (from a regression of Yj on the entire X matrix)

as the instruments:

Ŷj = X(X′X)−1X′Yj ≡ XPj.

Thus,
E(Ŷj) = E(XPj) = XE(Pj) = XΠj .

(Note that Ŷj is built from the reduced form parameter matrix)
Now, in true IV fashion, let

Wj = [Ŷj Xj]
= [X(X′X)−1X′Yj Xj] (17)

Writing the jth equation as
yj = Wj δ̂ j,
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the 2SLS estimator is

δ̂ j,2SLS = (W′
jWj)−1W′

jyj

=
[

Ŷ′
jŶj Ŷ′

jXj

X′
jŶj X′

jXj

]−1 [
Ŷ′
jyj

X′
jyj

]

. (18)

Computationally, we can make our lives simpler by noting that W′
jWj = W′

jZj , so that
equation (18) becomes:

δ̂ j,2SLS =
[

Ŷ′
jYj Ŷ′

jXj

X′
jYj X′

jXj

]−1 [
Ŷ′
jyj

X′
jyj

]

.

This turns out to be equivalent to

δ̂ j,2SLS = (Ẑ′
jẐj)−1Ẑ′

jyj
= (Zj[X(X′X)−1X′]Zj)−1(Zj[X(X′X)−1X′]yj) (19)

which is how we are used to seeing the 2SLS estimator. The sampling properties of δ̂ j are:

̂asym. var.(δ̂ j,2SLS) = σ̂jj(Ẑ′
jẐj)−1

where

σ̂jj = (1/T )(yj − Zjδ̂ j)′(yj − Zjδ̂ j).

2SLS, then, may be summed up as the following (unsurprisingly) two-step procedure:

1. 1. Obtain predicted values Ŷj of Yj via an ordinary least squares regression of Yj on X.

2. 2. Obtain the 2SLS estimate of δ j by ordinary least squares regression of yj on Ŷj and Xj .

The 2SLS and other Instrumental Variable estimators presented so far are examples of limited
information estimators, so-called because the estimators consider only one equation at a time from
the system, and do not take into account the effects of any cross-equation error correlation. Before
moving on to full information estimators, which estimate allM equations of the system concurrently,
and do allow for cross-equation error correlation (i.e., non-diagonal Σ), we discuss one more limited
information estimator based on the maximum likelihood method.

4. Limited Information Maximum Likelihood (LIML)
In the end, the LIML estimator is similar to the 2SLS estimator with the added assumption

that the reduced form error matrix of each equation is normally distributed. As a matter of fact,
LIML shows that 2SLS is an asymptotically efficient limited information estimator if the reduced
form errors do indeed follow the normal distribution.
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Write the jth reduced form equation as

Y0
j = XΠ0

j + V0
j , (20)

where Y0
j = [yj Yj]. If we assume that V0

j ∼ N (0,Ω0
j ), the LIML estimator δ̂ j,LIML is obtained by

maximizing the log-likelihood function

L(Π0
j ) = −(1/2)N{(Mj + 1) ln(2π) + ln(|Ω0

j |) + tr[(Y0
j − XΠ0

j )
′Ω0−1

j (Y0
j − XΠ0

j )]} (21)

with the restriction that ΠBj = −Γj.

Full-Information Methods
Recall that with limited information methods of estimation, each equation in the system in con-

sidered separately, and the estimator does not account for any cross-equation error correlation that
may exist (hence the name “limited information”). Full information estimators, on the other hand,
estimate all M equations simultaneously, and explicitly accounts for contemporaneous correlation
that might exist between the error terms of separate equations.

To begin with, we must stack the M equations thusly to create one big matrix equation:





y1
...

yM



 =





Z1 0 · · · 0
0 Z2 · · · 0

...
0 0 · · · ZM









δ 1
...
δ M



 +





e1
...

eM



 , (22)

or y = Zδ + e.
We generally assume that

E(e) = 0 (23)

and

E(ee′) = Σ⊗ I

=





σ11I · · · σ1M I
... . . . ...

σM1I · · · σMM I



 . (24)

As with limited information methods, the OLS estimator d = (Z′Z)−1Z′y estimates the system
equation-by- equation and is therefore an inconsistent estimator of δ .

1. Seemingly Unrelated Regressions
As a starting point to full information methods of estimation, we consider the Seemingly Un-

related Regressions (SUR) estimator. The SUR estimator is only useful in the special case where
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the set of regressors does not contain any of the endogenous variables. In other words, SUR can be
used when Γ = 0. The model then becomes:

y = Xβ + e, (25)

where we assume that
E(e) = 0 (26)

and
E(ee′) = V = Σ ⊗ I. (27)

Efficient estimation of β̂ requires generalized least squares, with which we are already familiar:

β̂ GLS = [(X′V−1X)−1X′V−1y]
= [X′(Σ−1 ⊗ I)−1X−1X′(Σ−1 ⊗ I)−1y]

=





σ11X′
1X1 · · · σ1MX′

1XM
... . . . ...

σM1X′
MX1 · · · σMMX′

MXM





−1 



∑M
j=1 σ

1jX′
1yj

...
∑M
j=1 σ

MjX′
Myj



 . (28)

Note that SUR assumes that Σ is known. Since this is not usually the case, the SUR estimator
uses Σ̂, an estimate of Σ. Σ̂ is computed from the least squares residuals, with elements

σ̂ij = (1/T)e′iej .

For small samples, the degrees of freedom corrections

σ̂∗ij =
e′iej√

(T −Ki)(T −Kj)
or σ̂∗∗ij =

e′iej
T − max(Ki, Kj)

are sometimes suggested.
Note that SUR is exactly equivalent to OLS if:

1. cov(eit, ejs) = 0 ∀t, s, (i 6= j)

2. Xi = Xj (i.e., all equations have identical regressors)

It is easy to see whether the second item is satisfied. To determine the degree of cross-equation
contemporaneous error correlation, the following test is suggested. The lagrange multiplier test
statistic is:

λ = T
M∑

i=2

i−1∑

j=1
r2
ij

where r2
ij = σ̂ij/(σ̂iiσ̂jj)1/2. λ is distributed as a chi-square with M(M − 1) degrees of freedom, and

tests the null hypothesis that there is no cross-equation error correlation (H0 : σij = 0 ∀i 6= j).
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2. Three-Stage Least Squares
As might be expected, Three-Stage Least Squares (3SLS) is in some sense an adaptation of the

2SLS method to the problem of full information estimation (and not just because the estimator has
multiple stages!). In fact, 3SLS is a combination of Instrumental Variables and Generalized Least
Squares.

We start with Instrumental Variables here. Let the IV matrix W be given by

W = Ẑ =





X(X′X)−1X′Z1 0 · · · 0
0 X(X′X)−1X′Z2 · · · 0
...

...
...

...
0 0 · · · X(X′X)−1X′ZM





≡





Ẑ1 0 · · · 0
0 Ẑ2 · · · 0
...

...
...

...
0 0 · · · ẐM




. (29)

Use of the IV procedure gives us a consistent estimator (whereas OLS does not). However,
simply using IV is not enough, because in this case the IV estimator δ̂ IV = (Ẑ′Z)−1Ẑ′y simply
runs 2SLS separately on each equation. This turn out to be less efficient that Generalized Least
Squares. If we combine our IV estimator from equation (29) with the GLS method, we obtain the
3SLS estimator:

δ̂ 3SLS = [Ẑ′(Σ ⊗ I)Z]−1Ẑ′(Σ ⊗ I)y. (30)

This is equivalent to the estimator (which is more commonly used)

δ̂ 3SLS = [Ẑ′(Σ ⊗ I)Ẑ]−1Ẑ′(Σ ⊗ I)y. (31)

The GLS portion of the 3SLS estimator accounts for the cross-equation error correlation. The
sampling properties of δ̂ 3SLS are

̂asym. var.(δ̂ 3SLS) = [Z̄′(Σ−1 ⊗ I)Z̄]−1. (32)

The asymptotic variance of δ̂ 3SLS is usually estimated using the inverse matrix [Ẑ′(Σ⊗ I)Ẑ]−1

from equation (31). Z̄ is a matrix equal to the diagonal elements of [XΠj Xj], which can be
estimated using Ẑ.

The last remaining difficulty is that the 3SLS estimator assumes that Σ is known. We usually
get around this by estimating Σ just as we did in 2SLS, with

σ̂ij = (1/T )(yi − Ziδ̂ i)′(yj −Zjδ̂ j). (33)

As with 2SLS, we may sum up the 3SLS procedure in the following (three) steps:
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1. Estimate the reduced form parameter matrix Π by OLS, and use Π̂ to yield Ŷ, the predicted
values of Y.

2. For each equation, compute δ̂ j,2SLS, and then compute Σ̂ as in equation (33). This corrects
for the inconsistency of OLS.

3. Compute the final 3SLS estimator using the GLS procedure in equation (31) and the asymp-
totic covariance matrix as per step (2). This corrects for any cross-equation error correlation
that might be present.

3. Full Information Maximum Likelihood
Full Information Maximum Likelihood (FIML) is the full information analogue of Limited Infor-

mation Maximum Likelihood (LIML). The same relationship that exists between LIML and 2SLS
also exists between FIML and 3SLS. Namely, if the error structure is normally distributed, 3SLS is
asymptotically equivalent to FIML. Because of this (and because the 3SLS estimator is much less
computationally expensive than FIML), 3SLS is more commonly used than FIML.

FIML begins with the full set of reduced form equations

Y = XΠ + V

where each row of V is assumed to be normally distributed with mean 0 and covariance matrix
Ω. The log-likelihood function to be maximized is

ln(L) = −(T/2){M ln(2π) + ln |Ω| + tr[(1/T )Ω−1(y − Xπ 0
i )

′(y − Xπ 0
i )]} (34)

where π 0
i is the ith column of Π. With a little effort, equation (34) can be reduced to

ln(L) = −(1/2)MT ln(2π) + T ln |Γ| − (T/2)tr(Σ−1S) − (T/2) ln |Σ|, (35)

where
sij = (1/T )(YΓj + XBj)′(YΓj + XBj).

Equation (35) has the advantage over equation (34) in that includes the structural parameters
in the log-likelihood function, rather than the reduced form parameters. The disadvantage is that
equation involves Σ, which is unknown. However, we can easily substitute Σ̂ for Σ, where Σ̂ is
calculated using equation (33).

One alternative to FIML which may have advantages using small samples (when the asymptotic
efficiency of 3SLS may not hold) is the linearized ML method. Using linearized ML, we can obtain
a FIML parameter estimate as follows:

The function to be maximized is

L2(B,Γ) = ln(|Γ′Y′YΓ|/T) − ln(|[YΓ + XB]′[YΓ + XB]|/T ). (36)
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Making the substutuions Q = |Γ′Y′YΓ|/T and S = |[YΓ + XB]′[YΓ + XB]|/T , the normal
equations for maximizing L2 are

∂L2

∂B
= Y′YΓQ−1 − Y′(YΓ + XB)S−1 = 0 (37)

∂L2

∂Γ
= −X′(YΓ + XB)S−1 = 0 (38)

The FIML estimator of δ is then derived from

δ̂ = [Z′(Σ̂⊗ I)Z −Z′0(Φ̂−1 ⊗ I)Z0]−1[Z′(Σ̂⊗ I)y − Z′0(Φ̂−1 ⊗ I)y0] (39)

where

Z =





Z1 0 · · · 0
0 Z2 · · · 0
...

...
...

...
0 0 · · · ZM




=





[Y1 X1] 0 · · · 0
0 [Y2 X2] · · · 0
...

...
...

...
0 0 · · · [YM XM ]




;

Z0 =





Z0
1 0 · · · 0

0 Z0
2 · · · 0

...
...

...
...

0 0 · · · Z0
M




=





[Y1 0] 0 · · · 0
0 [Y2 0] · · · 0
...

...
...

...
0 0 · · · [YM 0]




;

Σ̂ = e′e/T for e = (e1, . . . , eM) and ej = yj − Zjdj , j = 1, . . . ,M ; and
Φ̂ = e′0e0/T for e0 = (e01, . . . , e0

M) and e0
j = y0

j −Z0
jdj, j = 1, . . . ,M .
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