Economic Data Analysis II

Based on <u>An Introduction to Statistical</u>
 <u>Learning with R</u> (by James, G., Witten, D.,
 Hastie, T., Tibshirani, R.) [Check <u>here</u> or <u>here</u>]

References

- Christian Kleiber and Achim Zeileis, <u>Applied Econometrics</u>
 <u>with R</u>, Springer-Verlag, New York, 2008.
- Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani, <u>Introduction to Statistical Learning with</u> <u>Applications in R</u>, Springer 2013.

Regression

- Linear Regression (ISLR Chapter 3)
 - Estimation: Least Squares $Y_i = X_i \beta + \varepsilon_i, i = 1, 2, ..., N$
 - Prediction:
 - Evaluation: RSS, R²
 - Hypothesis Testing: t, F, χ^2
 - Interpretation:Marginal Effects, Elasticity

$$Y_{i} = X_{i}\beta + \varepsilon_{i}, i = 1, 2, ..., N$$

$$\hat{\beta} = \min_{\beta} \arg \sum_{i=1}^{N} (Y_{i} - X_{i}\beta)^{2}$$

$$\hat{Y}_{i} = X_{i}\hat{\beta}, \quad \hat{\varepsilon}_{i} = Y_{i} - \hat{Y}_{i}$$

$$\hat{\sigma}^{2} = \frac{1}{N} \sum_{i=1}^{N} \varepsilon_{i}^{2}$$

Regression

- Linear Regression (Continued)
 - Extensions
 - Non-linear Variable Transformation: Quadratic, Polynomials, and Interactions
 - Including Qualitative Variables
 - Bias-Variance Trade-Off

Classification

- Classification Problem (ISLR Chapter 4)
 - E(Y|X) = Pr(Y=1 or O|X)
 - Logistic Regression
 - Estimation: Maximum Likelihood
 - Prediction
 - Interpretation
 - Probit Model

$$P_{i} = \int_{-\infty}^{X_{i}\beta} \frac{1}{\sqrt{2\pi}} e^{-z^{2}/2} dz$$

$$\log\left(\frac{P_i}{1-P_i}\right) = X_i \beta + \varepsilon_i$$

$$P_i = E(Y_i = 1 \mid X_i) = P(X_i) = \frac{e^{X_i \beta}}{1 + e^{X_i \beta}}$$

$$\hat{\beta} = \max_{\beta} \arg \prod_{i, Y_i = 1} P(X_i) \prod_{i, Y_i = 0} (1 - P(X_i))$$

$$\hat{P}(X_i) = \frac{e^{X_i \hat{\beta}}}{1 + e^{X_i \hat{\beta}}}$$

$$\frac{\partial \hat{P}(X_i)}{\partial X_i} = \hat{P}(X_i)(1 - \hat{P}(X_i))\hat{\beta}$$

Classification

- Classification (Continued)
 - Extension: Multiclass Logistic Regression (Mutinomial Regression)

$$P_{ik} = E(Y_i = k \mid X_i) = P_k(X_i) = \frac{e^{X_i \beta^k}}{\sum_{l=1}^K e^{X_i \beta^l}}$$

$$\log(P_{ij}/P_{ik}) = X(\beta^j - \beta^k)$$

Classification

- Classification (Continued)
 - Bayes Theorem for Classification
 - Discriminant Analysis
 - Linear Discriminant Analysis
 - Quadratic Discriminant Analysis

Model Comparison

- Training vs. Testing
 - Estimate the model with the training data set, and compute prediction error for the testing data set
 - Training Error Statistics vs. Testing Error based on MSE or Misclassification Rate
- Model Comparison is based on Training Error Statistics

$$AIC = -2\log L + 2p$$

$$BIC = -2\log L + \log(N)p$$

Model Validation

- Model Validation is based on Testing Error MSE
 - Simple Validation-Set Approach
 - Randomly split the sample into two sets (halves or fractions): training set and testing set
 - Compute and compare MSE for the testing set
 - Cross Validation
 - K-fold cross validation

Cross Validation

- Cross Validation (ISLR Chapter 5)
 - K-fold Cross Validation

Test	Train	Train	 Train

- |-----|
- $-\mid --\mid N_k --\mid$: the number of observations
- The predicted \hat{Y}_i^k is obtained from the estimated model with the kth part's observations removed

Cross Validation

- Cross Validation (Continued)
 - K-fold Cross Validation
 - Randomly divide the sample into K equal-sized parts.
 Leave out part k, fit the model to the other K-1 parts of combined
 - Obtain the prediction errors for the left-out kth part, and compute CV as

$$CV = \sum_{k=1}^{K} \frac{N_k}{N} MSE_k$$
, where $MSE_k = \frac{1}{N_k} \sum_{i=1}^{N_k} (Y_i - \hat{Y}_i^k)^2$

– CV tends to be biased upward

Cross Validation

- Cross Validation (Continued)
 - K-fold Cross Validation
 - If K=N, this is N-fold or leave one out cross validation (LOOCV)
 - Special Case: OLS

$$CV = \sum_{i=1}^{N} \left(\frac{Y_i - \hat{Y}_i}{1 - h_i} \right)^2$$
, where $h = diag[X(X'X)^{-1}X']$

Model Selection

- Model Selection (ISLR Chapter 6)
 - Stepwise Regression
 - Shrinkage Methods
 - Least Absolute Angle (LAR) Regression
 - Projection Methods
 - Involving variable transformation but not necessary for variable selection
 - PCA: Principal Components Analysis
 - Factor Analysis

Model Selection

- Variable Selection
 - All or Best Subsets Selection
 - 2^p Complexity
 - Overfitting or Multicolinearity
 - Stepwise Selection
 - Forward Selection (allow p>N)
 - Backward Selection (require N>p)
 - Search through 1+p(p+1)/2 models,
 but the best model is not guaranteed

Model Selection

- Variable Selection (Continued)
 - Shrinkage Method
 - Least Absolute Regression (LAR): A regression technique constrains or regularizes the regression estimates: Fit a regression model with all predictors, but the estimated coefficients are shrunken toward zeros relative to the least squares estimates
 - Ridge Regression
 - The LASSO

Ridge Regression

$$\min_{\beta_1,\dots,\beta_p} \arg \sum_{i=1}^{N} \left(Y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 \quad s.t. \quad \sum_{j=1}^{p} \beta_j^2 \le s$$

- Equivalently,

$$\min_{\beta_1,\dots,\beta_p} \arg \sum_{i=1}^N \left(Y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^p \beta_j^2$$

where
$$\lambda \geq 0$$
, and $\lambda \sum_{j=1}^{p} \beta_{j}^{2} = shrinkage l_{2} - penality$

- Ridge Regression (Continued)
 - The intercept β_0 is not restricted
 - The predictors X_{ij} should be standardized for the ridge regression
 - The tuning parameter λ is determined separately by cross-validation
 - Ridge regression includes all predictors in the final model. This method can not be used for variable selection

 The LASSO (Least Absolute Shrinkage and Selection Operator)

$$\min_{\beta_1,\dots,\beta_p} \arg \sum_{i=1}^{N} \left(Y_i - \beta_0 - \sum_{j=1}^{p} \beta_j X_{ij} \right)^2 \quad s.t. \quad \sum_{j=1}^{p} |\beta_j| \le s$$

Equivalently,

$$\min_{\beta_1,\dots,\beta_p} \arg \sum_{i=1}^N \left(Y_i - \beta_0 - \sum_{j=1}^p \beta_j X_{ij} \right)^2 + \lambda \sum_{j=1}^p |\beta_j|$$

where
$$\lambda \geq 0$$
, and $\lambda \sum_{j=1}^{p} |\beta_j| = shrinkage l_1 - penality$

as
$$\lambda \to \infty$$
, $\beta_i \to 0$ for some j

- The LASSO (Continued)
 - The intercept β_0 is not restricted
 - The predictors X_{ij} should be standardized for the ridge regression
 - The tuning parameter λ is determined separately by cross-validation
 - This method can perform variable selection to achieve a sparse model