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spatial econometrics

Spatial econometrics is concerned with models for
dependent observations indexed by points in a metric
space or nodes in a graph. The key idea is that a set of
locations can characterize the joint dependence between
their corresponding observations. Locations provide a
structure analogous to that provided by the time index in
time series models. For example, near observations may
be highly correlated but, as distance between observa-
tions grows, they approach independence. However,
while time series are ordered in a single dimension, spa-
tial processes are almost always indexed in more than one
dimension and not ordered. Even small increases in the
dimension of the indexing space permit large increases in
the allowable patterns of interdependence between obser-
vations. The primary benefit of this modelling strategy is
that complicated patterns of interdependence across sets
of observations can be parsimoniously described in terms
of relatively simple and estimable functions of objects
like the distances between them.

The fundamental ingredients in any spatial model
are the index space and locations for the observations.
In contrast to the typical time series situation where
calendar observation times are natural indices and imme-
diately available, the researcher will often need to decide
upon an index space and acquire measurements of loca-
tions/distances. The role of measured locations/distances
is to characterize the interdependence between eco-
nomic agents’ variables, particularly those that are
unobservable — for example, regression error terms.
The appropriate index space depends on the economic
application, and its choice is inherently a judgement call
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by the researcher. Fortunately, the economics of the
application often provide considerable guidance and the
index space/metric(s) can be tailored to promote a good
fit between the economic model and the empirical work.
For example, when local spillovers or competition are the
central economic features, obvious candidate metrics are
measures of transaction/travel costs limiting the range of
the spillovers or competition. If productivity measure-
ment were the focus, distances between observed firms or
sectors could be based upon economic mechanisms that
might generate co-movement in productivity — for example,
measures of similarity between production technologies.
Index spaces are not limited to the physical space or
times inhabited by the agents and can be as abstract as
required by the economics of the application.

Locations/distances are almost never perfectly meas-
ured, and this puts a premium on empirical methods that
are robust to their mismeasurement. Even if the ideal
metric were physical distance, usually agents’ physical
locations are imprecise, known only within an area ~ for
example, census tract or county. At best this will result in
imprecise distance information between agents, and if
inter-agent distances are approximated with measure-
ments based on these areas, such as distance between
centroids, errors result. Moreover, in the great majority of
applications the ideal metric is not physical distance and
must be either estimated or approximated, inevitably
resulting in some amount of measurement error.

There are two main approaches to modelling a spatial
data generation process (DGP). The first is to model
explicitly a population residing in an underlying metric
space and the process of drawing an observed sample
from this population. The second is to model the data-set
of observed agents’ outcomes as being determined by a
system of simultaneous equations. In the remainder of
this article, I discuss each of these approaches in turn for
the simplest case of cross-sectional data. It is important
to note, however, that the methods in the following
section — covariance and generalized method of moments
(GMM) estimation, spatial correlation robust inference —
can be directly applied to panel or repeated cross-section
data by simply including time as one of the components
in the spatial index (s defined below). Most if not all
cluster/group effect models can be considered a special
case of spatial models with a binary metric indicating
common group/cluster membership. See Wooldridge
(2003) for an excellent review of these models. I do not
discuss them here because their associated empirical
techniques and sampling schemes do not translate well
to more general spatial models. I conclude with a brief
discussion of areas of econometrics where links to spatial
econometrics are perhaps underappreciated.

1. Models for samples from a population
This section discusses spatial econometric models that
view the data as being a sample from some arbitrarily

large population (see, for example, Conley, 1999, for
a more formal treatment). The population of individuals
is assumed to reside in some metric space, typically ®*
or an integer lattice, with each individual i located at a
point s;.

The basic model of dependence characterizes depend-
ence between agents’ random variables via their
locations. The data are assumed to be weakly depend-
ent (perhaps after de-trending). (Andrews, 2005, is an
important exception that explicitly considers strong
cross sectional dependence arising from common
shocks.) If two agents’ locations s; and s; are close, then
their random variables ¢, and ¢, may be highly depend-
ent. As the distance between s; and s; grows large, ¢, and
¢, become essentially independent. Notions of weak
dependence can be formalized in essentially the same
manner as for time series, for example, with mixing
coefficients. Under regularity conditions limiting the
strength of dependence, laws of large numbers and cen-
tral limit results can be obtained for properly normalized
averages of ¢,. See, for example, Takahata (1983) or
Bolthausen (1982). These approximations almost always
use what is called an increasing domain approach to
limits, with the corresponding thought experiment being
that, as the sample size grows, an envelope containing the
locations would be growing without bound.

When one works within this framework, it is often
useful to approach an empirical problem in two steps.
First, decide upon a (small) set of metrics based on
the economics of the application, and then consider sta-
tistical modelling of dependence as a function of the
metrics. It is much easier to conduct statistical modelling
given a metric than to try to simultaneously vary both
the model specification and the metric itself.

Statistics that describe spatial correlation patterns are
simple to construct. Any statistic relating co-variation of
¢, and ¢, to some measure of their proximity could be
used to characterize patterns in dependence. Classic ref-
erences are Moran (1950) and Geary (1954), and the text
by Cliff and Ord (1981) contains a good treatment. One
useful approach is based on nonparametric estimation of
a covariance function (see for example Conley and Topé_l,
2002, or Conley and Ligon, 2002). The ¢, process 1S
covariance stationary if its expectation is the same at ‘all
locations and cov(¢, ¢, ;) depends only on the relative
displacement h. For high-dimensional A, it is useful to
consider a special case called isotropy where covariances
depend only on the length of h; covariance depends upon
distance but not direction. Take an isotropic covariance
stationary ¢, with expectation zero for simplicity. 'ItS
covariance function f can be expressed in a regression
equation involving distances d;; :

E(d)s,-¢s,'|siasf) :f(dl,]) (1)

The function fin eq. (1) can be estimated parametrically
o, as is particularly useful in preliminary data analysis,
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via a nonparametric regression of d)s,,qbsj on d;;. Investi-
gation of correlation patterns when there is more than
one candidate metric can by done by simply letting fbe a
function of more than one distance measure.

In cases where ¢, is not isotropic or non-stationary,
f can still be interpretable as a measure of average
co-movement. If the process is covariance stationary
but not_isotropic, an estimate at a given distance dy,
call it f(do), will converge to a weighted average of
cov(@,, ¢,.,) for displacements k that have length dy. The
relative weights of different directions h will depend on
their frequency of sampling. An analogous interpretation
of f is available when ¢, is non-stationary, cov(dg, P, n)
depends on s, but still weakly dependent with averages of
cov(¢;, §,,) across s remaining convergent. In this case,
f(do) will converge to a weighted average of cov(d,, dopp)
across those # with length dy and across all . Typically,
this is still a valuable measure of co-movement. If non-
stationarity is suspected, it is also very useful to construct
localized versions of measures of spatial correlation.
Localized f estimates for subregions of the locations can
easily be constructed by just confining the observations
used to estimate (1); see Anselin (1995) for extensive
treatment of localized versions of Moran (1950) and
Geary (1954) measures of spatial correlation.

Estimates of f can also be viewed directly as test
statistics for the null hypothesis of independence. Under
the null hypothesis of independence, the sampling
distribution of an f estimator can be approximated and
compared to the realized value of f estimates to test the
hypothesis of independence. Such tests for independence
remain valid even with measurement errors in distances
(see Conley and Ligon, 2002).

Parameter estimation via moment conditions

In most econometric applications, the parameters of
interest can be estimated using GMM. GMM estimation
with weakly spatially dependent data is straightforward,

-and the spatial dependence is relevant for inference and

efficiency (see Conley, 1999). Consider instrumental vari-
ables (IV) estimation in the linear model with outcome
Vs, regressors x;, and instruments Zg

ys,- = x;,ﬁ + uS,‘
and (2)
Ezqu, =0

The IV estimator is identified by the moment condition
(2): that the instruments are not correlated with the error
term. Since this is a moment condition with respect to
the marginal distribution of the data across agents, it
is valid with or without spatial dependence. The famil-

-1
iar solution remains: f = ( Ez, x| Ez.y . Consistent
178G i/ §;

estimates of i can be obtained using sample averages
to approximate these expectations since a law of large
numbers applies to weakly dependent spatial data. Thus,

the usual IV estimator, fiyy = (ﬁZilzsix; ~L ilzsini,
remains consistent with weak spatial dependence. It is of
course feasible to construct fy without any knowledge of
locations/distances, so it is trivially robust to measure-
ment error in them. The impact of such spatial depend-
ence is only upon inference, getting correct standard
errors or testing.

This logic carries over to any GMM estimator of a
parameter 6, that is identified from a moment condition
involving a (potentially nonlinear) function g:

The majority of econometric models with nonlinearity or
limited dependent variables can be estimated via some
choice for g. Under mild regularity conditions, 6, can be
consistently estimated by minimum distance methods
using 3"V ¢(¢,;-) to approximate Eg(¢,;-). A GMM
estimator is the argument minimizing the criterion func-
tion, Jn(60), which takes the same form as with time series
or independent data:

1 & ! 1
W0 = |52 s(8,:0)| @ N2 €640,
where Q is some positive definite matrix. Just as for the
time series case (Hansen, 1982), an efficient GMM esti-
mator can be obtained by taking Q to be a consistent
estimator of the limiting variance-covariance matrix of
\/Lﬁzfi 18(;; 00), whose form depends on the spatial
covariance structure of the data. One such covariance
matrix estimator is described in the following subsection.

Inference

The usual approach to inference using large sample
approximations can be employed with weakly spatially
dependent data. Returning to the IV model, the typical
approximation for the distribution for B is based on the
expression:

—= ) z.u|.
L=
3)

Under regularity conditions, the first term in the product
converges to the matrix Ez,x. The second term in
brackets has a limiting normal distribution:

VN(By ~ B) = (%Z 2%,

N
ylﬁzzs" u; = N(0,V) (4)
i=1

where V is the limiting variance-covariance matrix of

53
—= ) zZyu.
VN
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V contains terms of the form Ez, Uz us, and cross-
covariance terms, Ez, us,-Z;. us;, that will be non-zero for at
least some i,j pairs. With weak dependence, the covar-
lance between variables indexed i and j will eventually
vanish as the distance between s; and sj grows.

In some cases, V has a nice form. For example, sup-
pose locations were on an integer lattice, Z; samples
consist of all integer coordinates in a region (assumed to
grow as N — o0); and variables are covariance station-
ary. In this case, V can be expressed as an infinite sum of
a covariance function:

V= Z COV(Zsusazs+hus+h)- (3
hezk

With integer locations on the line, this expression coin-
cides with its analog for covariance stationary time series.

With a consistent estimate of V, call it Vy, the approx-
imate distribution implied by (3) and (4) can be used for
inference:

N -1
2 Appri 1
VNGB = B)"E"N (0, [ T 2,
=1
-1

XVnl=) zx
Nz ™

There are of course many ways V could be estimated. If it
were assumed to have a parametric form, for example, by
parameterizing the covariance function in (5), then con-
sistent estimates could be obtained by GMM. Perhaps the
most popular approach has been nonparametric estima-
tion of V following Conley (1996; 1999). This approach is
analogous to time series heteroskedasticity and autoco-
variance (HAC) consistent covariance matrix estimation,
and can be viewed as a smoothed periodogram spectral
density estimator. (See Priestley, 1981, for a discussion of
the vast literature on spectral methods in time series and
some extensions to spatial processes. Spectral methods
for spatial processes date back to at least the 1950s; for
example, Whittle, 1954; Bartlett, 1955; Grenander and
Rosenblatt, 1957; Priestley, 1964). With the use of resid-
uals #; to approximate u;, V can be estimated as a
weighted sum of cross products 2z, ﬁs,.zﬁj fig;:

s 1{E s
Vy = NZ Z Kn(si,s)) - 2, sz .

i=1 j=1

Kn(-,-) is a kernel used to weight pairs of observations,
with close observations receiving a weight near 1 and
those far apart receiving weights near zero. Kin(sps;) is
commonly specified to be uniform kernel that is 1'if s;
and s; are within a cut-off distance and zero otherwise.
(This indicator function Ky is not guaranteed to provide
positive definite (PD) covariance matrix estimates;
however, this is very rarely a problem in practice. PD

estimates can be insured by an alternate choice of
kernel; see Conley, 1999.) Vy will be consistent if as
N — o0, Kn(s,s + h) — 1 for any given displacement h,
but slowly enough so that the variance of Vy collapses
to zero.

In practice, this estimator will require a decision about
the exact form of Ky(-, -). With a uniform kernel, this is
just an operational definition of which observations are
near and which are far. A conservative distinction
between near and far observations can be made even
with multiple candidate metrics by assigning a far clas-
sification only when all metrics agree. There is no need
for the data to be covariance stationary, nor is the specific
sampling framework here necessary. Analogous HAC
methods can be applied to weakly dependent but non-
stationary data, including that generated by simultaneous
equations DGPs like those discussed in the following
section 2 (see Pinkse, Slade and Brett, 2002; Kelejian and
Prucha, 2007). )

The main reason nonparametric estimators like V' are
often preferred to parametric models for V is their
robustness to measurement errors in locations/distances.
Parametric V estimators are generally inconsistent with
such errors, while Vi remains consistent under mild
conditions. Vi can be consistent with spatially correlated
and even endogenous errors; a sufficient condition is
simply that they be bounded (Conley, 1999). With loca-
tion/distance errors, the weight assigned to pair i,j can be
altered relative to the weight Ky(,-) would assign with
exact locations. But Vi remains consistent, because. the
altered weights will still satisfy the necessary conditions
for consistency of Vy: the weight on observations at any
true displacement will still converge to 1, slowly enough.
Even when working with parametric models of V, Vy
remains of interest since the discrepancy between it and a
parametric V estimator can provide a useful joint test
for the absence of location/distance errors and proper
parametric specification (Conley and Molinari, 2007).

More important than Vy remaining consistent is its
robustness in practice to moderate amounts of location
error. Consider the impact of introducing location error
for Viy defined with a kernel Kn(s;s;) equal to 1 if s; and s;
are within Ly units, and zero otherwise. If the magnitude
of measurement error is moderate relative to Ly, then the
weights on most pairs of points would be unchanged
if erroneously measured locations were used in place of
true locations. Changes in weights occur only for those
points whose true distance is near enough to the cut-
off Ly that location errors result in measured and true
distances being on opposite sides of Ly. With mode.rate
amounts of location error, these pairs of observations
with true distance near Ly will usually not be a large
portion of the sample, so V will tend to be close to its
value with true locations. Similar results obtain for other
kernels as weights arising from moderately mismeasured
locations remain close to those received with true
locations (see Conley and Molinari, 2007).
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2. Population simultaneous equation models
The second approach to modelling spatial data is with a
simultaneous equations model, most directly interpret-
able as a model for a population of N agents. This
approach explicitly specifies a joint model for the popu-
lation, in contrast to typical models in Section 1, where
the joint determination of outcomes in the population
is not explicitly treated. These simultaneous equation
models are directly applicable to situations where the
entire population of agents is observed, like all US states
or counties or even all firms in an industry. Typical
applications include studies of games being played
among these agents or of spillovers across agents; see,
for example, Case, Hines and Rosen (1993) and Pinkse,
Slade and Brett (2002).

The most common type of model is a simultaneous
spatial autoregression (SAR). Its simplest formulation for
an N x 1 outcome vector Yy is:

YN = pWnYN +en, (6)

with scalar parameter p and IID shocks &y (typically
Gaussian). The N X N matrix Wy is commonly referred
to as a ‘spatial weights’ matrix and assumed known. Wy
has zero main-diagonal elements, and its off-diagonal
elements reflect some notion of interaction. Typical Wy
contain (i,f) elements that are non-zero only if locations i
and j are adjacent on a graph or elements inversely
related to distances between locations. Wy is usually row-
standardized so that its rows sum to 1. The parameter
space is restricted so that (I — pWy)™" exists and the
model has reduced form:

YN = (I — pWN)_ISN.

Thus Yy is a linear combination of the en IID shocks.

.Though SAR models are finite (usually) irregular lattice

models, their origins date to at least the infinite regular
lattice models of Whittle (1954). Textbook treatment of
SARs can be found in Anselin (1988).

Typical specifications for Wy imply a great deal of
heterogeneity across observations. Variances will typically
differ across the elements of Yy by construction unless
p = 0. Unconditional heteroskedasticity is thus coupled
with spatial dependence. Covariances between pairs of
agents will differ in patterns that are of course deter-
mined by Wy but will depend on the entire structure of
this matrix and will not generally follow a simple pattern
in terms of some metric. For example, with Wy defined
based upon a graph, covariance between agents i and j
will not be a function of their graph distance, though
it can be characterized in terms of properties of the
graph (Martellosio, 2004). A given graph will ‘hard-wire’
patterns in correlations across agents. For example
Wall (2004) notes, with model (6) for US states with
Wy based on adjacency, that Missouri and Tennessee are

constrained to be the least spatially correlated states,
while relative correlations between other pairs of states
change depending on p. Even with a more flexible
parameterization — for example, specifying the elements
of Wy to be flexible functions of distance, as in Pinkse,
Slade and Brett (2002) — there is still a tendency for
heterogeneity in the implied joint distribution to be
difficult to anticipate. While this complicates their use as
statistical models, as discussed below, it is in my view
likely to be a desirable property in a structural model.
For example, if the model’s joint distribution is to be
taken seriously as capturing equilibrium outcomes for
N asymmetric agents playing a game, then one would
expect ‘hard-wired” heterogeneity depending on the exact
structure of the game.

Though the population of agents is observed, large -
sample approximations taking limits as N — oo are still
potentially useful. However, the requisite limit theorems
technically differ from those referenced in Section 1.
Since the DGP is changing as N grows, triangular array
limit results are required. Consistency and distribution
results for Gaussian maximum likelihood estimators
(MLEs) with spatial dependence have existed at least
since Mardia and Marshall (1984). An extensive set of
SAR limiting distribution results is obtained by Lee
(2004a) for likelihood-based estimators under a variety
of conditions upon ‘spatial weights’ matrices like Wy,
Quite useful limit theorem results can also be found in
Kelejian and Prucha (2001). Correct specification of Wy
is essential for these results, as SAR estimators will gen-
erally be inconsistent when there is measurement error in
locations/distances used to specify this matrix (the same
holds true for other parametric models of dependence
structure).

A great deal of the literature has focused on com-
putational issues involving MLEs. Non-trivial Wy
matrices make computation of normalizing constants
challenging. Substantial progress has been made in tech-
niques for computing MLEs by exploiting sparseness
or specific structure of ‘spatial weights’ matrices and
re-parameterization to facilitate computation (see Pace
and Barry, 1997; Barry and Pace, 1999; LeSage and
Pace, 2007). These numerical techniques allow like-
lihood-based inference for even very large data-sets in
certain applications or specifications. It is also feasible, of
course, to estimate SAR parameters without computing
MLEs, by using only a subset of the implications of the
model to obtain method of moments estimates (see
Kelejian and Prucha, 1999, and Lee, 2007, and subse-
quent work by these authors). This literature has been
successful in addressing most computational issues with
SAR models.

The key remaining difficulties in using SAR models are
in terms of model specification and interpretation. Even
for the simplest SAR model (6), it is hard to characterize
implications of different p without explicitly calculating
their implied joint distributions. The parameter p is
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not a simple correlation coefficient; in general it is not
comparable across different specifications for Wy. In my
experience, explicit calculations of descriptive measures
of the implied joint distributions for many different p are
required to understand whether varying this parameter
will trace out a useful path through the space of joint
distributions.

Unless one has access to virtually complete data on a
population, SAR models are very difficult to properly
specify as structural models. To take an optimistic case,
suppose model (6) with Gaussian ¢ applied to a popu-
lation of N agents, but a subset of agents were sampled.
The likelihood of such a sample is well-defined, and
in principle its form could be found by integrating
out all the unobserved variables. But this calculation
requires the exact form of Wy, which depends on all
the unobserved agents, a full structure which will rarely
be observed if only a small fraction of the agents
are sampled. Proper specification of Wy is perhaps
feasible only if the vast majority of the population is
sampled — for example, if only a few states or counties are
missing.

Even with complete data on a population, SARs are
difficult to specify because they are inherently fragile.
Changing a single element of Wiy will in general influence
the entire joint distribution of Y and it is difficult to
intuitively understand the impact of a given change in
Wy Increasing flexibility by parameterizing Wy by tak-
ing its elements to be a series expansion in distance(s), as
in Pinkse, Slade and Brett (2002), is of limited help.
There remains only an indirect link between the series
expansion and the implied joint distribution. It is hard to
see how much additional flexibility in, for example,
allowed covariance structure is gained by adding another
term in the expansion.

I think these difficulties should be considered a
consequence of modelling a large-dimensional system
of structural simultaneous equations rather than SAR-
specific problems. It seems likely to be difficult to antic-
ipate changes in equilibrium outcomes resulting from
changes in individual agents’ decision rules or best-
response functions in any modelling framework. In
my view, SARs remain a useful first step towards the
goal of constructing good large-dimensional structural
simultaneous equation models.

Of course SAR models need not be intended as
structural models; they can be viewed, for instance, as
tools to incorporate spatial dependence into forecasting
models. A mis-specified but parsimonious model might
still forecast well. However, the cumbersome relation
between specification of ‘spatial weights’ and the implied
joint distribution makes it hard to fashion parsimo-
nious SAR models. This seems ample reason to avoid
their use in forecasting. Directly specifying measures of
dependence like covariances as a parsimonjous function
of distance appears far easier, even if the true DGP were
an SAR.

3. Links between spatial econometrics and other
areas

Work on interactions-based models has much in com-
mon with simultaneous equations-style spatial models
(see Brock and Durlauf, 2001, for an extensive review). In
these models, the behaviour of individuals is influenced
by the characteristics and/or behaviour of others. Insofar
as the relevant set of ‘others’ can be described in a
spatial framework, they can be thought of as spatial
econometric models. Much of this work is theory, taking
the approach of specifying conditional probability meas-
ures to capture individuals’ behaviours and then deriving
the implied properties of the compatible joint distribu-
tion(s). Empirical work with these models has just begun
and will share many of the same challenges described
above; some can even be cast directly as SARs (see Lee,
2004b).

Spatial models are potentially very useful in modelling

high-dimensional vector time series. Limited degrees of
freedom with typical length samples require substantial
restrictions upon the DGP to make progress. The poten-
tial of spatial models to capture complicated interde-
pendence with a small number of parameters (given
auxiliary location/distance information) makes them well
suited for use in characterizing a variety of restrictions
upon high-dimensional vector DGPs. Good examples of
the benefits of spatial approaches to this type of time
series modelling are Chen and Conley (2001), Giacomini
and Granger (2004), and Bester (2005a; 2005b).

TIMOTHY G. CONLEY

See also generalized method of moments estimation;
heteroskedasticity and autocorrelation corrections; social
interactions (empirics); spectral analysis; stratified and
cluster sampling; statistical mechanics.
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spatial economics

What is spatial economics? In a nutshell, spatial eco-
nomics is concerned with the allocation of (scarce)
resources over space and the location of economic activ-
ity. Depending on how this definition is read, the realm
of spatial economics may be either extremely broad or
rather narrow. On the one hand, economic activity has to
take place somewhere so that spatial economics may be
concerned with anything that economics is concerned
about. On the other hand, location analysis focuses
mostly on one economic question, namely, location
choice. This is only one decision among a large number
of economic decisions.

Which boundaries for spatial economics?

In practice, we can distinguish three sets of questions for
which the importance of the spatial dimension is very
different. Consider first the core questions of spatial
economics. For example, why are there citiest Why do
some regions prosper while others do not? Why do we
observe residential segregation? Why do firms from the
same industry cluster? These are intrinsically ‘spatial’
questions, that is, questions in which the spatial dimen-
sion plays a dominant role. For instance, it would be
difficult to speak meaningfully about the existence and
growth of cities without some explicit consideration of




