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Functional form and spatial dependence in dynamic panels
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Abstract

This paper proposes a generalized dynamic error component model that simultaneously accounts for the effects

of functional form and spatial dependence. Maximum likelihood method is used for model estimation and

inference. An empirical illustration using the demand for cigarettes data is given.
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1. Introduction

Functional form, spatial dependence and dynamics are three important issues in modelling economic

panel data. While the spatial panel model and dynamic panel model have both become popular in the

econometrics literature, most of econometric analysis and empirical studies using panel model ignore

one or more of these issues, in particular the issue of functional form.1 When a priori information and

theoretical foundation are lacking, it is generally advisable to start an empirical investigation with a

general model so that certain effects can be formally tested.
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t (2003) for a review on spatial panel models, and Hsiao (2003, Ch. 4) and Baltagi (2001, Ch. 8) for recent

on dynamic panel models.
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In this paper, we propose a generalized error component model that simultaneously takes into account

the issues of functional form, spatial dependence and dynamic effects. We adopt the maximum

likelihood estimation (MLE) technique for model estimation and inference. The reason for using MLE

method is that the standard generalized least squares (GLS) method and instrumental variable (IV)

method (or GMM in general) are not applicable to our model as the response involves an unknown

parametric transformation (Davidson and MacKinnon, 1993, p. 243). While it is widely viewed that

MLE method suffers from the problems of computational complexity and lack of robustness against

distributional misspecification, we show that the amount of computation involved in the MLE method is

feasible for a desktop computer for data sets of moderate sizes. Furthermore, introducing a parametric

transformation on the response variable has provided protection, at least to a certain degree, against some

forms of distributional misspecification since one relies on data to choose a transformation to make the

transformed data conformable with normality.

Section 2 introduces the model and presents the maximum likelihood procedures for model estimation

and inference. Section 3 presents an empirical application using the popular cigarettes demand data.

Section 4 concludes the paper.
2. The model and model estimation

We propose a generalized error component model with functional form transformation, spatial error

correlation and dynamic effect. The model takes the following general form,

h Y ti; kð Þ ¼ qh Y t�1;i; k
� �

þ
Xk1
j¼1

bjZtij þ
Xk

j¼k1þ1
bjh Xtij; k
� �

þ uti; ð1Þ

where t =1, 2, . . . , T, i =1, 2, . . . , N, h(d ,k) is a monotonic transformation, known except the

indexing parameter k, called the transformation parameter. The parameter q with |q|b1
characterizes the dynamic effect. The Z variables may contain the column of ones, dummy

variables such as the fixed time effects, as well as other variables that do not need to be

transformed. The X variables are continuous covariates that need to be transformed. The disturbance

vector ut=(ut1, ut2, . . . , utN) is assumed to have random regional effects and spatially autocorrelated

residual disturbances, i.e.,

ut ¼ lþ et; ð2Þ

et ¼ dWet þ vt; ð3Þ

where li~N(0,rl
2) and vti~N(0,rv

2) for all t and i. The lis and etis are independent of each other

and among themselves. The parameter d is the spatial autoregressive coefficient and W is a known

N�N spatial weight matrix whose diagonal elements are zero. It is assumed that (IN�dW) is non-

singular for all |d|b1, where IN is an N�N identity matrix.

Let B= IN�dW. We have et=B
�1vt. Let Y be the TN�1 vector of original observations arranged

according to i=1, . . . , N for each of t=1, . . . , T. Let Y�1 be the lagged Y, and h(Y,k) and h(Y�1,k) be
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the corresponding transformed Y and Y�1. Define Y(k,q)=h(Y,k)�qh(Y�1,k). The model specified by

Eqs. (1)–(3) can be compactly written in matrix notation as

Y k; qð Þ ¼ X kð Þbþ u; with u ¼ 1T � INð Þlþ IT � B�1
� �

v ð4Þ

where X(k)= (Z,h(X,k)) is a TN�k matrix whose rows contain the values of the covariates

(transformed or untransformed), 1T is a T-vector of ones and � denotes the Kronecker product. The

covariance matrix of u is E(uuV)=rv
2
6 with

V ¼ / JT � INð Þ þ IT � BVBð Þ�1

where /=rl
2 /rv

2, and JT=1T1TV. Putting q=(/, d, k, q)V and assuming the initial observations Y0i,

i=1, . . . , N, contained in the lagged vector Y�1 are constants,2 the log likelihood function (after

dropping the constant term) has the form

S b; r2
v ;q

� �
¼ � TN

2
log r2

v

� �
� 1

2
logjVj � 1

2r2
v

uV b; r2
v ;q

� �
V�1u b; r2

v ;q
� �

þ J kð Þ; ð5Þ

where u b; r2
v ;q

� �
¼ Y k; qð Þ � X kð Þb; and J kð Þ ¼

PT
t¼1
PN

i¼1 loghY Y ti; kð Þ.
Maximizing the log likelihood (Eq. (5)) gives the MLEs of the model parameters. To make this

optimization problem feasible, the following procedures are developed. Firstly, the dimension of

maximization can be reduced by concentrating out the parameters b and rv
2 from S (b,rv

2,q). It is easy to
show that given q, S is maximized at

b̂b qð Þ ¼ XV kð ÞV�1X kð Þ
� ��1

XV kð ÞV�1Y k; qð Þ;
r̂r2
v qð Þ ¼ 1

NT
ũuV qð ÞV�1ũu qð Þ;

where ũ(q)=Y(k,q)�X(k)b̂(q). Substituting b̂(q) and r̂v
2(q) back into the log likelihood function (Eq.

(5)) for b and rv
2, respectively, gives the following concentrated log likelihood (after dropping the

constant)

Sc hð Þ ¼ � TN

2
log ũuV qð ÞV�1ũu qð Þ
� �

� 1

2
logjVj þ J kð Þ: ð6Þ

Maximizing Sc(q), subject to |d|b1 and |q|b1, gives the MLE q̂, which upon substitution gives the

unconstrained MLEs b̂= b̂(q̂) and r̂v
2= r̂v

2(q̂) for b and rv
2, respectively. Further, the unconstrained MLE

of rl
2 is given by r̂l

2= /̂r̂v
2.

Secondly, maximization of S c(q) involves repeated evaluations of 6
�1 and |6| for the NT�NT

matrix 6, which can be a great burden when N or T or both are large. The following identities, given in

Magnus (1982),

jVj ¼ j BVBð Þ�1 þ /TIN jdjBj2 T�1ð Þ ð7Þ

V�1 ¼ 1=Tð ÞJT � BVBð Þ�1 þ /TIN
h i�1

þ IT � 1=Tð ÞJT½ � � BVBð Þ ð8Þ
2 See Hsiao (2003, Ch. 4) for detailed discussion on the effect of the assumptions concerning the initial observations on the

likelihood inferences. Our estimation procedure can be adapted to account for different assumptions for the initial observations.
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reduce the calculations of the inverse and determinant of an NT�NT matrix to the calculations of the

inverse and determinants of several N�N matrices. Following Griffith (1988), calculation of the

determinants can be further simplified by using

jBj ¼j
N

i¼1
1� dwið Þ; and j BVBð Þ�1 þ /TIN j ¼j

N

i¼1
1� dwið Þ�2 þ T/

h i
: ð9Þ

where wi are the eigenvalues of W.

Thirdly, maximization of S c(q) can be facilitated using the analytical gradients or the concentrated

score vector Sc(q), which can be obtained by either substituting b
ˆ
(q) and r

ˆ
v
2(q) into the last four

elements of the score function S(b,rv
2,q) given in the Appendix, or directly taking partial derivatives of

S c(q):

BSc qð Þ
B/

¼ 1

2

TN ũuV qð ÞV�1 JT � INð ÞV�1ũu qð Þ
ũuV qð ÞV�1ũu qð Þ

� tr V�1 JT � INð Þ
� �! 

ð10Þ

BSc qð Þ
Bd

¼ 1

2

TN ũuV qð ÞV�1 IT � Að ÞV�1ũu qð Þ
ũuV qð ÞV�1ũu qð Þ

� tr V�1 IT � Að Þ
� �! 

ð11Þ

BSc qð Þ
Bk

¼ Jk kð Þ � TN ũukV qð ÞV�1ũu qð Þ
ũuV qð ÞV�1ũu qð Þ

ð12Þ

BSc qð Þ
Bq

¼ TNh Y�1; kð ÞV�1ũu qð Þ
ũuV qð ÞV�1ũu qð Þ

ð13Þ

where A=(B /Bd)(BVB)�1= (BVB)�1(WVB+BVW)(BVB)�1 and ũk(q)= (B /Bk)ũ(q).
The above MLE procedure has been implemented using GAUSS 6.0 with its CO (constrained

optimization) and CML (constrained maximum likelihood) procedures. It turns out that the programs

work very well for moderate sized data.3 From the expressions (7)–(9), we see that the main

computational task in the iterative maximization process is the repeated evaluation of the matrix

[(BVB)�1+/TIN]
�1 and the computation of the eigenvalues wi. As pointed out by Anselin (2001,

p. 325), computation of eigenvalues becomes unstable when the W matrix becomes larger than

1000�1000, and much remains to be done to develop efficient algorithms and data structure to allow for

the analysis of very large spatial data sets.

Covariance matrix of (b̂V, r̂v
2, q̂V)V can be estimated by �H�1(b̂, r̂v

2, q̂ ) where H(b,rv
2,q) is the

Hessian matrix given in the Appendix. With this, inferences on model parameters can be conveniently

carried out following the Wald procedure. Of particular interest are the model specification tests related

to the parameter vector q. Likelihood ratio and Lagrange multipliers procedures can also be used for

inferences.
3 The programs are available from the first author upon request.
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3. An empirical illustration

In this section, we use a well known data set: the cigarettes demand for the United States, to illustrate

the applications of our model and inference method. The data set contains a panel of 46 states over 30

time periods (1963–1992) and is listed as CIGAR.TXT on the Wiley web site associated with Baltagi

(2001). The response variable Y=Cigarette sales in packs per capita. The covariates are X1=Price per

pack of cigarettes; X2=Population (Pop); X3=Population above the age of 16; X4=Consumer price

index with (1983=100); X5=Per capita disposable income; and X6=Minimum price in adjoining states

per pack of cigarettes.

Earlier studies regarding demand for cigarettes include Hamilton (1972), McGuiness and Cowling

(1975), Baltagi and Levin (1986, 1992), and Baltagi et al. (2000), where a habit-persistence type of

dynamic demand model is developed and followed. However, no formal consideration is given to

explicitly model the spatial dependence. Also, the functional form used in these studies is the fixed log–

log form. Baltagi and Li (2004) argued how the spatial autocorrelation may arise in the demand for

cigarettes and considered prediction problem using a random effect model with spatial error. But

dynamic effect and functional form transformation were not considered in the model. It is thus important

to formally assess the existence/nonexistence of the dynamic effect, spatial dependence as well as the

functional form transformation in the context of cigarettes demand.

We consider fitting of three models: (I) both response and covariates are log transformed; (III)

response is Box–Cox transformed (Box and Cox, 1964), and covariates are log transformed; and (III)

both response and covariates are Box–Cox transformed. For the spatial weighting matrix W, we follow

the first-order rook’s contiguity relations. See Kelejian and Robinson (1995) for a good discussion on the

spatial weighing matrix. The results are summarized in Table 1. The maximum of the concentrated log

likelihood without the constant term is listed in the last row labeled as loglik.

From the results in Table 1 we see that there exists strong evidence for the existence of dynamic

effect, spatial dependence, as well as Box–Cox functional form, in particular the dynamic effect. It is

interesting to note that three models give quite consistent estimates of spatial error correlation and
Table 1

Estimation results for the cigarette demand data

Model I Model II Model III

Par. est. t-stat Par. est. t-stat Par. est. t-stat

b0 0.6600 7.1847 0.4669 6.6540 �0.1594 �0.8946
b1 �0.2143 �10.6937 �0.2233 �3.5331 �0.2072 �12.3892
b2 �0.2457 �3.9874 �0.2627 �2.8806 �0.1685 �1.6363
b3 0.2406 3.9130 0.2575 2.8581 0.1463 1.5328

b4 �0.0240 �1.1467 �0.0266 �1.1780 �0.0200 �1.1120
b5 0.0793 0.0865 2.7881 0.3172 4.6179

b6 0.0951 5.5560 0.0954 3.0094 0.0628 4.3113

r 0.0365 691.6175 0.0161 114.8971 0.0117 221.3993

/ 0.2922 2.8772 0.3307 2.9748 0.5932 3.3161

d 0.2338 9.1928 0.2397 9.3655 0.2515 9.7891

k – – �0.1695 �3.0222 �0.2329 �5.8438
q 0.8644 62.4733 0.8577 61.0391 0.8256 54.7972

loglik �3723.30 �3718.75 �3709.07
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dynamic effect coefficient. Model I is embedded in both Model II and Model III with k specified as zero.

Wald and likelihood ratio tests of Model I against Model II, or against Model III strongly reject the

Model I specification. Thus, the conventional Cobb–Douglas functional form specification for the

cigarettes demand is not supported by the data. Furthermore, all three models show the significance of

random individual effects. According to the loglik values, Model III fits the data the best.
4. Conclusions

A generalized error components model is proposed that explicitly takes into account three major

issues in the modelling of economic panel data: dynamics, spatial dependence and functional form,

where h(d ,k) can be any smooth monotonic function. This model and its MLE procedures developed in

this paper allow easy testing of these three effects as well as other standard effects incorporated in the

model. We emphasize that when a priori information or theoretical foundation are lacking, it is important

to start the empirical investigations with a more general model and then test for the existence/

nonexistence of certain effects.

Consideration of a flexible functional form in spatial panel framework is fairly new, although there

have been some considerations in a cross sectional set up. See, for example, van Gastel and Paelinck

(1995), Griffith et al. (1998), Baltagi and Li (2001), and Pace et al. (2004). Much remains to be done to

develop other methods of estimation for the current model, and to include flexible functional form in

other spatial panel models such as spatial lag models.
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Appendix A. The score and Hessian functions

Some of the matrix differential formulas that are useful in our derivation can be found in Magnus

(1982) or Magnus and Neudecker (1999). Denote u=u(b,k,q). Let uk=Bu /Bk and ukk=B
2u /Bk2. We

obtain the score function S(b,rv
2,q)=BS (b,rv

2,q) /B(bV,rv
2,qV)V as

S b;r2
v ;q

� �
¼

1
r2
v
XV kð ÞV�1u

1
2r4

v
uVV�1u� NT

2r2
v

1
2r2

v
uVV�1 JT � INð ÞV�1u� 1

2
tr V�1 JT � INð Þ
� �

1
2r2

v
uVV�1 IT � Að ÞV�1u� 1

2
tr V�1 IT � Að Þ
� �

Jk kð Þ � 1
r2
v
ukVV

�1u
1
r2
v
h Y�1; kð ÞV�1u

8>>>>>>>>><
>>>>>>>>>:

and the Hessian matrix H(b,rv
2,q)=BS(b,rv

2,q) /B(bV,rv
2,qV) with elements



Hbb ¼ �
1

r2
v

XV kð ÞV�1X kð Þ
Hbr2

v
¼ � 1

r4
v

XV kð ÞV�1u

Hb/ ¼ �
1

r2
v

XV kð ÞV�1 JT � INð ÞV�1u Hbd ¼ �
1

r2
v

XV kð ÞV�1 IT � Að ÞV�1u

Hbk ¼
1

r2
v

XkV kð ÞV�1uþ XV kð ÞV�1uk
� �

Hbq ¼ �
1

r2
v

XV kð ÞV�1h Y�1; kð Þ

Hr2
vr

2
v
¼ NT

2r4
v

� 1

r6
v

uVV�1u Hr2
v/ ¼ �

1

2r4
v

uVV�1 JT � INð ÞV�1u

Hr2
vd ¼ �

1

2r4
v

uVV�1 IT � Að ÞV�1u Hr2
vk ¼

1

r4
v

ukVV
�1u

Hr2
vq ¼ �

1

r4
v

uVV�1h Y�1; kð Þ

H// ¼
1

2
tr V�1 JT � INð ÞV�1 JT � INð Þ
� �

� 1

r2
v

uVV�1 JT � INð ÞV�1 JT � INð ÞV�1u

H/d ¼
1

2
tr V�1 IT � Að ÞV�1 JT � INð Þ
� �

� 1

r2
v

uVV�1 IT � Að ÞV�1 JT � INð ÞV�1u

H/k ¼
1

r2
v

ukVV
�1 JT � INð ÞV�1u

H/q ¼ �
1

r2
v

V�1 JT � INð ÞV�1h Y�1; kð Þ

Hdd ¼
1

2
tr V�1 IT � Að ÞV�1 IT � Að Þ �V�1 IT �

BA

Bd

� �� 	
� 1

r2
v

uVV�1 IT � Að ÞV�1 IT � Að ÞV�1u

þ 1

2r2
v

uVV�1 IT �
BA

Bd

� �
V�1u

Hdk ¼
1

r2
v

ukVV
�1 IT � Að ÞV�1u

Hdq ¼ �
1

r2
v

V�1 IT � Að ÞV�1h Y�1; kð Þ

Hkk ¼ �
1

r2
v

ukkV V
�1uþ ukVV

�1uk
� �

þ Jkk kð Þ

Hkq ¼
1

r2
v

hkV Y�1; kð ÞV�1uþ ukVV
�1h Y�1; kð Þ

� �

Hqq ¼ �
1

r2
v

hV Y�1; kð ÞV�1h Y�1; kð Þ
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where A is given in Eq. (12) and BA /Bd=2(BVB)�1[WVB+BVW)A�WVW].
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