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Spatial econometrics has been an ongoing research field. Recently, it has been extended to panel data
settings. Spatial panel data models can allow cross sectional dependence as well as state dependence, and
can also enable researchers to control for unknown heterogeneity. This paper reports some recent
developments in econometric specification and estimation of spatial panel data models. We develop a
general framework and specialize it to investigate different spatial and time dynamics. Monte Carlo studies
are provided to investigate finite sample properties of estimates and possible consequences of
misspecifications. Two applications illustrate the relevance of spatial panel data models for empirical studies.
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1. Introduction

Spatial econometrics consists of econometric techniques dealing
with the interactions of economic units in space, where the space can
be physical or economic in nature. For a cross sectional model, the
spatial autoregressive (SAR) model by Cliff and Ord (1973) has
received themost attention in economics. Spatial econometrics can be
extended to panel data models (Anselin, 1988; Elhorst, 2003). Baltagi
et al. (2003) consider the testing of spatial dependence in a panel
model, where spatial dependence is allowed in the disturbances. In
addition, Baltagi et al. (2007b) consider the testing of spatial and serial
dependence in an extended model, where serial correlation over time
is also allowed in the disturbances. Kapoor et al. (2007) provide
theoretical analysis for a panel data model with SAR and error
components disturbances. To allow different spatial effects in the
random component and the disturbances terms, Baltagi et al. (2007a)
generalize the panel regression model in Kapoor et al. (2007). Instead
of the random effects specification of the above models, Lee and Yu
(2008) investigate the asymptotic properties of the quasi-maximum
likelihood estimators (QMLEs) for spatial panel data models with
spatial lags, fixed effects and SAR disturbances. Mutl and Pfaffermayr
(2008) consider the estimation of spatial panel data models with
spatial lags under both fixed and random effects specifications, and
propose a Hausman type specification test. These spatial panel data
models have a wide range of applications. They can be applied to
agricultural economics (Druska and Horrace, 2004), transportation
research (Frazier and Kockelman, 2005), public economics (Egger et
al., 2005), and good demand (Baltagi and Li, 2006), to name a few. The
above panel models are static ones which do not incorporate time
lagged dependent variables in the regression equation.

By allowing dynamic features in the spatial panel data models,
Anselin (2001) and Anselin et al. (2008) divide spatial dynamic
models into four categories, namely, “pure space recursive” if only a
spatial time lag is included; “time–space recursive” if an individual
time lag and a spatial time lag are included; “time–space simulta-
neous” if an individual time lag and a contemporaneous spatial lag are
specified; and “time–space dynamic” if all forms of lags are included.
Korniotis (forthcoming) investigates a time–space recursive model
with fixed effects, and the model is applied to the growth of con-
sumption in each state in the United States. As a recursive model, the
parameters, including the fixed effects, can be estimated by OLS.
Korniotis (forthcoming) has also considered a bias adjusted within
estimator, which generalizes Hahn and Kuersteiner (2002). For a
ta models, Regional Science and Urban Economics
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dynamic panel datamodel with spatial error, Elhorst (2005) estimates
the model with unconditional maximum likelihoodmethod, andMutl
(2006) investigates the model using a three step generalized method
of moments (GMM). Su and Yang (2007) derive the QMLEs of the
above model under both fixed and random effects specifications. For
the general “time–space dynamic” model, we term it the spatial
dynamic panel data (SDPD) model to better link the terminology to
the dynamic panel data literature (see, e.g., Hsiao, 1986; Alvarez and
Arellano, 2003). Yu et al. (2007, 2008) and Yu and Lee (2007) study,
respectively, the spatial cointegration, stable, and unit root models
where the individual time lag, spatial time lag and contemporaneous
spatial lag are all included. The SDPD models can be applied to the
growth convergence of countries and regions (Baltagi et al., 2007c;
Ertur and Koch, 2007), regional markets (Keller and Shiue, 2007),
labor economics (Foote, 2007), public economics (Revelli, 2001; Tao,
2005; Franzese, 2007), and other fields.

The recent survey in Anselin et al. (2008) provides a list of spatial
panel data models and presents the corresponding likelihood
functions. It points out elementary aspects of the models and testing
of spatial dependence via LM tests, but properties of estimation
methods are left blank. This paper reports some recent developments
in econometric specification and estimation of the spatial panel data
models for both static and dynamic cases, investigates some finite
sample properties of estimators, and illustrates their relevance for
empirical research in economics with two applications. Section 2 gives
a literature review of the static spatial panel data models with spatial
lags. It discusses fixed and random effects specifications of the
individual and time effects, and describes some estimation methods.
In addition, the Hausman test procedure for the random specification
is covered. Section 3 discusses SDPD models. Given different
eigenvalue structures of the SDPD models, asymptotic properties of
the estimates are different. Section 3 focuses mostly on QMLEs. Some
Monte Carlo results on the estimates and two empirical illustrations
are presented in Section 4. They demonstrate the importance of time
effects for the accurate estimation of spatial interactions, and also
show the use of the SDPD model to study market integration.
Conclusions are in Section 5.
2. Static spatial panel data models

Panel regressionmodels with SAR disturbances have recently been
considered in the spatial econometrics literature. Anselin (1988) and
Baltagi et al. (2003) have considered the model Ynt=Xntβ0+cn0+Unt

and Unt=λ0WnUnt+Vnt, t=1, 2, ..., T, where Ynt=(y1t, y2t,..., ynt)′
and Vnt=(v1t, v2t,..., vnt)′ are n×1 (column) vectors, vit is i.i.d. across i
and twith zero mean and finite variance σ0

2, andWn is an n×n spatial
weights matrix, which is predetermined and generates the spatial
dependence among cross sectional units. Here, Xnt is an n×kmatrix of
nonstochastic time varying regressors, cn0 is an n×1 vector of indivi-
dual random components, and the spatial correlation is in Unt. Kapoor
et al. (2007) consider a different specification with Ynt=Xntβ0+Unt

+

and Unt
+=λ0WnUnt

++dn0+Vnt,t=1, 2,...,T, where dn0 is the vector of
individual random components. Baltagi et al. (2007a) formulate a
general model which allows for spatial correlations in both individual
and error components with different spatial parameters. These panel
models are different in terms of the variance matrices of the overall
disturbances. The variance matrix in Baltagi et al. (2003, 2007a) is
more complicated, and its inverse is computationally demanding2 for
a sample with a large n. For the model in Kapoor et al. (2007), spatial
correlations in both the individual and error components have the
same spatial effect parameter. As the variance matrix in Kapoor et al.
(2007) has a special pattern, its inverse can be easier to compute.
2 Both Baltagi et al. (2003, 2007a) have emphasized on the test of spatial correlation
in their models.
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The above static spatial panel data models can be generalized as

Ynt = λ01Wn1Ynt + Xntβ0 + μn + Unt ;

μn = λ03Wn3μn + cn0; andUnt = λ02Wn2Unt + Vnt ;
ð1Þ

for t=1,..., T, whereWnj for j=1,2,3 are n×n spatial weights matrices
and µn is an n×1 column vector of individual effects.3 The Baltagi et al.
(2007a) panel regression model is a special case of Eq. (1) under
λ01=0, i.e., without spatial lags in the main equation.

For the estimation, we may consider the fixed effects specification
(where elements of µn are treated as fixed parameters) or the random
effects specification (where µn is a random component). The random
effects specification ofµn in Eq. (1) canbe assumed to bea SARprocess. If
the process of µn in Eq. (1) is correctly specified, estimates of the
parameters can be more efficient than those of the fixed effects
specification, as they utilize the variation of elements of µn across spatial
units. On the other hand, the fixed effects specification is known to be
robust against the possible correlation of µn with included regressors in
the model. The fixed effects specification can also be robust against the
spatial specification of µn. For example, the spatial panel model
introduced in Kapoor et al. (2007) is equivalent to Eq. (1) with Wn3=
Wn2 and λ03=λ02, but themodel in Baltagi et al. (2007a)may not be so.
However, with the fixed effects specification, all these panel models
have the same representation. By the transformation (In−λ0Wn),
the data generating process (DGP) of Kapoor et al. (2007) becomes
Ynt=Xntβ0+cn0+Unt, where cn0=(In−λ0Wn)−1dn0 can be regarded
as a vector of unknown fixed effect parameters and Unt=λ0WnUnt+Vnt
forms a SAR process.4 Hence, these equations are identical to a linear
panel regression with fixed effects and SAR disturbances, and the
estimation of Eq. (1)with µn beingfixed parameters can be robust under
these different specifications. It can also be computationally simpler
than some of the random component specifications.

In this section, we will consider several estimation methods for
Eq. (1). Section 1 is for the direct estimation of the fixed individual
effects. For the fixed effects model, when the time dimension T is small,
we are likely to encounter the incidental parameter problem discussed
in Neyman and Scott (1948). This is because the introduction of fixed
individual effects increases the number of parameters to be estimated,
and the time dimension does not provide enough information to
consistently estimate those individual parameters. For simplicity, we
first review the case with finite T, where the (possible) time effects can
be treated as regressors. When T is large, we might also have the
incidental parameter problem caused by the time effects; related issues
on estimation will be discussed in Section 4. Section 2 covers the
transformation approachwhich eliminates thosefixed effects before the
estimation. Both Sections 1 and 2 consider thefixed effects specification.
Section 3 covers the random effects specification of the spatial panel
models, and alsodiscusses the testing issue. Section4 considers the large
T case, where we need to take care of the incidental parameter problem
caused by the time effects.

2.1. Direct estimation of fixed effects

For the linear panel regression model with fixed effects, the direct
maximum likelihood (ML) approachwill estimate jointly the common
parameters of interest and fixed effects. The corresponding ML esti-
mates (MLEs) of the regression coefficients are known as the within
estimates, which happen to be the conditional likelihood estimates
conditional on the time means of the dependent variables. However,
the MLE of the variance parameter is inconsistent when T is finite. For
the spatial panel data models with individual effects, similar findings
of the direct ML approach are found.
3 When µn is treated as fixed effects, any time invariant regressors would be
absorbed in µn.

4 Unt=Unt
+−(In−λ0Wn)-1dn0.
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Denote θ=(β′, λ1, λ2, σ2)′ and ζ=(β′, λ1, λ2)′. At the true value,
θ0=(β0′ , λ01, λ02, σ0

2)′ and ζ0=(β0′, λ01, λ02)′. Define Sn(λ1)=In−λ1Wn1

and Rn(λ2)=In−λ2Wn2 for any λ1 and λ2. At the true parameter, Sn=Sn
(λ01) and Rn=Rn(λ02). The log likelihood function of Eq. (1), as if the
disturbances were normally distributed, is

ln Ldn;T ðθ; cnÞ = � nT
2

lnð2πσ2Þ + T½ln jSnðλ1Þ j + ln jRnðλ2Þ j �

� 1
2σ2 ∑

T
t = 1V ′

ntðζ; cnÞVntðζ; cnÞ;

ð2Þ

where Vnt(ζ, cn)=Rn(λ2)[Sn(λ1)Ynt−Xntβ−cn]. If the disturbances
in Vnt are normally distributed, the log likelihood (2) is the exact one.
When Vnt is not really normally distributed, but its elements are i.i.d.
(0, σ0

2), Eq. (2) is a quasi-likelihood function.5 We can estimate cn0
directly from Eq. (2) and have the concentrated log likelihood
function of θ. For notational purposes, we define Ỹnt=Ynt−Y

—
nT for

t=1, 2,···, T where
�
YnT = 1

T
∑T

t = 1 Ynt . Similarly, we define X̃nt=

Xnt−X
—

nT and Ṽnt=Vnt−V
—

nT. Thus, the log likelihood function with
cn concentrated out is

ln Ldn;T ðθÞ = � nT
2

ln ð2πσ2Þ + T ½ln jSnðλ1Þ j + ln jRnðλ2Þ j �

� 1
2σ2 ∑

T
t=1 Ṽ

′

ntðζÞṼntðζÞ;

ð3Þ

where Ṽnt(ζ)=Rn(λ2)[Sn(λ1)Ỹnt−X̃ntβ]. This direct estimation approach
will yield consistent estimates for the spatial and regression coefficients
except for the variance parameter σ0

2 when T is small (but n is large).
Also, the estimator of σ0

2 is consistent only when T is large. These
conclusions can be easily seen by comparing the log likelihood in Eq. (3)
with that in Section 2.2 (to be shown below).

2.2. Elimination of individual effects

Due to this undesirable property of the direct approach of the
estimate of σ0

2, we may eliminate the individual effects before
estimation so as to avoid the incidental parameter problem. When an
effective sufficient statistic can be found for each of the fixed effects, the
method of conditional likelihood can be used. For the linear regression
and logit panel models, the time average of the dependent variables
provides the sufficient statistics (see Hsiao, 1986). For the spatial panel
data models, we can use a data transformation, the deviation from the
time mean operator (i.e., JT = IT � 1

T
lT l′T where lT is the vector of ones),

to eliminate the individual effects. The transformed disturbances are
uncorrelated, and the transformed equation can be estimated by the
QML approach. The transformation approach for the model can be
justified as a conditional likelihood approach (Kalbfleisch and Sprott,
1970; Cox and Reid, 1987; Lancaster, 2000).

The JT eliminates the time invariant individual effects, and the
transformed model consists of Ỹnt=λ01Wn1Ỹnt+ X̃ntβ0+Ũnt and Ũnt=
λ02Wn2Ũnt+Ṽnt where Ṽnt=Vnt−V

—
nT. However, the resulting distur-

bances Ṽnt would be linearly dependent over the time dimension
because JT is singular. To eliminate the individual fixed effects without
creating linear dependence in the resulting disturbances, a better trans-
formation can be based on the orthonormalmatrix of JT. Let ½FT;T�1;

1ffiffiffi
T

p lT �
be the orthonormal matrix of the eigenvectors of JT, where FT,T−1 is the
T×(T−1) eigenvectormatrix corresponding to the eigenvalues of 1. For
any n×Tmatrix [Zn1,···, ZnT], define the transformed n×(T−1) matrix
5 In some empirical papers, some authors seem to have the wrong impression for
the estimation of a SAR model that: if the disturbances are not truly normally
distributed, the MLE would be inconsistent. However, Lee (2004) has shown that the
MLE can be consistent for the QML approach when the disturbances are i.i.d. (0, σ0

2)
without normality.
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[Zn1⁎ ,···, Zn⁎,T−1]=[Zn1,···, ZnT]FT,T−1 and define Xnt⁎ =[Xnt,1⁎ , Xnt,2⁎ ,···,
Xnt,k⁎ ] accordingly. Then, Eq. (1) implies

Y⁎nt = λ01Wn1Y
⁎
nt + X⁎ntβ0 + U⁎nt; U⁎nt = λ02Wn2U

⁎
nt + V⁎nt; t = 1; ⋯; T � 1:

ð4Þ

After the transformation, the effective sample size is n(T−1), and
the elements υit⁎'s of Vnt are uncorrelated for all i and t (and inde-
pendent under normality).

The log likelihood function of Eq. (4), as if the disturbances were
normally distributed, is

ln Ln;T ðθÞ = � nðT � 1Þ
2

lnð2πσ2Þ + ðT � 1Þ½ln jSnðλ1Þ j + ln jRnðλ2Þ j �

� 1
2σ2 ∑

T
t=1Ṽ ′

ntðζÞṼntðζÞ: ð5Þ

Lee and Yu (2008) show that the transformation approach will
yield consistent estimators for all the common parameters including
σ0

2, when either n or T is large.
We may compare the estimates of the direct approach with those

of the transformation approach. For the log likelihoods, the difference
is in the use of T in Eq. (3) but (T−1) in Eq. (5). If we further
concentrate β out, Eq. (3) becomes

ln Ldn;T ðλ1;λ2Þ = � nT
2

ðlnð2πÞ + 1Þ

�nT
2

ln σ̂2d
nT ðλ1;λ2Þ + T½ln jSnðλ1Þ j + ln jRnðλ2Þ j �;

ð6Þ

and Eq. (5) becomes

ln Ln;T ðλ1;λ2Þ = � nðT � 1Þ
2

ðlnð2πÞ + 1Þ � nðT � 1Þ
2

ln σ̂ 2
nT ðλ1;λ2Þ

+ ðT � 1Þ½ln jSnðλ1Þ j + ln jRnðλ2Þ j �; ð7Þ

where β̂nT
d (λ1, λ2)= β̂nT(λ1, λ2) and σn̂T

2 (λ1, λ2) are the generalized
least square estimate of β and the MLE of σ2 given values of λ1 and λ2,
and σ̂2d

nT ðλ1;λ2Þ = T � 1
T

σ̂2
nT ðλ1;λ2Þ. By comparing Eqs. (6) and (7), we

see that they yield the samemaximizer (λ̂nT,1, λ̂nT,2). As β̂nT
d (λ1, λ2) and

β̂nT(λ1, λ2) are identical, the QMLE of ζ0=(β0′, λ01, λ02)′ from the direct
approach will yield the same consistent estimate as the transformation
approach. However, the estimation of σ0

2 from the direct approach
will be T � 1

T
times the estimate from the transformation approach.

The transformation approach is a conditional likelihood approach
when the disturbances are normally distributed. This is so as follows:
Eq. (1) implies that Y

—
nT=λ1Wn1Y

—
nT+X

—
nTβ0+cn0+U—nT with U—nT=λ02

Wn2U
—

nT+V
—

nT, but cn0 does not appear in Ỹnt=λ01Wn1Ỹnt+ X̃ntβ0+Ũnt

with Ũnt=λ02Wn2Ũnt+Ṽnt. Hence, Y
—
nT is a sufficient statistic for cn0. As

Ṽnt, t=1,···,T, are independent of V
—

nT under normality, the likelihood
in Eq. (5) is a conditional likelihood of Ynt, t=1,...,T, conditional on Y

—
nT.

2.3. Random effects specification

In this section, we consider the random effects specification of the
individual effects µn. When the individual effects are random and are
independent of the exogenous regressors, the estimation under the
random effects will bemore efficient. The spatial effect in µn, if allowed,
could be considered as the permanent spillover effects as described in
Baltagi et al. (2007a). In a random effects model, the presence of time
invariant regressors zn can be allowed. Hence, the model is

Ynt = lnb0 + znη0 + λ01Wn1Ynt + Xntβ0 + μn + Unt; t = 1; :::; T;

μn = λ03Wn3μ n + cn0; andUnt = λ02Wn2Unt + Vnt ;
ð8Þ
spatial panel data models, Regional Science and Urban Economics
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where b0 is the coefficient for the constant term, and η0 is the param-
eter vector for the time invariant regressor zn. Denote Cn= In−
λ03Wn3, YnT=(Yn1′ , Yn2′ ,...,YnT′ )′ and VnT, XnT similarly. The above
equation in the vector form is

YnT = lT⊗ðlnb0 + znη0Þ + λ01ðIT⊗Wn1ÞYnT + XnTβ0 + lT⊗C�1
n cn0

+ ðIT⊗R�1
n ÞVnT :

Under the assumptions that cn0 is (0, σc
2In), Vnt is (0, σv

2In), and
they are uncorrelated, the variance matrix of lT⊗Cn

−1cn0+(IT⊗Rn
−1)

VnT would be

ΩnT = σ2
c ½lT l′T⊗ðC′nCnÞ�1� + σ2

υ ½IT⊗ðR′nRnÞ�1�:

From the likelihood function, ML random effects estimates can be
obtained. By denotingRnT= IT⊗Rn and SnT= IT⊗Sn, the log likelihood is

ln LðYnT Þ = � nT
2

lnð2πÞ � 1
2
ln jΩnT j + T ln jSn j �

1
2
ξ′nT ðθÞΩ

�1
nT ξnT ðθÞ;

where ξnT(θ)=SnTYnT−XnTβ− lT⊗(lnb+znη). For the inverse and
determinant of ΩnT, the calculation can be reduced to that of an n×n
matrix. By Lemma 2.2 in Magnus (1982), Baltagi et al. (2007a) show
that

Ω�1
nT =

1
T
lT l′T⊗½Tσ2

c ðC′nCnÞ�1 + σ2
υðR′nRnÞ�1��1 + JT⊗½ðσ2

υÞ�1ðR′nRnÞ�;

and

jΩnT j = jTσ2
c ðC′nCnÞ�1 + σ2

υ ðR′nRnÞ�1 j⋅ jσ2
υ ðR′nRnÞ�1 jT�1

:

The above inverse and determinant can be simplified if Cn=Rn,
which occurs in the panel model of Kapoor et al. (2007) specified as
Ynt=Xntβ0+Unt with Unt=λ0WnUnt+εnt and εnt=µn+Vnt. This
model specification implies that Wn2=Wn3 and λ02=λ03 in Eq. (8).
The variance matrix of the error components is

Ωkkp
nT = ðσ2

c lT l′T + σ2
υ IT Þ⊗ðR′nRnÞ�1

;

and the inverse and determinant would be computationally
simplified.

With linear and nonlinear moment conditions implied by the error
components, Kapoor et al. (2007) propose a method of moments
(MOM) estimation with the moment conditions in terms of (λ, συ

2,
σ1

2), where6 σ1
2=συ

2+Tσµ
2. The β can be consistently estimated by

OLS for their regression equation. Denote ūnT=(IT⊗Wn)unT, u̿nT=
(IT⊗Wn)ūnT, and ε̄nT=(IT⊗Wn)εnT. Also, let Q0 ,nT= JT⊗In and

Q1;nT = lT l′T
T
⊗In. For T≥2, they suggest to use the moment conditions

E

1
nðT � 1Þ ε

′
nTQ 0;nTεnT

1
nðT � 1Þ

�ε′nTQ 0;nT
�εnT

1
nðT � 1Þ

�ε′nTQ 0;nTεnT

1
n
ε′nTQ1;nTεnT

1
n
�ε′nTQ1;nT

�εnT
1
n
�ε′nTQ1;nTεnT

2
666666666666666664

3
777777777777777775

=

σ 2
υ

σ2
υ

1
n
trðW′

nWnÞ
0

σ 2
1

σ2
1

1
n
trðW′

nWnÞ
0

2
6666666666664

3
7777777777775
: ð9Þ

As εnT=unT−λ0ūnT and εn̄T=ūnT−λ0u̿nT because unT=λ0(IT⊗Wn)
unT+εnT, we can substitute εnT and εn̄T into Eq. (9) and obtain a
system of moments about unT, ūnT and u̿nT. With estimates of (λ, συ

2,
6 Note that the σµ
2 will become σc

2 in Kapoor et al. (2007)'s specification.

Please cite this article as: Lee, L., Yu, J., Some recent developments in
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σ1
2) available from the sample analogue of Eq. (9) based on the least

squares residuals, a GLS estimation for β0 can then be implemented as

β̂GLS;n = ½X′nT ðΩ
kkp
nT Þ�1XnT ��1½X′nT ðΩ

kkp
nT Þ�1YnT �:

The feasible GLS (FGLS) estimate can be obtained with (λ, συ
2, σ1

2) in
ΩnT

kkp replaced by the estimates from the moment conditions in Eq. (9).
For the random effects specification of the linear panel data models,

the GLS estimate is the weighted average of the within estimates and
between estimates, as is shown in Maddala (1971). Such an interpreta-
tion can also be provided for the random effect estimate of the spatial
panelmodel (1). Eq. (4) canbe considered as thewithin equation,which
is the deviation from the time average with the individual effects
eliminated. On the other hand, the time mean equation

�
YnT = lnb0 + znη0 + λ01Wn1

�
YnT +

�
XnTβ0 + μ n +

�
UnT ;

�
UnT = λ02Wn2

�
UnT +

�
VnT ;

ð10Þ

captures the individual effects and can be considered as the between
equation. By using F ′T,T−1lT=0, the errors Vnt

⁎ and V
—

nT are uncorrelated
(and independent under normality). Hence,

LðYnT jθ; μnÞ =
1
T

� �n=2
L1ðY⁎n1; ⋯;Y⁎n;T�1 jθÞ × L2ð

�
YnT jθ; μnÞ; ð11Þ

where ð1
T
Þn=2 is the Jacobian determinant, because ðY⁎′n1 ; ⋯;Y⁎′n;T�1;

�
Y′nT Þ′=

ððFT;T�1;
1
T
lT Þ′⊗InÞYnT and the determinant of ½FT;T�1;

1
T
lT � is 1ffiffiffi

T
p . The

likelihood L1 in Eq. (11) for the within equation is in Eq. (5) and the
likelihood L2 for the between equation is

L2ð
�
YnT Þ = ð2πÞ�n=2 jΩn j�1=2 ×

× expf�1
2
½Sn

�
YnT �

�
XnTβ� lnb� znη�′

Ω�1
n ½Sn

�
YnT �

�
XnTβ� lnb� znη�g × jSn j ;

where Ωn = Eðμn +
�
UnT Þðμn +

�
UnT Þ′ = σ2

μ ðC′n CnÞ�1 + 1
T
σ2
υ ðR′n RnÞ�1.

For each of the within and between equations, we may obtain,
respectively, the within and between estimates.

With the likelihood decomposition for the spatial panel data model,
the random effects ML estimate will be the weighted average of the
within and between estimates. Denote Yn

⁎
,T−1=(Yn1⁎′,...,Yn⁎′,T−1)′ as the

sample observations for the within equation. In general, the parameter
vector in the likelihood functionofYn

⁎
,T−1 is a subset of that inYnT and/or

Y
—
nT. Let the common parameter vector be δ. Consider the concentrated

likelihoods (denoted as Lc with a superscript c for a relevant likelihood
L) of δ. For illustration, we assume that T is finite so that the within
estimator δŵwould be

ffiffiffi
n

p
-consistent. Its asymptotic distributionwould

be
ffiffiffi
n

p ð δ̂w � δ0Þ = �1
n
∂2 ln L1ðY⁎

n;T�1Þ
∂δ∂δ′

� ��1
1ffiffiffi
n

p ∂ ln L1ðY⁎
n;T�1Þ

∂δ + opð1Þ; that of the
between estimator δ̂b is

ffiffiffi
n

p ðδ̂b � δ0Þ = �1
n
∂2 ln Lc2ð

�
YnTÞ

∂δ∂δ′

� ��1
1ffiffiffi
n

p ∂ ln Lc2ð
�
YnTÞ

∂δ +

opð1Þ; and that of the ML estimator based on the likelihood Lc(YnT)

is
ffiffiffi
n

p ð δ̂� δ0Þ = �1
n
∂2 ln LcðYnTÞ

∂δ∂δ′
� ��1 1ffiffiffi

n
p ∂ ln LcðYnTÞ

∂δ + opð1Þ. By simple cal-

culus from (11), 1ffiffiffi
n

p ∂ ln LcðYnT Þ
∂δ = 1ffiffiffi

n
p ∂ ln L1ðY⁎

n;T�1Þ
∂δ + 1ffiffiffi

n
p ∂ ln Lc2ð

�
YnTÞ

∂δ and

1
n
∂2 ln LcðYnTÞ

∂δ∂δ′ = 1
n
∂2 ln L1ðY⁎

n;T�1Þ
∂δ∂δ′ + 1

n
∂2 ln Lc2ð

�
YnT Þ

∂δ∂δ′ . Hence,

ffiffiffi
n

p ð δ̂� δ0Þ = �1
n
∂2 ln LcðYnTÞ

∂δ∂δ′

 !�1
1ffiffiffi
n

p ∂ ln L1ðY⁎n;T�1Þ
∂δ +

1ffiffiffi
n

p ∂ ln Lc2ðYnTÞ
∂δ

0
@

1
A + opð1Þ

= AnT;1
ffiffiffi
n

p ð δ̂w � δ0Þ + AnT;2
ffiffiffi
n

p ð δ̂b � δ0Þ + opð1Þ;

whereAnT ;1 = 1
n
∂2 lnLcðYnT Þ

∂δ∂δ′
� ��11

n

∂2 ln L1ðY⁎n;T�1Þ
∂δ∂δ′ andAnT;2 = 1

n
∂2 ln LcðYnT Þ

∂δ∂δ′
� ��1

1
n
∂2 ln Lc2ð YnT Þ

∂δ∂δ′ . The AnT,1 and AnT,2 are weights because AnT,1+AnT,2= Ikδ
spatial panel data models, Regional Science and Urban Economics
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7 When Wn1 and Wn2 are not row-normalized, we can still eliminate the
transformed time effects; however, we will not have the presentation of (13). In
that case, the likelihood function would not be feasible, and alternative estimation
methods, such as the generalized method of moment, would be appropriate.
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where kδ is the dimensionof the commonparameters. Thus, the random
effects estimate is pooling the within and between estimates, which
generalizes that of Maddala (1971) for the standard panel regression
model.

The likelihood decomposition also provides a useful device to
construct a Hausman type test of random effects specification against
the fixed effects specification. Under the null hypothesis that the
individual effects are independent of the regressors, the MLE θ̂ of the
random effects model, and hence, δ̂, is consistent and asymptotically
efficient. However, under the alternative hypothesis, θ̂ is incon-
sistent. The within estimator δ̂w is consistent under both the null and
alternative hypotheses. Such a null hypothesis can be tested with a
Hausman type statistic by comparing the two estimates δ̂ and δ̂w by n
(δ̂−δ̂w)′Ω̂n

+(δ̂− δ̂w), where Ω̂n is a consistent estimate of the
limiting variance matrix of

ffiffiffi
n

p ðδ̂−δ̂wÞ under the null hypothesis,
and Ω̂n

+ is its generalized inverse. This test statistics will be
asymptotically χ2 distributed, and its degrees of freedom is the

rank of Ωn. Because δ̂ is asymptotically efficient, ½ð�1
n
∂ lnL1ðY⁎

n;T�1Þ
∂δ∂δ′ Þ�1 �

ð� 1
n
∂ ln LcðYnTÞ

∂δ∂δ′ Þ�1�, evaluated at either δ̂ or δ̂w, provides a consistent
estimate ofΩn under the null. By using the identityB−1−(B+C)−1=B−1

(B−1+C−1)−1B−1 for any two positive definite matrices B and C,
the preceding difference of the two informationmatrices is a positive
definite matrix. Therefore, the generalized inverse is an inverse,
and the degrees of freedom of the χ2 test is the number of common
parameters, i.e., the dimension of δ. Instead of the ML approach,
if the main equation is estimated by the 2SLS method, Hausman
test statistics can be constructed as in Mutl and Pfaffermayr (2008).

With the estimates of the spatial effect parameters λ01 and λ02,
tests for the significance of these effects can be constructed by the
Wald test. If the main interest is to test the existence of spatial effects,
an alternative test strategy may be based on LM statistics (Baltagi
et al., 2003, 2007a,b).

2.4. Large T Case

We can extend the model in Eq. (1) by including time effects.
When T is short, the time effects can be treated as regressors. When T
is large, the time effects might cause the incidental parameter
problem.

Similar to Section 1, we can follow a direct estimation approach.
With both individual and time effects, even when both n and T
are large so that individual and time effects can be consistently
estimated, the asymptotic distributions of common parameter
estimates are not properly centered at the true parameter values.
Hence, it is desirable to eliminate the time effects as well as the
individual effects for estimation when they were assumed fixed. Thus,
we can extend the transformation approach in Section 2. One may
combine the transformation from Jn = In � 1

n
lnl′n with the transforma-

tion from JT to eliminate both the individual and time fixed effects.

Let (Fn,n−1,
1ffiffiffi
n

p ln) be the orthonormal matrix of Jn, where Fn,n−1 corres-

ponds to the eigenvalues of 1 and 1ffiffiffi
n

p ln corresponds to the eigenvalue
zero. The individual effects can be eliminated by FT,T−1 as in Eq. (4),
which yields

Y⁎nt = λ01Wn1Y⁎nt + X⁎ntβ0 + α⁎t0ln + U⁎nt;

U⁎nt = λ02Wn2U⁎nt + V⁎nt; t = 1;2; :::; T � 1;

ð12Þ

where [α10⁎ ln, α20⁎ ln,···, αT− 1,0⁎ ln]=[α10ln, α20ln,···,αT0ln]FT,T− 1

are the transformed time effects. To eliminate the time effects,
we can further transform the n-dimensional vector Ynt⁎ to an (n−1)-
dimensional vector Ynt⁎⁎ as Ynt⁎⁎=F′n,n−1Ynt⁎. Such a transformation
Please cite this article as: Lee, L., Yu, J., Some recent developments in
(2009), doi:10.1016/j.regsciurbeco.2009.09.002
to Ynt⁎⁎ can result in a well-defined spatial panel model when Wn1

and Wn2 are assumed to be row-normalized. 7 Therefore, we have

Y⁎⁎nt = λ01ðF′n;n�1Wn1Fn;n�1ÞY⁎⁎nt + X⁎⁎nt β0 + U⁎⁎nt ;

U⁎⁎nt = λ02ðF′n;n�1Wn2Fn;n−1ÞU⁎⁎nt + V⁎⁎nt ;

ð13Þ

for t=1,...,T−1 where Xnt
⁎⁎=F ′n,n−1Xnt

⁎ and Vnt
⁎⁎=F ′n,n−1Vnt

⁎ . After the
transformations, the effective sample size is (n−1)(T−1). It
can be shown that the common parameter estimates from the
transformed approach are consistent when either n or T is large, and
their asymptotic distributions are properly centered (Lee and Yu,
2008).

For the random effects specification with a large T, the model is

Ynt = lnb0 + znη0 + λ01Wn1Ynt + Xntβ0 + μn + αt0ln + Unt ;

μn = λ03Wn3μ n + cn0; andUnt = λ02Wn2Unt + Vnt ;
ð14Þ

for t=1,...,T. In the vector form, it is

YnT = lT⊗ðlnb0 + znη0Þ + λ1ðIT⊗Wn1ÞYnT + XnTβ0 + lT⊗C�1
n cn0

+ αT0⊗ln + ðIT⊗R�1
n ÞVnT ;

where αT0=(α10,...,αT0)′. As cn0 is (0,σc
2In),αT0 is (0,σα

2IT), Vnt is (0,συ
2In),

and they are uncorrelated, the variance matrix of the overall
disturbances lT⊗Cn

−1cn0+αT0⊗ln+(IT⊗Rn
−1)VnT would be

ΩnT = σ2
c ½lT l ′T⊗ðC ′nCnÞ�1� + σ2

α½IT⊗lnl′n� + σ2
υ ½IT⊗ðR′nRnÞ�1�:

This is a generalized case of Baltagi et al. (2007a) where we have
the spatial lag and time effects in the main equation, in addition to the
spatial effect and the individual effects in the disturbances. The log
likelihood function is

ln LðYnT Þ = � nT
2

lnð2πÞ � 1
2
ln jΩnT j + Tln jSn j �

1
2
ξ′nT ðθÞΩ

�1
nT ξnT ðθÞ;

where ξnT(θ)=SnTYnT−XnTβ− lT⊗(lnb+znη). The calculation of the
inverse and determinant ofΩnT will involve essentially those of a T×T
matrix as well as an n×n matrix. As a further generalization, αt0 may
also be serially correlated, e.g., with an AR(1) process.

3. SDPD models

Spatial panel data models can include both spatial and dynamic
effects to investigate the state dependence and serial correlations. To
include the time dynamic features in the spatial panel data models,
an immediate approach is to use the time lag term as an explanatory
variable, which is the “time–space simultaneous” case in Anselin
(2001). In a simple dynamic panel data model with fixed individual
effects, the MLE of the autoregressive coefficient is biased and
inconsistent when n tends to infinity but T is fixed (Nickell, 1981;
Hsiao, 1986). By taking time differences to eliminate the fixed effects
in the dynamic equation and by the construction of instrumental
variables (IVs), Anderson andHsiao (1981) show that IVmethods can
provide consistent estimates. When T is finite, additional IVs can
improve the efficiency of the estimation. However, if the number of
IVs is too large, the problem of many IVs arises as the asymptotic bias
would increase with the number of IVs.
spatial panel data models, Regional Science and Urban Economics
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When both n and T go to infinity, the incidental parameter
problem in theMLE becomes less severe as each individual fixed effect
can be consistently estimated. However, Hahn and Kuersteiner (2002)
and Alvarez and Arellano (2003) have found the existence of
asymptotic bias of order O(1/T) in the MLE of the autoregressive
parameter when both n and T tend to infinity with the same rate. In
addition to the MLE, Alvarez and Arellano (2003) also investigate the
asymptotic properties of the IV estimators in Arellano and Bond
(1991). They have found the presence of asymptotic bias of a similar
order to that of the MLE, due to the presence of many moment
conditions. As the presence of asymptotic bias is an undesirable
feature of these estimates, Kiviet (1995), Hahn and Kuersteiner
(2002), and Bun and Carree (2005) have constructed bias corrected
estimators for the dynamic panel data model by analytically
modifying thewithin estimator. Hahn and Kuersteiner (2002) provide
a rigorous asymptotic theory for the within estimator and the bias
corrected estimator when both n and T go to infinity with the same
rate. As an alternative to the analytical bias correction, Hahn and
Newey (2004) have also considered the Jackknife bias reduction
approach.

A general SDPD model can be specified as:

Ynt = λ0WnYnt + γ0Yn;t�1 + ρ0WnYn;t�1 + Xntβ0 + cn0 + αt0ln + Vnt ;

t = 1;2; :::; T; ð15Þ

where γ0 captures the pure dynamic effect and ρ0 captures the
spatial–time effect. Due to the presence of fixed individual and time
effects, Xnt will not include any time invariant or individual invariant
regressors. Section 3.1 classifies the above SDPDmodel into different
cases depending on the structure of eigenvaluematrix of the reduced
form of Eq. (15). Section 3.2 covers the asymptotic properties for the
QMLEs of different cases when T is large. When T is fixed, we need to
specify the initial condition if MLE is used.8 Section 3.3 discusses the
dynamic panelmodelwith spatial correlated disturbances, which can
be treated in some situations as a special case of the general SDPD
model.

3.1. Classification of SDPD models

By denoting An=Sn
−1(γ0In+ρ0Wn), Eq. (15) can be rewritten as

Ynt = AnYn;t�1 + S�1
n Xntβ0 + S�1

n cn0 + αt0S
�1
n ln + S�1

n Vnt : ð16Þ

Depending on the eigenvalues of An, we might have different DGPs
of the SDPDmodels. As is shown below, when all the eigenvalues of An

are smaller than 1, we have the stable case.When some eigenvalues of
An are equal to 1 (but not all), we have the spatial cointegration case.
The pure unit root case corresponds to the situation in which all the
eigenvalues are 1. When some of them are greater than 1, we have the
explosive case.

Letϖn=diag{ϖn1,...,ϖnn} be the n×n diagonal eigenvalue matrix
of Wn such that Wn=ΓnϖnΓn−1 where Γn is the corresponding
eigenvector matrix. As An=Sn

−1(γ0In+ρ0Wn), the eigenvaluematrix
of An is Dn=(In−λ0ϖn)−1(γ0In+ρ0ϖn) so that An=ΓnDnΓn−1.
When Wn is row-normalized, all the eigenvalues are less than or
equal to 1 in absolute value, where it definitely has some eigenvalues
equal to 1 (see Ord, 1975). Let mn be the number of unit eigenvalues
of Wn, and suppose that the firstmn eigenvalues of Wn are equal to 1.
Hence, Dn can be decomposed into two parts, one corresponding to
the unit eigenvalues of Wn, and the other corresponding to the
eigenvalues of Wn smaller than 1. Define Jn = diagf1′mn ;0; :::;0gwith
8 We may also consider the estimation by the generalized method of moments
where lagged dependent variables can be used as IVs. Such an approach is under
consideration.

Please cite this article as: Lee, L., Yu, J., Some recent developments in
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1mn
being anmn×1 vector of ones and D̃n=diag{0,...,0,dn,mn+1,...,dnn},

where |dni|b1 is assumed9 for i=mn+1,···,n. As Jn:Dn
˜ = 0, we

have Ah
n = ðγ0 + ρ0

1� λ0
ÞhΓn JnΓ�1

n + Bh
n where Bn

h= ΓnD̃n
hΓn− 1 for any

h=1,2,···.
DenoteWu

n = ΓnJnΓ�1
n . For t≥0, Ynt can be decomposed into a sum

of a possible stable part, a possible unstable or explosive part, and a
time effect part:

Ynt = Yu
nt + Ys

nt + Yα
nt ; ð17Þ

where

Ys
nt = ∑∞

h=0B
h
nS

−1
n ðcn0 + Xn;t�hβ0 + Vn;t�hÞ;

Yu
nt = Wu

nf γ0 + ρ0
1� λ0

� �t+1
Yn;�1 +

1
ð1� λ0Þ

½∑t
h=0

γ0 + ρ0
1� λ0

� �h

�ðcn0 + Xn;t�hβ0 + Vn;t�hÞ�g;
Yα
nt =

1
ð1� λ0Þ

ln∑
t
h=0αt�h;0

γ0 + ρ0
1� λ0

� �h

:

The Ynt
u can be an unstable component when γ0 + ρ0

1� λ0
= 1, which

occurs when γ0+ρ0+λ0=1 and λ0≠1. When γ0+ρ0+λ0N1 , it
implies γ0 + ρ0

1� λ0
N 1, and Ynt

u can be explosive. The Ynt
α can be

complicated, as it depends on what the time dummies exactly
represent. The Ynt

α can be explosive when α t0 represents some
explosive functions of t, even when γ0 + ρ0

1� λ0
is smaller than 1. Without

an explicit specification for αt0, it is desirable to eliminate this
component for estimation. The Ynt

s can be a stable component unless
the sum γ0+ρ0+λ0 is much larger than 1. If γ0+ρ0+λ0 were too
large, some of the eigenvalues dni in Ynt

s might become larger than 1.
Hence, depending on the value of γ0 + ρ0

1� λ0
, we have three cases:

▸ Stable case when γ0+ρ0+λ0b1.

▸ Spatial cointegration case when γ0+ρ0+λ0=1 but γ0≠1.

▸ Explosive case when γ0+ρ0+λ0N1.

For the stable case, Yu et al. (2008) consider the fixed effects
specification with T going to infinity. The rates of convergence of
QMLEs are

ffiffiffiffiffiffi
nT

p
. For the spatial cointegration case where Ynt andWnYnt

are spatially cointegrated, it is shown in Yu et al. (2007) that theQMLEs
are

ffiffiffiffiffiffi
nT

p
consistent and asymptotically normal. However, the presence

of the unstable components will make the estimators′ asymptotic
variance matrix singular. Yu et al. (2007) show that the sum of the
spatial and dynamic effects estimates converges at a higher rate. For
the explosive case, the properties of the QMLEs remain unknown.
However, the estimation of the explosive case becomes tractablewhen
a transformation can reduce the explosive variables to be stable ones.
The subsequent section presents more detailed discussions.

3.2. Stable, spatial cointegration, and explosive cases

For notational purposes, we define Ỹnt=Ynt−Y
—

nT and Ỹn,t−1=
Yn,t− 1−Y

—
nT,−1 for t=1, 2,···,T where �YnT = 1

T
∑T

t = 1 Ynt and�
YnT ;�1 = 1

T
∑T

t = 1 Yn;t�1. For the stable case and the spatial cointe-
gration case below, we will focus on the model without the time
effects. We then discuss the case where the time effects are
included but eliminated by the transformations Jn or In−Wn.

3.2.1. Stable case
Denote θ=(δ′, λ, σ2)′ and ζ=(δ′, λ, cn′)′ where δ=(γ, ρ, β′)′. At

the true value, θ0=(δ0′, λ0, σ0
2)′ and ζ0=(δ0′, λ0, cn0′)′ where δ0=(γ0,
9 We note that dni=(γ0+ρ0ϖni)/(1−λ0ϖni). Hence, if γ0+λ0+ρ0b1, we have
dnib1 as |ϖni|≤1. Some additional conditions are needed to ensure that dniN−1. See
Appendix A in Lee and Yu (2009).

spatial panel data models, Regional Science and Urban Economics
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ρ0, β0′)′. By denoting Znt=(Yn,t−1, WnYn,t−1, Xnt), the likelihood
function of Eq. (15) is

lnLn;T ðθ; cnÞ = � nT
2

ln2π� nT
2

lnσ2 + T ln jSnðλÞ j

� 1
2σ2 ∑

T
t = 1 V ′ntðζÞVntðζÞ;

ð18Þ

where Vnt(ζ)=Sn(λ)Ynt−Zntδ−cn. The QMLEs θn̂T and ĉnT are the
extremum estimators derived from the maximization of Eq. (18), and
ĉnT can be consistently estimated when T goes to infinity.

Using the first order condition for cn, the concentrated likelihood is

lnLn;T ðθÞ = � nT
2

ln2π� nT
2

lnσ2 + T ln jSnðλÞ j

� 1
2σ2 ∑

T
t = 1Ṽ

′
ntðζÞṼntðζÞ;

ð19Þ

where Ṽnt(ζ)=Sn(λ)Yñt− Z̃ntδ. The QMLE θ̂nT maximizes the concen-
trated likelihood function (19). As is shown in Yu et al. (2008), we
have

ffiffiffiffiffiffi
nT

p
ðθ̂nT � θ0Þ +

ffiffiffi
n
T

r
φθ0 ;nT + Op max

ffiffiffiffiffiffi
n
T3

r
;

ffiffiffi
1
T

r ! !

d
→

Nð0; lim
T→∞

∑�1
θ0 ;nT ð∑θ0 ;nT + Ωθ0 ;nT Þ∑

�1
θ0 ;nTÞ;

ð20Þ

where φθ0,nT is the leading bias term of order O(1), ∑θ0,nT is the
information matrix, and Ωθ0,nT captures the non-normality feature
of the disturbances. For the leading bias term, φθ0,nT=∑θ0,nT

−1 φ1

where

φ1 =

1
n
trðð∑∞

h = 0A
h
nÞS�1

n Þ
1
n
trðWnð∑∞

h = 0A
h
nÞS�1

n Þ
0k�1

1
n
γ0trðGnð∑∞

h = 0A
h
nÞS�1

n Þ + 1
n
ρ0trðGnWnð∑∞

h = 0 A
h
nÞS�1

n Þ + 1
n
trGn

1
2σ2

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

ð21Þ

and

Σθ0 ;nT = 1
σ2
0

EHnT ⁎
01�ðk + 3Þ 0

� �

+

0ðk + 2Þ�ðk + 2Þ ⁎ ⁎

01�ðk + 2Þ
1
n
½trðG′nGnÞ + trðG2

nÞ� ⁎

01�ðk + 2Þ
1

σ2
0n
trðGnÞ 1

2σ 4
0

0
BBBB@

1
CCCCA + O 1

T

� �
;

with Gn≡WnSn
−1 and HnT = 1

nT
∑T

t = 1 ðZ̃nt ;Gn Z̃ntδ0Þ′ðZ̃nt ;Gn Z̃ntδ0Þ.
Hence, for distribution of the common parameters, when T is large
relative to n , the estimators are

ffiffiffiffiffiffi
nT

p
consistent and asymptotically

normal, with the limiting distribution centered around 0; when n is
asymptotically proportional to T, the estimators are

ffiffiffiffiffiffi
nT

p
consistent

and asymptotically normal, but the limiting distribution is not
centered around 0; and when n is large relative to T, the estimators
are T consistent, and have a degenerate limiting distribution.
Please cite this article as: Lee, L., Yu, J., Some recent developments in
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3.2.2. Spatial cointegration case
The log likelihood function of the spatial cointegrationmodel is the

same as the stable case. However, the properties of the estimators are
not the same. We have

ffiffiffiffiffiffi
nT

p
ðθ̂nT � θ0Þ +

ffiffiffi
n
T

r
φθ0 ;nT + Op max

ffiffiffiffiffiffi
n
T3

r
;

ffiffiffi
1
T

r ! !

d
→

Nð0; lim
T→∞

∑�1
θ0 ;nT ð∑θ0 ;nT + Ωθ0 ;nT Þ∑

�1
θ0;nT Þ;

ð22Þ

where φθ0,nT≡∑θ0,nT
−1 ·φ2 is the leading bias term of order O(1) and

φ2 = asθ0 ;n +
mn

n
auθ0 ;T ð23Þ

with

asθ0 ;n =

1
n
trðð∑∞

h = 0 B
h
nÞS�1

n Þ
1
n
trðWnð∑∞

h = 0 B
h
nÞS�1

n Þ
0k�1

1
n
γ0trðGnð∑∞

h = 0 B
h
nÞS�1

n Þ + 1
n
ρ0trðGnWnð∑∞

h = 0 B
h
nÞS�1

n Þ + 1
n
trGn

1
2σ2

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

auθ0 ;T = T⋅ 1
2ð1−λ0Þ

⋅ð1;1;01�k;1;0Þ′:

The distinctive feature of the spatial cointegration case is that
limT→∞∑θ0,nT

−1 exists but is singular. This indicates that some linear
combinations may have higher rates of convergence. Indeed, we have

ffiffiffiffiffiffiffiffi
nT3

p
ð λ̂nT + γ̂nT + ρ̂nT � 1Þ +

ffiffiffi
n
T

r
bθ0 ;nT + Op max

ffiffiffiffiffiffi
n
T3

r
;

ffiffiffi
1
T

r ! !

d
→

Nð0; lim
T→∞

σ2
1;nT Þ:

Here, σ1,nT
2 =limT→∞ωnT

−1+limT→∞T
2(1,1,01×k,1,0)(limT→∞∑θ0,nT

−1

Ωθ0,nT∑θ0,nT
−1 )(1,1,01×k,1,0)′ is a positive scalar variance where ωnT =

1
nT3 ∑T

t = 1 Ỹ
u′
n;t�1 Ỹ

u
n;t�1 , and bθ0,nT=T·(1,1,01×k,1,0)·φθ0 ,nT is O(1).

The spatial cointegration model is related to the cointegration
literature. Here, the unit roots are generated from the mixed time and
spatial dimensions. The cointegration matrix is (In−Wn), and its rank
is the number of eigenvalues ofWn being less than 1 in absolute value.
Compared to conventional cointegration in time series literature, the
cointegrating space is completely known and is determined by
the spatial weights matrix; while in the conventional time series, it
is themain object of inference. Also, in the conventional cointegration,
the dimension of VAR is fixed and relatively small while the spatial
dimension in the SDPD model is large. The spatial cointegration
features of this case can be seen as follows. Denote the time difference
as ΔYnt=Ynt−Yn,t−1, we have, from Eq. (16),

ΔYnt = ðAn � InÞYn;t�1 + S�1
n ðXntβ0 + cn0 + VntÞ:

As γ0+ρ0+λ0=1, it follows that An− In=(In−λ0Wn)−1(γ0In+
ρ0Wn)− In=(1−γ0)(In−λ0Wn)−1(Wn− In). Thus, the error correc-
tion model (ECM) form is

ΔYnt = ð1� γ0ÞðIn � λ0WnÞ�1ðWn � InÞYn;t−1 + S�1
n ðXntβ0 + cn0 + VntÞ:

AsWn=ΓnϖnΓn−1 andMn=ΓnJnΓn−1, it follows that (In−Wn)Mn=
Γn(In−ϖn)JnΓn−1=0. Hence, (In−Wn)Yntu =0, and also (In−Wn)
Ynt=(In−Wn)Ynts , which depends only on the stationary component.
spatial panel data models, Regional Science and Urban Economics

http://dx.doi.org/10.1016/j.regsciurbeco.2009.09.002


8 L. Lee, J. Yu / Regional Science and Urban Economics xxx (2009) xxx–xxx

ARTICLE IN PRESS
Therefore, Ynt is spatially cointegrated. The matrix In−Wn=Γn(In−
ϖn)Γn−1 has its rank equal to n−mn, which is the number of
eigenvalues of Wn that are smaller than 1 — the cointegration rank.

3.2.3. Transformation approach of Jn: the case with time dummies
When we have time effects included in the SDPDmodel, the direct

estimation method above will yield a bias of order O(max(1/n,1/T))
for the common parameters.10 In order to avoid the bias of the order
O(1/n), we may use a data transformation approach, while
the resulting estimator may have the same asymptotic efficiency as
the direct QML estimator. This transformation procedure is particu-
larly useful when n/T→0 where the estimates of the transformed
approach will have a faster rate of convergence than that of the
direct estimates. Also, when n/T→0, the estimates under the direct
approach have a degenerate limit distribution, but the estimates under
the transformation approach are properly centered and asymptotically
normal.

With the transformation Jn, when Wnln= ln, i.e., Wn is a row-
normalized matrix, JnWn = JnWnð Jn + 1

n
lnl′nÞ = JnWnJn because JnWn

ln= Jnln=0. Hence,

ð JnYntÞ = λ0ð JnWnÞð JnYntÞ + γ0ð JnYn;t−1Þ + ρ0ð JnWnÞð JnYn;t−1Þ
+ ð JnXntÞβ0 + ð Jncn0Þ + ð JnVntÞ;

ð24Þ

which does not involve the time effects, and Jncn0 can be regarded as
the transformed individual effects. With the additional transforma-
tion Fn,n−1, by denoting Ynt⁎=F′n,n−1 JnYnt=F′n,n−1Ynt, which is of the
dimension (n−1), we have

Y⁎nt = λ0W⁎
n Y⁎nt + γ0Y⁎n;t�1 + ρ0W⁎

n Y⁎n;t�1 + X⁎ntβ0 + c⁎n0 + V⁎nt ; ð25Þ

where Wn
⁎=F′n,n−1WnFn,n−1, Xnt

⁎ =F′n,n−1Xnt, cn0⁎ =F′n,n−1cn0 and
Vnt
⁎ =F′n,n−1Vnt. The Vnt

⁎ is an (n−1) dimensional disturbance vector
with zero mean and variance matrix σ0

2In−1. Eq. (25) is in the format
of a typical SDPDmodel, where the number of observations is T(n−1),
reduced from the original sample observations by one for each period.
Eq. (25) is useful because a likelihood function for Ynt⁎ can be cons-
tructed. Such a likelihood function is a partial likelihood — a
terminology introduced in Cox (1975). If Vnt is normally distributed
N(0, σ0

2In), the transformed Vnt
⁎ will be N(0, σ0

2In−1). Thus, the log
likelihood function of Eq. (25) can be written as

ln Ln;T ðθ; cnÞ = − ðn−1ÞT
2

ln2π− ðn−1ÞT
2

lnσ2−T lnð1−λÞ

+ T ln j In−λWn j−
1

2σ2 ∑
T

t=1
Vnt
′ ðθÞJnVntðθÞ:

ð26Þ

As is shown in Lee and Yu (2007), the QMLE from the above
maximization is free of Oð1= nÞ bias.

3.2.4. Explosive case
When some eigenvalues of An are greater than 1, it might be

difficult to obtain the estimates in our experience. Furthermore,
asymptotic properties of the QML estimates of such a case are
unknown. However, the explosive feature of themodel can be avoided
by the data transformation In−Wn. The transformation In−Wn can
eliminate not only time dummies but also the unstable component.
10 This bias has been worked out for the stable case in Lee and Yu (2007). For the
spatial cointegration case, Yu et al. (2007) have not considered the model with time
dummies. However, we would expect the presence of such a bias order for the spatial
cointegration case.

Please cite this article as: Lee, L., Yu, J., Some recent developments in
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Hence, we end up with the following equation after the In−Wn

transformation:

ðIn �WnÞYnt = λ0WnðIn �WnÞYnt + γ0ðIn �WnÞYn;t�1

+ ρ0WnðIn �WnÞYn;t�1 + ðIn �WnÞXntβ0

+ ðIn �WnÞcn0 + ðIn �WnÞVnt :

ð27Þ

This transformed equation has fewer degrees of freedom than n.
Denote the degrees of freedom of Eq. (27) as n⁎. Then, n⁎ is the rank of
the variance matrix of (In−Wn)Vnt, which is the number of non-zero
eigenvalues of (In−Wn)(In−Wn)′. Hence, n⁎=n−mn is also the
number of non-unit eigenvalues of Wn. The transformed variables do
not have time effects and can be stable even when γ0+ρ0+λ0 is
equal to or greater than 1.

The variance of (In−Wn)Vnt is σ0
2∑n, where ∑n=(In−Wn)(In−

Wn)′. Let [Fn, Hn] be the orthonormal matrix of eigenvectors and Λn

be the diagonal matrix of nonzero eigenvalues of ∑n such that
∑nFn=FnΛn and ∑nHn=0. That is, the columns of Fn consist of
eigenvectors of non-zero eigenvalues, and those of Hn are for zero-
eigenvalues of ∑n. The Fn is an n×n⁎ matrix, and Λn is an n⁎×n⁎

diagonal matrix. Denote Wn
⁎=Λn

−1/2Fn′WnFnΛn
1/2 which is an n⁎×n⁎

matrix. We have

Y⁎nt = λ0W⁎
n Y⁎nt + γ0Y⁎n;t�1 + ρ0W⁎

n Y⁎n;t�1 + X⁎ntβ0 + c⁎n0 + V⁎nt ; ð28Þ

where Ynt⁎ =Λn
−1/2Fn′(In−Wn)Ynt and other variables are defined

accordingly. Note that this transformed Ynt⁎ is an n⁎-dimensional
vector. The eigenvalues ofWn

⁎ are exactly those eigenvalues ofWn less
than 1 in absolute value. It follows that the eigenvalues of An

⁎ =
(In⁎−λ0Wn

⁎)−1(γ0In⁎+ρ0Wn
⁎) are all less than 1 in absolute values

even when γ0+ρ0+λ0=1 with |λ0|b1 and |γ0|b1. For the explosive
case with γ0+ρ0+λ0N1, all the eigenvalues of An⁎ can be less than 1
only if ρ0 + λ0

1� γ0
b

1
ϖmax

, where ϖmax is the maximum positive eigenvalue

ofWn less than 1. Hence, the transformedmodel (28) is a stable one as
long as γ0+ρ0+λ0 is not too much larger than 1.

For the concentrated log likelihood of Eq. (28), it is

ln Ln;T ðθÞ = � n⁎T
2

ln2π� n⁎T
2

lnσ2 � ðn� n⁎ÞT lnð1� λÞ + T ln j In � λWn j

� 1
2σ2 ∑

T

t=1
Ṽ ′ntðθÞðIn �WnÞ′∑þ

n ðIn �WnÞṼntðθÞ;
ð29Þ

where Ṽnt(θ)=Sn(λ)Ỹnt− Z̃ntδ. From Lee and Yu (2009), we have
similar results to those of Yu et al. (2008) for the stable model, where
the bias term and the variance term would involve only the stable
component that is left after the In−Wn transformation.11

Therefore, we can use the spatial difference operator, In−Wn,
which may eliminate not only the time effects, but also the possible
unstable or explosive components that are generated from the spatial
cointegration or explosive roots. This implies that the spatial
difference transformation can be applied to DGPswith stability, spatial
cointegration or explosive roots. The asymptotics of the resulting
estimates can then be easily established for these DGPs. Thus, the
transformation In−Wn provides a unified estimation procedure for
the estimation of the SDPD models.
11 We note that the spatial difference operator In−Wn can also be applied to cross
sectional units. However, its function is different from the time difference operator for
a time series. The spatial difference operator does not eliminate the pure time series
unit roots or explosive roots.

spatial panel data models, Regional Science and Urban Economics

http://dx.doi.org/10.1017/S0266466609100099
http://dx.doi.org/10.1017/S0266466609100099
http://dx.doi.org/10.1016/j.regsciurbeco.2009.09.002


13 Mutl (2006) suggests feasible generalized 2SLS approach for the estimation of
dynamic panel data model with fixed effects and SAR disturbances after first-difference of
data. His feasible 2SLS is based on three steps, which extends the three steps feasible GLS
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3.2.5. Bias correction
For each case, we may propose a bias correction for the estimators,

which would be valuable for moderately large T. For the stable model
with only individual effects, the bias is φθ0,nT=∑θ0,nT

−1 φ1 where φ1 is in
Eq. (21); for the spatial cointegration case, the bias is φθ0,nT=∑θ0,nT

−1 φ2

where φ2 is in Eq. (23). For the stable case with the transformation
Jn, the bias is φθ0,nT=∑θ0,nT

−1 φ3 where

φ3 =

1
n−1

trðð Jn∑∞
h = 0 A

h
nÞS�1

n Þ
1

n−1
trðWnð Jn∑∞

h = 0 A
h
nÞS�1

n Þ
0k�1

1
n� 1

γ0trðGnð Jn∑∞
h = 0 A

h
nÞS�1

n Þ + 1
n� 1

ρ0trðGnWnð Jn∑∞
h = 0 A

h
nÞS−1

n Þ + 1
n� 1

trð JnGnÞ
1

2σ2
0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

ð30Þ

For the unified transformation approach, the bias is φθ0,nT=
∑θ0,nT

−1 φ4 and

φ4 =

1
n⁎
trðð J⁎n ∑∞

h = 0 B
h
nÞS�1

n Þ
1
n⁎
trðWnð J⁎n ∑∞

h = 0 B
h
nÞS�1

n Þ
0k�1

1
n⁎

γ0trðGnð J⁎n ∑∞
h = 0 B

h
nÞS�1

n Þ + 1
n⁎

ρ0trðGnWnð J⁎n ∑∞
h = 0 B

h
nÞS�1

n Þ + 1
n⁎
trG⁎n

1
2σ2

0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
;

ð31Þ

where Jn⁎=(In−Wn)′∑n
+(In−Wn).

Hence, the QMLE θ̂nT has the bias �1
T
φθ0 ;nT and the confidence

interval is not centered when n⁎
T
→c where n⁎ is the corresponding

degrees of freedom in each model for some finite positive constant
c. Furthermore, when T is small relative to n in the sense that n

T
→∞,

the presence of φθ0,nT causes θ̂nT to have the slower T-rate of
convergence. An analytical bias reduction procedure is to correct the
bias BnT=−φθ0,nT by constructing an estimate B̂nT. The bias corrected
estimator is

θ̂1nT = θ̂nT �
B̂nT

T
: ð32Þ

We may choose12

B̂nT = E
1
nT

∂2 ln Ln;T ðθÞ
∂θ∂θ′

 ! !�1

φiðθÞ
" # j

θ= θ̂nT
;

ð33Þ

where i=1, 2, 3, 4 corresponds to stable, spatial cointegration,
Jn-transformed and (In−Wn)-transformedmodels.When T grows faster
than n⁎1/3, the correction will eliminate the bias of order O(T−1) and
yield a properly centered confidence interval.

3.3. Dynamic panel data models with SAR disturbances

Elhorst (2005), Su and Yang (2007), and Yu and Lee (2007)
consider the estimation of a dynamic panel data model with spatial
disturbances

Ynt = γ0Yn;t�1 + Xntβ0 + znη0 + Unt ; t = 1; :::; T;

Unt = μn + εnt ; and εnt = λ0Wnεnt + Vnt :
ð34Þ

When T is moderate, this model with |γ0|b1 can be estimated
by the methods discussed in Section 2, because the dynamic
12 An asymptotically equivalent alternative way is to replace ∑θ0,nT
−1 by the empirical

Hessian matrix of the concentrated log likelihood function.

Please cite this article as: Lee, L., Yu, J., Some recent developments in
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specification in Eq. (34) can be transformed to Ynt=λ0WnYnt+γ0Yn,t−1−
γ0λ0WnYn,t−1+Xntβ0−WnXntλ0β0+cn0+Vnt. This corresponds to an
SDPD model with transformed individual effects cn0=(In−Wn)−1µn,
nonlinear constraints ρ0=−γ0λ0, and Xntβ0=Xntβ0−WnXntλ0β0 with
Xnt=[Xnt,Wn Xnt] and β0=[β0,−λ0β0]. The case γ0=1 is special in the
sense that themodel is a pure unit root case in the time dimensionwith
spatial disturbances. We shall discuss the estimation of such a case in a
subsequent paragraph.

Elhorst (2005) and Su and Yang (2007) have focused on estimating
the short panel case, i.e., n is large but T is fixed. Elhorst (2005) uses
the first difference to eliminate the fixed individual effects in µn, and
Su and Yang (2007) derive the asymptotic properties of QMLEs using
both the random and fixed effects specifications. As T is fixed and we
have the dynamic feature, the specification of the initial observation
Yn0 is important. When Yn0 is assumed to be exogenous, the likelihood
function can be obtained easily, either for the random effects
specification, or for the fixed effects specification where the first
difference is made to eliminate the individual effects. When Yn0 is
assumed to be endogenous, Yn0 will need to be generated from a
stationary process, or its distribution will be approximated. With the
corresponding likelihood, QMLE can be obtained.13
3.3.1. Pure unit root case
In Yu and Lee (2007) for the SDPD model, when γ0=1 and ρ0+

λ0=0, we have An= In in Eq. (16). Hence, the eigenvalues of An have
no relation with the eigenvalues of Wn because all of them are equal
to 1. We term this model a unit root SDPDmodel. This model includes
the unit root panel model with SAR disturbances in Eq. (34) as a
special case. The likelihood of the unit root SDPD model without
imposing the constraints γ0=1 and ρ0+λ0=0 is similar to the
stable case in Eq. (19), but the asymptotic distributions of the
estimates are different.

For the unit root SDPD model, the estimate of the pure dynamic
coefficient γ0 is

ffiffiffiffiffiffiffiffi
nT3

p
consistent and the estimates of all the other

parameters are
ffiffiffiffiffiffi
nT

p
consistent; and they are asymptotically normal.

Also, the sum of the contemporaneous spatial effect estimate of λ0

and the dynamic spatial effect estimate of ρ0 will converge at
ffiffiffiffiffiffiffiffi
nT3

p

rate. The rates of convergence of the estimates can be compared with
those of the spatial cointegration case in Yu et al. (2007). For the latter,
all the estimates of parameters including γ0 are

ffiffiffiffiffiffi
nT

p
consistent; only

the sum of the pure dynamic and spatial effects estimates is
convergent at the faster

ffiffiffiffiffiffiffiffi
nT3

p
rate. Also, there are differences in the

bias orders of estimates. For the spatial cointegration case, the biases
of all the estimates have the order O(1/T). But for the unit root SDPD
model, the bias of the estimate of γ0 is of the smaller order O(1/T2),
while the order of biases for all the other estimates have the same O
(1/T) order. These differences are due to different asymptotic
behaviors of the two models, even though both models involve unit
eigenvalues in An. The unit eigenvalues of the unit root SDPD model
are not linked to the eigenvalues of the spatial weights matrix. On the
contrary, for the spatial cointegration model, the unit eigenvalues
correspond exactly to the unit eigenvalues of the spatial weights
matrix via a well defined relation. For the unit roots SDPD model, the
outcomes of different spatial units do not show co-movements. For
the spatial cointegrationmodel, the outcomes of different spatial units
can be cointegrated with a reduced rank, where the rank is the
number of eigenvalues of Wn different from 1.
and SAR disturbances to the estimation of dynamic panelmodel. Tao (2005) considers the
SDPDmodelwithfixedeffectswhere thedisturbancesare i.i.d. and suggests theuseof2SLS
for the estimation. His 2SLS is also applied to the equation after first-difference.

spatial panel data models, Regional Science and Urban Economics
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3.3.2. Random effects specification with a fixed T
For Eq. (34) under the random effects specification, as shown in Su

and Yang (2007), the variance matrix of the disturbances is συ
2ΩnT=

συ
2[ϕµ(lTlT′⊗In)+ IT⊗(Sn′Sn)−1] where ϕμ =

σ2
μ

σ2
υ
. There are two cases

under this specification.

Case 1. Yn0 is exogenous. Let θ=(β′, η′, γ)′, δ=(λ, ϕµ)′ and ς=(θ′,
συ

2, δ′)′. The log likelihood is

lnLðςÞ = � nT
2

lnð2πÞ � nT
2

lnðσ2
υÞ �

1
2
ln jΩnT j �

1
2σ2

υ
u′nT ðθÞΩ

�1
nT unT ðθÞ;

where unT(θ)=YnT−γYnT,−1−XnTβ− lT⊗znη with YnT=(Yn1′ ,...,YnT′ )′
and other variables in the vector form are similarly defined. By
concentration, we can work on the log likelihood with δ

ln LðδÞ = � nT
2

ðlnð2πÞ + 1Þ � nT
2

ln½σ̂ 2
υ ðδÞ� �

1
2
ln jΩnT j ;

where σ̂
2
υðδÞ = 1

nT
ũ′
nTðδÞΩ�1

nT ũnTðδÞ, ũnT(δ)=YnT−ZnT θ̂(δ) with ZnT=

(XnT,lT⊗zn,YnT,−1) and θ̂=[ZnT′ ΩnT
−1ZnT]−1ZnT′ ΩnT

−1YnT.

Case 2. Yn0 is endogenous. Eq. (34) implies that Yn0=Ỹn0+ζn0 where
Ỹn0 is the exogenous part of Yn0 and ζn0 is the endogenous part. The
exogenous part Ỹn0 is ∑∞

j = 0γ
j
0Xn;t�jβ0 + znη0

1� γ0
, and the endogenous

part ζn0 is
μn

1� γ0
+ ∑∞

j = 0γ
j
0S

�1
n Vn;t�j. The difficulty to use this directly

is due to the missing observations Xnt for tb0. Under this situation, Su
and Yang (2007) suggest the use of the Bhargava and Sargan (1983)
approximation where the initial value is specified as Yn0=XnTπ+�n

with XnT=[ln, Xn,T+1, zn], Xn,T+1=[Xn0,..., XnT] and π=(π0, π1′, π2)′,
or, XnT=[ln,

–Xn,T+1, zn] and
�
Xn;T + 1 = 1

T ∑
T
t = 0 Xnt . The disturbances

of the initial period are specified as �n = ζn + ζn0 = ζn + μn
1� γ0

+
∑∞

j = 0γ
j
0S

�1
n Vn;t�j where ζn is (0, σζ

2In). The �n has mean zero, its

variancematrix is Eð�n�′nÞ = σ2
ζ In +

σ2
μ

ð1� γ0Þ2
In + σ2

υ

1� γ2
0

ðS′nSnÞ�1, and its

covariance with unT is Eð�nu′
nTÞ =

σ2
μ

1� γ0
l′T⊗In. The motivation is that

XnTπ+ζn approximates Ỹn0. Hence, the disturbances vector would be
un,T+1⁎ =(�n′, unT′ )′ where unT is from Case 1. Its variance matrix is
συ

2Ωn,T+1⁎ with the dimension n(T+1)×n(T+1) where

σ2
υΩn;T+1

⁎ =
σ2
ζ In +

σ2
μ

ð1� γ0Þ2
In + σ2

υ

1� γ2
0

ðS′nSnÞ�1 σ2
μ

1� γ0
l′T⊗In

σ2
μ

1� γ0
lT⊗In σ2

υΩnT

0
BBB@

1
CCCA:

Let θ=(β′, η′, π′)′, δ=(γ, λ, ϕµ, σζ
2)′ and ς=(θ′, συ

2, δ′)′. The log
likelihood is

ln LðςÞ = −nðT + 1Þ
2

lnð2πÞ � nðT + 1Þ
2

lnðσ2
υÞ �

1
2
ln jΩ⁎

n;T + 1 j

� 1
2σ2

υ
u⁎

′

n;T + 1ðθÞΩ⁎�1
n;T + 1u

⁎
n;T + 1ðθÞ:

3.3.3. Fixed effects specification with a fixed T
As is discussed in Elhorst (2005) and Su and Yang (2007), the

model may also be first differenced to eliminate the individual effects.
Thus, we have

ΔYnt = γ0ΔYn;t�1 + ΔXntβ0 + S�1
n ΔVnt ;

for t=2,..,T, and the difference of the first two periods is specified to
be ΔYn1=ΔXnTπ+en, where ΔXnT=[ln,Xn1−Xn0,...,XnT−Xn,T−1] or
ΔXnT = ½ln; 1T∑

T
t = 1ðXnt � Xn;t�1Þ�. Here, en is specified as (ξn1−E(ξn1

|ΔXnT))+∑j=0
m (γ0

jSn
−1ΔVn,1− j) where ξn1−E(ξn1|ΔXnT) is assumed

to be (0, σe
2In). With this specification, we have E(en|ΔXnT)=0 and E
Please cite this article as: Lee, L., Yu, J., Some recent developments in
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(enen′)=σe
2In+συ

2cm(Sn′Sn)−1, where σe
2 and cm are parameters to be

estimated. Also, for the correlation of en with Δunt=Sn
−1ΔVnt for

t=2,...,T, we have E(enΔu′n2)=−συ
2(Sn′Sn)−1 and E(enΔu′nt)=0 for

t≥3. Therefore, the variancematrix of the disturbances vector ΔunT=
(en′, Δu′n2,...,Δu′nT)′ is

varðΔunT Þ = σ2
υðIT⊗S�1

n ÞHEðIT⊗S′�1
n Þ≡σ2

υΩnT ;

where

HE =

En �In 0 ⋯ 0
�In 2In �In ⋯ 0
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ �In
0 ⋯ 0 �In 2In

0
BBBB@

1
CCCCA;

and En = σ2
e

σ2
υ
ðIn + cmðS′nSnÞ�1Þ. The log likelihood is

lnLðςÞ = � nT
2

lnð2πÞ � nT
2

lnðσ2
υÞ �

1
2
ln jΩnT j

� 1
2σ2

υ
Δu′

nT ðθÞΩ�1
nT ΔunT ðθÞ;

where

ΔunT ðθÞ =ðΔYn1 � ΔXnTπ

ΔYn2 � ρΔYn1 � ΔXn2β

⋮
ΔYnT � ρΔYnT � ΔXnTβ

Þ:

As is shown in Su and Yang (2007), the ML estimates under both
random and fixed effects specifications are consistent and asymptoti-
cally normally distributed, under the assumption that the specification
ofΔYn1 is correct. In principle, one could show that the estimateswould
not be consistent for a short panel if the initial specification were
misspecified. Elhorst (2005) and Su and Yang (2007) have provided
some Monte Carlo results to demonstrate that their proposed
approximation could be valuable.

4. Monte Carlo and empirical illustrations

4.1. Monte Carlo

We report a small scale Monte Carlo experiment on the perfor-
mance of estimates under different settings and consequences of
possible model misspecifications.

4.1.1. Static spatial panel data models
For the static spatial panelmodel,wewill generate thedata according

to

Ynt = λ0WnYnt + Xntβ0 + μn + αt ln + Unt ; Unt = ρ0WnUnt + Vnt ;

t = 1;2; :::; T : ð35Þ

The direct approach and the transformation approach will be
compared. We also check the consequence of omitting time effects
when the DGP has them. The results are summarized in Table 1. We use
T=10, 50, n=16, 49 and θ0=(1,0.2,0.5,1)′ where θ0=(β0′, λ0, ρ0, σ0

2)′.
The Xnt, µn, αT=(α1, α2,···, αT) and Vnt are generated from independent
standard normal distributions, and the spatialweightsmatrixWn is a rook
matrix. Foreachsetof generated sampleobservations,wecalculate theML
estimator θ̂nT and evaluate the bias θ̂nT−θ0.Wedo this 1000 times to have
1

1000
∑1000

i = 1 ð θ̂nT � θ0Þi as the bias. For each case, we report bias (Bias),
empirical standard deviation (E-SD) and root mean square error (RMSE).
spatial panel data models, Regional Science and Urban Economics
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14 We generated the data with 20+T periods and then took the last T periods as the
sample. The initial value is generated as N(0, In) in the simulation.

Table 2
Stable SDPD models: before bias correction.

T n γ ρ β λ σ2

(1) Direct estimation
20 54 Bias −0.0286 0.0083 −0.0010 −0.0381 −0.0696

E-SD 0.0213 0.0453 0.0305 0.0376 0.0401
RMSE 0.0390 0.0627 0.0418 0.0615 0.0853

(2) Transformation by Fn,n−1

20 54 Bias −0.0302 −0.0018 −0.0015 −0.0034 −0.0538
E-SD 0.0215 0.0458 0.0307 0.0383 0.0420
RMSE 0.0402 0.0622 0.0420 0.0525 0.0759

(3) WnYnt omitted; transformation by Fn,n−1

20 54 Bias −0.0217 0.0628 0.0017 – −0.0302
E-SD 0.0217 0.0446 0.0311 – 0.0421
RMSE 0.0351 0.0870 0.0426 – 0.0649

(4) WnYn,t−1 omitted; transformation by Fn,n−1

20 54 Bias –0.0535 – −0.0184 0.4551 0.1744
E-SD 0.0175 – 0.0342 0.0181 0.1388
RMSE 0.0595 – 0.0497 0.4554 0.2257

(5) Yn,t−1 omitted; transformation by Fn,n−1

20 54 Bias – −0.0696 −0.0265 0.4523 0.2154
E-SD – 0.0236 0.0347 0.0188 0.1393
RMSE – 0.0830 0.0530 0.4528 0.2589

(6) Both WnYnt and WnYn,t−1 omitted; transformation by Fn,n−1

20 54 Bias 0.0024 – 0.0017 – 0.0038
E-SD 0.0217 – 0.0316 – 0.0436
RMSE 0.0309 – 0.0433 – 0.0622

(7) Yn,t−1 and WnYn,t−1 omitted; direct
20 54 Bias – – –0.0156 0.0350 0.0088

E-SD – – 0.0316 0.0358 0.0467
RMSE – – 0.0458 0.0650 0.0643

(8) αt omitted
20 54 Bias −0.0569 −0.1902 −0.0183 0.4511 0.1726

E-SD 0.0230 0.0307 0.0342 0.0187 0.1376
RMSE 0.0624 0.1948 0.0496 0.4515 0.2236

(9) Transformation by In−Wn

20 49 Bias −0.0306 −0.0034 −0.0023 −0.0092 −0.0561
E-SD 0.0249 0.0936 0.0334 0.0767 0.0439
RMSE 0.0438 0.1266 0.0460 0.1066 0.0808

Note: θ0=(0.2, 0.2, 1, 0.2, 1)′ where γ0+ρ0+λ0=0.6.

Table 1
Static spatial panel data models.

T n β λ ρ σ2

DGP with no time effect, direct approach (transformation approach)
(1a) 10 49 Bias −0.0005 0.0040 −0.0110 −0.1104 (−0.0116)

E-SD 0.0492 0.0948 0.0939 0.0633 (0.0704)
RMSE 0.0492 0.0949 0.0945 0.1273 (0.0713)

(1b) 50 16 Bias −0.0010 0.0021 −0.0050 −0.0278 (−0.0079)
E-SD 0.0380 0.0692 0.0660 0.0525 (0.0536)
RMSE 0.0380 0.0692 0.0662 0.0594 (0.0542)

(1c) 50 49 Bias −0.0009 −0.0011 −0.0004 −0.0224 (−0.0025)
E-SD 0.0220 0.0405 0.0401 0.0298 (0.0305)
RMSE 0.0220 0.0405 0.0401 0.0373 (0.0306)

DGP with time effect, direct approach
(2a) 10 49 Bias 0.0038 0.0241 −0.0779 −0.1151

E-SD 0.0488 0.0856 0.0910 0.0623
RMSE 0.0489 0.0889 0.1198 0.1308

(2b) 50 16 Bias 0.0038 0.0262 −0.1964 −0.0608
E-SD 0.0377 0.0496 0.0551 0.0498
RMSE 0.0379 0.0561 0.2040 0.0786

(2c) 50 49 Bias 0.0030 0.0195 −0.0671 −0.0272
E-SD 0.0217 0.0365 0.0385 0.0291
RMSE 0.0219 0.0413 0.0774 0.0398

DGP with time effect, transformation approach
(3a) 10 49 Bias −0.0001 0.0056 −0.0137 −0.0124

E-SD 0.0500 0.0986 0.1031 0.0706
RMSE 0.0500 0.0988 0.1040 0.0717

(3b) 50 16 Bias −0.0011 0.0019 −0.0046 −0.0093
E-SD 0.0393 0.0755 0.0845 0.0540
RMSE 0.0393 0.0755 0.0846 0.0548

(3c) 50 49 Bias −0.0009 −0.0011 −0.0002 −0.0026
E-SD 0.0222 0.0422 0.0434 0.0305
RMSE 0.0222 0.0423 0.0434 0.0306

DGP with time effect, omitted in the estimation, direct (transformation)
(4a) 10 49 Bias −0.0582 −0.0890 0.1850 −0.1359 (−0.0399)

E-SD 0.0567 0.2887 0.2910 0.0757 (0.0841)
RMSE 0.0812 0.3021 0.3448 0.1556 (0.0931)

(4b) 50 16 Bias −0.0585 −0.1612 0.2747 −0.0517 (−0.0324)
E-SD 0.0406 0.1073 0.0945 0.0570 (0.0582)
RMSE 0.0712 0.1937 0.2905 0.0770 (0.0666)

(4c) 50 49 Bias −0.0745 −0.2231 0.3226 −0.0746 (−0.0557)
E-SD 0.0239 0.0695 0.0610 0.0333 (0.0339)
RMSE 0.0782 0.2337 0.3283 0.0817 (0.0652)

Note: θ0=(1, 0.2, 0.5, 1)′.

11L. Lee, J. Yu / Regional Science and Urban Economics xxx (2009) xxx–xxx

ARTICLE IN PRESS
For theDGPwith only individual effects, from item(1a)–(1c),we see
that both approaches provide the same estimate of ζ0=(β0′ , λ0, ρ0)′
while the estimator ofσ0

2 by the direct approach has a larger bias.When
T is small, the transformation approach yields a consistent estimator of
σ0

2 while the direct approach does not. The Biases, E-SDs, RMSEs for the
estimators of ζ0 are small when either n or T is large. Also, when T is
larger, the bias of the estimator of σ0

2 by the direct approach decreases.
For the DGP with both individual and time effects, from (3a)–(3c), we
see that the bias of the transformation approach is small when either n
or T is large. For the direct approach, from (2a)–(2c), the bias for the
common parameter ζ0 is small when n is large, and is large when n is
small and Tmight be large; while the bias for the estimate of σ0

2 is small
only when both n and T are large. Also, from (4a)–(4c), when we omit
the time effects in the regression, we have much larger bias for the
spatial effects coefficients λ0 and ρ0 from both the direct and
transformation approaches. The biases for λ0 are downward but those
for ρ0 are upward, and the absolute biases increase as T increases.

4.1.2. SDPD models
We also run simulations to check the performance of the SDPD

estimators. The true DGP is a stable SDPD model with time effects

Ynt = λ0WnYnt + γ0Yn;t�1 + ρ0WnYn;t�1 + Xntβ0 + cn0 + αt0ln + Vnt ;

ð36Þ
Please cite this article as: Lee, L., Yu, J., Some recent developments in
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using θ0=(γ0, ρ0, β0′, λ0, σ0
2)′=(0.2, 0.2, 1, 0.2, 1)′. We estimate the

model with the direct approach, the transformation approaches with
Fn,n−1 and (In−Wn), and several misspecifications of the model
where some spatial effects or time dynamics are omitted. The spatial
weights matrix is a block diagonal matrix formed by a row-normal-
ized queen matrix, where we have 6 blocks of a 9×9 queen matrix.
Hence, the number of the unit roots in Wn is 6. Due to space
limitations, we will present the case with n=54 and T=20.14 The
results are in Tables 2 and 3. From items (1) and (2), we can see that
both the direct and the transformation approaches yield consistent
estimates. In the simulation, as n is large, the O(1/n) bias of the
estimates from the direct approach in item (1) is not obvious. If we
have some omitted spatial or dynamic explanatory variables in
Eq. (36), the bias of the estimates might be large, regardless of the bias
correction procedure. In item (3), the spatial lag is omitted, which
results in a larger bias in ρn̂T, and the bias correction makes the bias
even larger. In items (4) and (5) where the spatial time lag or the time
lag is omitted, the resulting biases in λ̂nT and σ̂nT

2 are so large that the
estimates are not informative at all. In items (6) and (7), we have two
such explanatory variables omitted, and the biases aremild. As we can
see from item (8), the omission of the time effects will cause a large
bias in the estimates of the included spatial effects λ0 and ρ0 , which
calls for inclusion of time effects in the model. Also, from item (9), we
see that the In−Wn transformation performs well.

We also present the simulation of the SDPD model that is not stable
in Tables 4 and 5. The DGP is a spatial cointegration case from Eq. (36)
spatial panel data models, Regional Science and Urban Economics
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Table 3
Stable SDPD models: after bias correction.

T n γ ρ β λ σ2

(1) Direct estimation
20 54 Bias −0.0002 0.0006 −0.0007 −0.0045 −0.0078

E-SD 0.0220 0.0470 0.0315 0.0369 0.0428
RMSE 0.0302 0.0639 0.0426 0.0512 0.0598

(2) Transformation by Fn,n−1

20 54 Bias −0.0005 −0.0012 0.0004 −0.0028 −0.0065
E-SD 0.0220 0.0473 0.0315 0.0384 0.0409
RMSE 0.0302 0.0642 0.0426 0.0526 0.0583

(3) WnYnt omitted; transformation by Fn,n−1

20 54 Bias 0.1888 −0.1512 0.0135 – 0.0198
E-SD 0.0230 0.0471 0.0329 – 0.0477
RMSE 0.1958 0.1694 0.0464 – 0.0655

(4) WnYnt−1 omitted; transformation by Fn,n−1

20 54 Bias −0.0285 – −0.0162 0.4530 0.2344
E-SD 0.0181 – 0.0350 0.0182 0.1383
RMSE 0.0438 – 0.0498 0.4534 0.2741

(5) Yn,t−1 omitted; transformation by Fn,n−1

20 54 Bias – −0.0571 −0.0266 0.4533 0.2756
E-SD – 0.0243 0.0356 0.0188 0.1389
RMSE – 0.0764 0.0537 0.4538 0.3104

(6) Both WnYnt and WnYnt−1 omitted; transformation by Fn,n−1

20 54 Bias 0.0337 – 0.0037 – 0.0538
E-SD 0.0217 – 0.0317 – 0.0437
RMSE 0.0439 – 0.0434 – 0.0781

(7) Yn,t−1 and WnYnt−1 omitted; transformation
20 54 Bias – – −0.0159 0.0442 0.0837

E-SD – – 0.0328 0.0386 0.0530
RMSE – – 0.0463 0.0701 0.1044

(8) αt omitted
20 54 Bias −0.0247 −0.2059 −0.0162 0.4509 0.2313

E-SD 0.0236 0.0316 0.0350 0.0189 0.1371
RMSE 0.0397 0.2087 0.0497 0.4514 0.2709

(9) Transformation by In−Wn

20 49 Bias −0.0010 −0.0031 −0.0005 −0.0087 −0.0088
E-SD 0.0255 0.0961 0.0341 0.0735 0.0428
RMSE 0.0347 0.1302 0.0465 0.1042 0.0635

Note: θ0=(0.2, 0.2, 1, 0.2, 1)′ where γ0+ρ0+λ0=0.6.

Table 4
Non-stable SDPD models: before bias correction.

T n γ ρ β λ σ2

(1) Direct estimation
20 54 Bias −0.0302 0.0517 −0.0006 −0.0335 −0.0673

E-SD 0.0205 0.0343 0.0306 0.0301 0.0404
RMSE 0.0394 0.0662 0.0420 0.0507 0.0839

(2) Transformation by Fn,n−1

20 49 Bias −0.0332 0.0273 −0.0025 −0.0048 −0.0545
E-SD 0.0206 0.0349 0.0308 0.0309 0.0481
RMSE 0.0416 0.0528 0.0421 0.0422 0.0804

(3) WnYnt omitted; transformation by Fn,n−1

20 49 Bias 0.0032 0.3695 0.0236 – 0.1022
E-SD 0.0221 0.0242 0.0332 – 0.0479
RMSE 0.0292 0.3703 0.0503 – 0.1171

(4) WnYnt−1 omitted; transformation by Fn,n−1

20 49 Bias −0.1351 – −0.0390 0.3234 0.1628
E-SD 0.0137 – 0.0341 0.0134 0.2063
RMSE 0.1359 – 0.0584 0.3237 0.2663

(5) Yn,t−1 omitted; transformation by Fn,n−1

20 49 Bias – −0.1652 −0.0602 0.3427 0.3631
E-SD – 0.0156 0.0368 0.0146 0.2209
RMSE – 0.1661 0.0745 0.3430 0.4284

(6) Both WnYnt and WnYnt−1 omitted; transformation by Fn,n−1

20 49 Bias 0.4668 – 0.0491 – 0.6864
E-SD 0.0122 – 0.0410 – 0.0733
RMSE 0.4670 – 0.0716 – 0.6903

(7) Yn,t−1 and WnYnt−1 omitted; direct
20 49 Bias – – −0.0686 0.4520 0.4019

E-SD – – 0.0378 0.0108 0.8609
RMSE – – 0.0822 0.4522 0.9718

(8) αt omitted
20 49 Bias −0.0685 −0.2956 −0.0368 0.3472 0.1253

E-SD 0.0223 0.0261 0.0336 0.0140 0.2147
RMSE 0.0725 0.2968 0.0567 0.3475 0.2531

(9) Transformation by In−Wn

20 49 Bias −0.0374 0.0009 −0.0034 −0.0110 −0.0573
E-SD 0.0229 0.0876 0.0331 0.0740 0.0423
RMSE 0.0465 0.1190 0.0457 0.1058 0.0803

Note: θ0=(0.4, 0.2, 1, 0.4, 1)′ where γ0+ρ0+λ0=1.
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with θ0=(0.4, 0.2, 1, 0.4, 1)′. Most of the MC results are similar to the
above stable SDPDcaseexcept for somemodelmisspecifications. For the
misspecifications of the generalmodel as a time–space recursivemodel,
a pure dynamic panel model, or a static spatial panel model, we have
large biases for the estimates. This difference between Tables 2 and 3
and Tables 4 and 5 might be due to the nonstability of the DGP. In
Tables 6 and7,we runan intermediate casewith θ0=(0.4, 0.2, 1, 0.3, 1)′,
which implies γ0+ρ0+λ0=0.9, and we have intermediate magnitude
of the bias for items (3), (6) and (7).

Because the unified transformation method will lose more degrees
of freedom than the other methods, we expect less precision for the
estimates from the unified transformation approach. It is of interest to
see that the estimators by the unified transformationmethod perform
well. They are slightly worse than the corresponding estimators in the
loss of precision. All its estimates have small biases.

4.2. Empirical illustrations

In this section, we provide two empirical illustrations of the
estimation of SDPD models. The first illustrates the importance of
accounting for time effects in estimation. The second provides an
empirical example for the possible spatial cointegration.

4.2.1. Dynamic demand for cigarettes
Baltagi and Levin (1986, 1992) investigate the dynamic demand

for cigarette consumption by using the panel data of 46 states over
the periods 1963–1980 and 1963–1988, respectively. The main
findings of Baltagi and Levin (1986, 1992) are a significant price
elasticity. For the income elasticity, it is insignificant in Baltagi and
Please cite this article as: Lee, L., Yu, J., Some recent developments in
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Levin (1986), and it is significant but small in Baltagi and Levin
(1992). Also, the “bootlegging” effect is found to be significant so that
the minimum price of neighboring states influences the cigarette
consumption in a state. However, this bootlegging specification
ignores the possibility that cross border shopping can take place in
different neighboring states, but not just the minimum price of
neighboring states. To partially overcome this problem, Elhorst
(2005) specifies a spatial process in the disturbances so that the
equation for estimation is

ln Cnt = γ0 ln Cn;t�1 + β01 ln Pnt + β02 ln Dnt + β03 ln Pmt + μn

+ αt ln + Unt ; Unt = λ0WnUnt + Vnt ;

where Cnt is the per capita consumption of cigarettes by persons of
smoking age (14 years and older), Pnt is the real price of cigarettes,Dnt is
the real disposable income per capita, Pmt is the minimum price of
neighboring states, µn is the vector of individual effects and αt is a time
effect. Elhorst (2005) estimates the model with fixed effects µn
eliminated by time differencing. Yang et al. (2006) also use the same
data to illustrate the estimation of the dynamic panel with spatial errors
in a random component setting.

Instead of the abovemodels, the SDPDmodel can be considered that
takes into account possible contemporaneous and time lagged regional
spillovers (Case, 1991; Case et al., 1993). In order to be comparablewith
and nest Elhorst′s spatial disturbance specification,we extend the SDPD
model with the inclusion ofWnXnt as extra regressors. The specification
in Elhorst (2005) with spatial disturbances can be regarded as a special
spatial panel data models, Regional Science and Urban Economics
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Table 5
Non-stable SDPD models: after bias correction.

T n γ ρ β λ σ2

(1) Direct estimation
20 49 Bias −0.0033 −0.0168 −0.0011 −0.0146 −0.0063

E-SD 0.0212 0.0361 0.0316 0.0290 0.0431
RMSE 0.0444 0.1713 0.0578 0.0791 0.0644

(2) Transformation by Fn,n−1

20 49 Bias 0.0006 0.0118 0.0014 −0.0031 −0.0075
E-SD 0.0211 0.0361 0.0316 0.0309 0.0472
RMSE 0.0294 0.0492 0.0427 0.0423 0.0633

(3) WnYnt omitted; transformation by Fn,n−1

20 49 Bias 0.0992 0.2730 0.0305 – 0.1522
E-SD 0.0223 0.0244 0.0335 – 0.0487
RMSE 0.1017 0.2742 0.0534 – 0.1610

(4) WnYnt−1 omitted; transformation by Fn,n−1

20 49 Bias −0.1079 – –0.0339 0.3208 0.2229
E-SD 0.0146 – 0.0349 0.0133 0.2060
RMSE 0.1092 – 0.0564 0.3211 0.3063

(5) Yn,t−1 omitted; transformation by Fn,n−1

20 49 Bias – −0.1468 −0.0589 0.3450 0.4290
E-SD – 0.0166 0.0377 0.0145 0.2205
RMSE – 0.1482 0.0741 0.3453 0.4854

(6) Both WnYnt and WnYnt−1 omitted; transformation by Fn,n−1

20 49 Bias 0.5313 – 0.0583 – 0.7364
E-SD 0.0123 – 0.0413 – 0.0757
RMSE 0.5315 – 0.0779 – 0.7403

(7) Yn,t−1 and WnYnt−1 omitted; transformation
20 49 Bias – – −0.0691 0.4671 0.4857

E-SD – – 0.0533 0.0457 1.8126
RMSE – – 0.0917 0.4695 1.9012

(8) αt omitted
20 49 Bias −0.0305 −0.3137 −0.0324 0.3481 0.1808

E-SD 0.0228 0.0271 0.0344 0.0140 0.2144
RMSE 0.0417 0.3149 0.0551 0.3485 0.2845

(9) Transformation by In−Wn

20 49 Bias −0.0020 −0.0028 −0.0006 −0.0098 −0.0099
E-SD 0.0235 0.0900 0.0338 0.0709 0.0412
RMSE 0.0325 0.1230 0.0462 0.1034 0.0621

Note: θ0=(0.4, 0.2, 1, 0.4, 1)′ where γ0+ρ0+λ0=1.

Table 6
Stable SDPD models: before bias correction.

T n γ ρ β λ σ2

(1) Direct estimation
20 54 Bias −0.0347 0.0187 −0.0022 −0.0392 −0.0696

E-SD 0.0204 0.0401 0.0305 0.0343 0.0402
RMSE 0.0425 0.0571 0.0419 0.0583 0.0854

(2) Transformation by Fn,n−1

20 54 Bias −0.0368 −0.0000 −0.0032 −0.0079 −0.0552
E-SD 0.0206 0.0407 0.0308 0.0350 0.0440
RMSE 0.0442 0.0546 0.0422 0.0479 0.0780

(3) WnYnt omitted; transformation by Fn,n−1

20 54 Bias −0.0188 0.1850 0.0071 – −0.0105
E-SD 0.0212 0.0352 0.0318 – 0.0439
RMSE 0.0331 0.1890 0.0442 – 0.0631

(4) WnYn,t−1 omitted; transformation by Fn,n−1

20 54 Bias −0.1302 – −0.0307 0.3732 0.1835
E-SD 0.0162 – 0.0343 0.0160 0.1629
RMSE 0.1313 – 0.0545 0.3736 0.2483

(5) Yn,t−1 omitted; transformation by Fn,n−1

20 54 Bias – −0.1934 −0.0525 0.3912 0.3902
E-SD – 0.0203 0.0371 0.0172 0.1734
RMSE – 0.1946 0.0695 0.3916 0.4291

(6) Both WnYnt and WnYn,t−1 omitted; transformation by Fn,n−1

20 54 Bias 0.0833 – 0.0068 – 0.1321
E-SD 0.0202 – 0.0336 – 0.0492
RMSE 0.0874 – 0.0467 – 0.1449

(7) Yn,t−1 and WnYn,t−1 omitted; direct
20 54 Bias – – − 0.0496 0.1878 0.2808

E-SD – – 0.0357 0.0272 0.0848
RMSE – – 0.0664 0.1907 0.2938

(8) αt omitted
20 54 Bias −0.0696 −0.3063 −0.0286 0.3982 0.1470

E-SD 0.0222 0.0281 0.0339 0.0165 0.1663
RMSE 0.0735 0.3076 0.0530 0.3986 0.2259

(9) Transformation by In−Wn

20 49 Bias −0.0373 −0.0009 −0.0036 −0.0120 −0.0575
E-SD 0.0233 0.0896 0.0332 0.0752 0.0428
RMSE 0.0467 0.1216 0.0459 0.1066 0.0809

Note: θ0=(0.4, 0.2, 1, 0.3, 1)′ where γ0+ρ0+λ0=0.9.
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case of the SDPD model with nonlinear restrictions across coefficients.
By premultiplying both sideswith (In–λ0Wn), the transformed equation
is reduced to

ln Cnt = λ0Wnln Cnt + γ0ln Cn;t�1 + ρ0Wnln Cn;t�1 + Xntβ0

+ WnXntϕ0 + μ⁎n + α⁎t ln + Vnt;

with ρ0=–λ0γ0, ϕ0=−λ0β0, and µn⁎, αt
⁎ are transformed individual

effects and time effects. Here, Xnt=[lnPnt, lnDnt, lnPnt] and β0=(β01,
β02, β03)′. Thus, the modified equation can be estimated as an SDPD
model.

We first estimate the model by directly estimating the individual
effects and time effects. In the SDPD model, this direct estimation will
cause biases for estimates of order O(max(1/n,1/T)). By using the
eigenvectormatrix of Jn, we then estimate themodel where time effects
are eliminated and make bias correction to the estimates. Finally, we
estimate the model with the robust transformation In−Wn. The results
are summarized in Table 8, where the hypotheses of ρ0=−λ0γ0 and
ϕ0=−λ0β0 are also tested.

From Table 8, we can see that the price elasticity is significant,
which is consistent with Baltagi and Levin (1986). However, the
income elasticity is significant, and the bootlegging effect is insignif-
icant which are different from Baltagi and Levin (1986). These
differences might be explained by the inclusion of the spatial effects.
As we can see from item (3) in Tables 2 and 3 for the Monte Carlo
study, omitting the spatial effect will lead to bias for the estimate of
ρ0.
Please cite this article as: Lee, L., Yu, J., Some recent developments in
(2009), doi:10.1016/j.regsciurbeco.2009.09.002
In Elhorst (2005), the price elasticity and income elasticity are
significant, and the bootlegging effect is insignificant. These are the
same as the SDPD estimation results. In fact, the magnitudes of his
estimates are similar to the results in Table 8. For the Wald tests of
constrained coefficients implied by the spatial correlated disturbances,
they are rejected near the 5% critical value. Therefore, the spatial lag
specification in the main equation seems more appropriate than the
specification of spatial correlated disturbances. In Yang et al. (2006), the
regressors and the regressant are different. They use nominal data,
where the individual invariant consumer price index (CPI) is includedas
a regressor, and time effects are not specified. In Yang et al. (2006), all
the effects of interest, namely the price effect, the income effect and
bootlegging effect, are significant. A possible explanation for the
difference of Elhorst′s and the results here with those in Yang et al.
(2006) could be the omission of the time effects in Yang et al. (2006).
While the CPI is included as a regressor which captures some time
effects, there might be other important time variables missing. With
time effects omitted as a misspecification, the spatial effects might
capture a part of them. This can be seen from item (8) in Tables 2 and 3
for theMonte Carlo study, where the omission of time effects will cause
biases for estimates, in particular, those of λ0 and ρ0.

4.2.2. Market integration
Keller and Shiue (2007) use historical data of the price of rice in

China to study the role of spatial features in the expansion of
interregional trade and market integration. The data are available for
n=121 prefectures (from 10 provinces) and T=108 periods, where
we have 54 years in the mid-Qing (Qing Dynasty, 1644–1912), and
the months of February and August are recorded (other months have
themissing data problem as is pointed out by Keller and Shiue (2007);
spatial panel data models, Regional Science and Urban Economics
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Table 7
Stable SDPD models: after bias correction.

T n γ ρ β λ σ2

(1) Direct estimation
20 54 Bias −0.0004 0.0050 0.0009 −0.0056 −0.0093

E-SD 0.0221 0.0418 0.0315 0.0334 0.0428
RMSE 0.0293 0.0575 0.0426 0.0466 0.0601

(2) Transformation by Fn,n−1

20 54 Bias −0.0008 0.0024 0.0006 −0.0051 −0.0081
E-SD 0.0211 0.0424 0.0315 0.0350 0.0430
RMSE 0.0293 0.0579 0.0427 0.0477 0.0600

(3) WnYnt omitted; transformation by Fn,n−1

20 54 Bias 0.0597 0.1103 0.0130 – 0.0605
E-SD 0.0213 0.0354 0.0320 – 0.0445
RMSE 0.0637 0.1181 0.0453 – 0.0828

(4) WnYnt−1 omitted; transformation by Fn,n−1

20 54 Bias −0.0953 – −0.0266 0.3728 0.2428
E-SD 0.0170 – 0.0352 0.0157 0.1625
RMSE 0.0982 – 0.0534 0.3732 0.2943

(5) Yn,t−1 omitted; transformation by Fn,n−1

20 54 Bias – −0.1761 −0.0522 0.3930 0.4582
E-SD – 0.0212 0.0380 0.0172 0.1729
RMSE – 0.1778 0.0699 0.3934 0.4916

(6) Both WnYnt and WnYnt−1 omitted; transformation by Fn,n−1

20 54 Bias 0.1254 – 0.0110 – 0.1821
E-SD 0.0203 – 0.0337 – 0.0494
RMSE 0.1275 – 0.0474 – 0.1889

(7) Yn,t−1 and WnYnt−1 omitted; transformation
20 54 Bias – – −0.0497 0.2038 0.3705

E-SD – – 0.0370 0.0305 0.1084
RMSE – – 0.0671 0.2067 0.3867

(8) αt omitted
20 54 Bias −0.0312 −0.3214 −0.0249 0.3987 0.2041

E-SD 0.0228 0.0292 0.0347 0.0165 0.1659
RMSE 0.0423 0.3228 0.0521 0.3990 0.2661

(9) Transformation by In−Wn

20 49 Bias –0.0020 −0.0024 −0.0007 −0.0109 −0.0102
E-SD 0.0238 0.0920 0.0339 0.0721 0.0417
RMSE 0.0329 0.1256 0.0464 0.1041 0.0627

Note: θ0=(0.4, 0.2, 1, 0.3, 1)′ where γ0+ρ0+λ=0.9.

14 L. Lee, J. Yu / Regional Science and Urban Economics xxx (2009) xxx–xxx

ARTICLE IN PRESS
for the information on the data collection, 15 see Shiue (2002)).
Table 9 is the plot for the mid-price of the cross sectional average. It
seems that there is a time trend which could be explained by the
spatial cointegrated DGP, explosive DGP, or some time factors.

From the estimates in Keller and Shiue (2007), the spatial features
are important as the geographical distances influence the trade and
possible arbitrage. The spatial effect, dynamic effect and spatial time
effect are found to be significant. However, even the data are in the form
of a panel, their estimation is based on annual cross section SARmodels
with (or without) the lagged price variables Yn,t−1 and WnYn,t−1 as
explanatory variables. Their reported estimates are the average from 53
(54)years. With panel data, it may be more desirable to formulate the
SDPD model and estimate it with techniques as in Section 3. A panel
model can control more explicitly both regional fixed effects and
unobserved time effects. Therefore, the SDPD model with time effects
and individual effects is specified for the price equation. Compared to
Keller and Shiue (2007), the weather indicators are not included as
exogenous variables due to the data availability. However, as those
weather regressors are insignificant in Keller and Shiue (2007), the
omission would not be controversial. Hence, the estimated equation is

Ynt = λ0WnYnt + γ0Yn;t−1 + ρ0WnYn;t−1 + cn0 + αt0ln + Vnt ;

t = 1;2; :::; T;
15 We have the minimum price and the maximum price for each prefecture, where
the prices are collected from counties of each prefecture. Similar to Keller and Shiue
(2007), the (log) mid-price is constructed and used for the estimation.

Please cite this article as: Lee, L., Yu, J., Some recent developments in
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where Ynt is the selling price of mid-quality rice. Keller and Shiue
(2007) argue that different weights matrices could be used. Denote
dijs as the distances among the capitals of prefectures ranging from 10
to 1730 km. Examples of the spatial weights matrices would be (1)
Wn

(1), where prefectures are neighbors if the dij≤300; (2)Wn
(2), where

prefectures are neighbors if the dij≤600; (3) Wn
(3), where wij

(3)=1 if
dij≤300, wij

(3)=0.5 if 300bdij≤600 and wij
(3)=0 if dijN600; and (4)

Wn
(4), wherewij=exp{θdDij} with Dij =

dij
100

and a larger absolute value
of a negative θd denotes a more rapid decline in the size of the weights
when dij increases. All these weights matrices are row-normalized as
in practice. Keller and Shiue (2007) state that the specification (4)
with θd=−1.4 fits the data well. By the criterion of log likelihood
value, we find that θd=−1.2 can be better than −1.4. We use
different specifications of the SDPD model and estimate them with
different methods.

Model I: use the SDPD model without time effects in Yu et al.
(2008).
Model II (a): use the SDPD model with time effects, and use the
direct estimation in Lee and Yu (2007).
Model II (b): use the SDPD model with time effects, and use the
transformation in Lee and Yu (2007).
Model II (c): use the SDPD model with time effects, and use the
robust transformation in Lee and Yu (2009).

The results are in Tables 10 and 11 where we use Wn
(4) with wij=

exp{−1.2Dij}. Table 10 uses the August data which is the same as
Keller and Shiue (2007) with T=54.We can see that all the effects are
significant under different estimation methods. The estimates of λ0

are about 0.8 or slightly larger; those of γ0 are about 0.5; those for ρ0
are around −0.4. For the test of γ0+ρ0+λ0=1, it is rejected under
Model I and Model II (a) but not rejected under Model II (c). It is
rejected at 5% significance level but not at 1% significance level under
Model II (b). For the log likelihood, we can see that the transformation
methods II (b) and II (c) yield higher values. This indicates that Model
II (b) and Model II (c) might be better fitted; hence, there may be
spatial cointegration in the DGP. Table 11 uses the February and
August data together so that T=108. We can see that the results are
similar to Table 10.

Table 12 presents the results using the February and August data
with different values of θd in wij=exp{θdDij}, specifically θd=−0.7,
−1.4 and −2.8 where −1.4 is used in Keller and Shiue (2007). We
see when θd=−0.7 so that distant neighbors still receive non-
neglectible weights, γ0+ρ0+λ0 could be larger than 1, which implies
an explosive DGP. For the case θd=−1.4 and −2.8, γ0+ρ0+λ0 is
close to but smaller than 1. The tests of γ0+ρ0+λ0=1 are all
rejected for above weights matrix specifications. We also present the
results with Wn

(1), Wn
(2) and Wn

(3) in Table 13. All the effects are
significant under these three specifications. Under Wn

(1) so that only
prefectures within 300 km are considered as neighbors, γ0+ρ0+λ0

is close to 1 and the spatial cointegration is not rejected. However,
under Wn

(2) and Wn
(3), γ0+ρ0+λ0 is greater than 1; the spatial

cointegration is rejected under Wn
(3) but not rejected under Wn

(2).
Therefore, all the spatial and dynamic effects are significant under

different weights matrix specifications and estimation methods. The
sum of the estimates ofλ0,γ0, and ρ0 is close to 1 even though their sum
of being 1 is statistically rejected under some specifications. We may
conclude that the markets are overall integrated or nearly integrated.

5. Conclusion

This paper has presented some recent developments in the
specification and estimation of spatial panel data models. For the static
case,we canuse thedirect or transformationapproachesunder thefixed
effects specification, while we have various frameworks of the error
components under the random effects specification. For the dynamic
spatial panel data models, Regional Science and Urban Economics
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Table 9
Average of 121 mid-prices of February, August and combined.

Note: 1. From the first column to the third column are February, August and combined prices.

Table 8
Estimation results for the cigarettes demand.

Direct Jn In−Wn

Estimates and t-statistics
γ (lnCn,t−1) 0.8651 [67.2425] 0.8643 [67.1020] 0.8577 [62.3541]
ρ (WnlnCn,t−1) −0.0145 [−0.3364] −0.0177 [−0.4455] −0.0258 [−0.4646]
β1 (lnPnt) −0.2619 [−10.6646] −0.2621 [−10.6649] −0.2619 [−10.2456]
β2 (lnYnt) 0.0997 [3.3481] 0.0994 [3.3359] 0.1026 [3.4068]
β3(lnPmt) 0.0073 [0.2000] 0.0074 [0.2031] −0.0142 [−0.3592]
ϕ1 (WnlnPnt) 0.1671 [3.1780] 0.1700 [3.2364] 0.1772 [2.8543]
ϕ2 (WnlnYnt) −0.0256 [−0.6443] −0.0228 [−0.5764] −0.0231 [−0.4252]
ϕ3 (WnlnPmt) −0.0220 [−0.4362] −0.0240 [−0.4782] −0.0705 [−1.0845]
λ (WnlnCnt) −0.0757 [2.0611] 0.0784 [2.0668] 0.0472 [0.8726]

Tests
ρ=−λγ (χ1,0.05

2 =3.8) 5.8042 5.6227 0.2634
ϕ=−λβ (χ3,0.05

2 =7.8) 8.9087 9.2183 8.8058
Joint above (χ4,0.05=9.4) 10.5028 10.6685 8.8228

Note: The numbers in the [·] are the t-statistics.

Table 10
SDPD models, August prices, wij=exp{−1.2Dij} with row-normalization.

Models I II (a) II (b) II (c)

Before bias correction estimates
Yn,t−1 0.5279

(0.0108)
0.5276
(0.0109)

0.5272
(0.0068)

0.5266
(0.0109)

WnYn,t−1 −0.4112
(0.0154)

−0.3708
(0.0185)

−0.3958
(0.0107)

−0.3943
(0.0407)

WnYnt 0.8520
(0.0090)

0.7960
(0.0111)

0.8359
(0.0085)

0.8640
(0.0556)

σ 2 0.0044
(0.0003)

0.0044
(0.0001)

0.0044
(0.0001)

0.0044
(0.0003)

Tests (Wald χ2 statistics)
ρ=−λγ 19.9968 15.1323 12.8392 8.9456
ρ+γ+λ=1 13.5655 13.7998 6.5918 0.7384
Value of
ρ+γ+λ

0.9686 0.9528 0.9673 0.9783

lnL 10,164 10,142 10,199 10,198

After bias correction estimates
Yn,t−1 0.5568

(0.0109)
0.5563
(0.0110)

0.5560
(0.0110)

0.5555
(0.0110)

WnYn,t−1 −0.4354
(0.0156)

−0.4132
(0.0185)

−0.4193
(0.0193)

−0.4179
(0.0416)

WnYnt 0.8520
(0.0090)

0.8273
(0.0099)

0.8361
(0.0126)

0.8461
(0.0545)

σ 2 0.0045
(0.0003)

0.0045
(0.0001)

0.0045
(0.0002)

0.0045
(0.0003)

Tests (Wald χ2 statistics)
ρ=−λγ 20.1311 13.8543 13.0395 9.1086
ρ+γ+λ=1 9.7487 5.4837 4.5497 0.4716
Value of
ρ+γ+λ

0.9734 0.9705 0.9728 0.9837

Note: The numbers in the (·) are the standard deviations.

Table 11
SDPD models, February and August Prices, wij=exp{−1.2Dij} with row-normalization.

Models I II (a) II (b) II (c)

Before Bias Correction Estimates
Yn,t−1 0.6646

(0.0067)
0.6637
(0.0068)

0.6634
(0.0068)

0.6629
(0.0068)

WnYn,t−1 −0.5138
(0.0105)

−0.4651
(0.0125)

−0.4998
(0.0130)

−0.5006
(0.0316)

WnYnt 0.8240
(0.0072)

0.7730
(0.0084)

0.8180
(0.0095)

0.8270
(0.0382)

σ 2 0.0036
(0.0002)

0.0036
(0.0000)

0.0035
(0.0001)

0.0035
(0.0002)

Tests (Wald χ2 statistics)
ρ=−λγ 39.6135 36.2013 29.5725 20.0357
ρ+γ+λ=1 23.3447 13.1849 5.5853 0.6525
Value of
ρ+γ+λ

0.9748 0.9716 0.9816 0.9893

lnL 21,985 21,944 22,032 22,005

After bias correction estimates
Yn,t−1 0.6804

(0.0068)
0.6793
(0.0068)

0.6790
(0.0068)

0.6786
(0.0068)

WnYn,t−1 −0.5273
(0.0106)

−0.5018
(0.0123)

−0.5121
(0.0131)

−0.5133
(0.0319)

WnYnt 0.8240
(0.0072)

0.8055
(0.0076)

0.8181
(0.0094)

0.8271
(0.0378)

σ 2 0.0036
(0.0002)

0.0036
(0.0000)

0.0036
(0.0001)

0.0036
(0.0002)

Tests (Wald χ2 statistics)
ρ=−λγ 38.2825 32.7226 30.0950 20.1723
ρ+γ+λ=1 19.2219 4.7582 3.6844 0.3529
Value of
ρ+γ+λ

0.9771 0.9830 0.9850 0.9924

Note: The numbers in the (·) are the standard deviations.
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Table 12
SDPD models, February and August Prices, wij=exp{θdDij} with row-normalization.

θd=−0.7 θd=−1.4 θd=−2.8

Models II (b) II (c) II (b) II (c) II (b) II (c)

Before bias correction estimates
Yn,t−1 0.6707 (0.0067) 0.6669 (0.0068) 0.6626 (0.0068) 0.6626 (0.0068) 0.6658 (0.0068) 0.6665 (0.0068)
WnYn,t−1 −0.6046 (0.0151) −0.5859 (0.0474) −0.4705 (0.0125) −0.4602 (0.0300) −0.3299 (0.0107) −0.2523 (0.0204)
WnYnt 0.9730 (0.0081) 1.0000 (0.0552) 0.7750 (0.0094) 0.7640 (0.0369) 0.5700 (0.0085) 0.4450 (0.0244)
σ 2 0.0038 (0.0001) 0.0038 (0.0002) 0.0035 (0.0001) 0.0035 (0.0002) 0.0037 (0.0001) 0.0035 (0.0001)

Tests (Wald χ2 statistics)
ρ=−λγ 22.6602 24.8034 32.9797 21.9052 56.524 18.7204
ρ+γ+λ=1 15.7321 19.1677 19.5539 7.0490 204.27 128.8964
Value of ρ+γ+λ 1.0391 1.0810 0.9671 0.9664 0.9058 0.8592
lnL 21,823 21,854 22,021 21,994 21,640 21,407

After bias correction estimates
Yn,t−1 0.6602 (0.0067) 0.6828 (0.0068) 0.6783 (0.0068) 0.6783 (0.0068) 0.6816 (0.0069) 0.6822 (0.0068)
WnYn,t−1 −0.4113 (0.0186) −0.6045 (0.0476) −0.4825 (0.0126) −0.4722 (0.0303) −0.3393 (0.0108) −0.2591 (0.0207)
WnYnt 0.9822 (0.0064) 1.0008 (0.0546) 0.7750 (0.0094) 0.7640 (0.0365) 0.5697 (0.0085) 0.4449 (0.0241)
σ 2 0.0038 (0.0001) 0.0038 (0.0002) 0.0036 (0.0001) 0.0036 (0.0002) 0.0037 (0.0001) 0.0036 (0.0001)

Tests (Wald χ2 statistics)
ρ=−λγ 332.8166 23.6530 32.8950 21.8267 54.713 18.6606
ρ+γ+λ=1 390.7173 19.1778 15.4715 5.9502 178.91 116.9106
Value of ρ+γ+λ 1.2311 1.0792 0.9707 0.9701 0.9120 0.8681

Note: The numbers in the (·) are the standard deviations.

Table 13
SDPD models, February and August Prices, Wn=Wn

(i), i=1, 2, 3 with row-normalization.

Wn
(1) Wn

(2) Wn
(3)

Models II (b) II (c) II (b) II (c) II (b) II (c)

Before bias correction estimates
Yn,t−1 0.6658 (0.0067) 0.6651 (0.0067) 0.7062 (0.0063) 0.7062 (0.0063) 0.6921 (0.0065) 0.6921 (0.0065)
WnYn,t−1 −0.4958 (0.0138) −0.4859 (0.0332) −0.6542 (0.0211) −0.6543 (0.0433) −0.6415 (0.0186) −0.6415 (0.0393)
WnYnt 0.8140 (0.0103) 0.8160 (0.0394) 0.9700 (0.0162) 0.9700 (0.0494) 0.9950 (0.0112) 0.9950 (0.0394)
σ 2 0.0038 (0.0001) 0.0038 (0.0002) 0.0047 (0.0001) 0.0047 (0.0002) 0.0044 (0.0001) 0.0044 (0.0002)

Tests (Wald χ2 statistics)
ρ=−λγ 29.3264 23.3260 4.3833 3.9623 12.7703 9.2133
ρ+γ+λ=1 3.5519 0.1217 2.1682 1.6010 12.3065 11.5299
Value of ρ+γ+λ 0.9840 0.9952 1.0219 1.0220 1.0456 1.0456
lnL 21,641 21,616 20,589 20,589 21,039 21,039

After bias correction estimates
Yn,t−1 0.6815 (0.0067) 0.6808 (0.0067) 0.7223 (0.0063) 0.7223 (0.0063) 0.7061 (0.0065) 0.7061 (0.0065)
WnYn,t−1 −0.5078 (0.0139) −0.4986 (0.0335) −0.6695 (0.0213) −0.6695 (0.0437) −0.6167 (0.0199) −0.6167 (0.0454)
WnYnt 0.8142 (0.0103) 0.8161 (0.0390) 0.9702 (0.0162) 0.9702 (0.0489) 0.9976 (0.0109) 0.9976 (0.0376)
σ 2 0.0039 (0.0001) 0.0039 (0.0002) 0.0048 (0.0001) 0.0048 (0.0002) 0.0044 (0.0001) 0.0044 (0.0002)

Tests (Wald χ2 statistics)
ρ=−λγ 30.0780 23.3616 4.5045 4.0701 40.5591 18.8330
ρ+γ+λ=1 2.0656 0.0153 2.3925 1.8648 44.2386 40.0265
Value of ρ+γ+λ 0.9878 0.9983 1.0231 1.0231 1.0870 1.0870

Note: The numbers in the (·) are the standard deviations.
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case, we review the estimation and asymptotic properties of various
SDPD models depending on the eigenvalue structure, as well as the
dynamic panel data model with spatial disturbances. We provide some
Monte Carlo studies on misspecifications when restricted models are
estimated.We find that the omission of time effects can have important
consequences in the estimation of spatial effects. This issue is illustrated
with an empirical application.We also illustrate the possibility of spatial
cointegration due to market integration.

Many extensions of the SDPD model and related estimation issues
are of interest for future research. Models of simultaneous equations
with spatial and dynamic structures are important ones for future
consideration, and so are SDPD models with common shocks and
factors for cross-sectional dependence. Common factor models with
spatial disturbances have already received attention in the work of
Pesaran and Tosetti (2007).
Please cite this article as: Lee, L., Yu, J., Some recent developments in
(2009), doi:10.1016/j.regsciurbeco.2009.09.002
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