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Double Machine Learning for Price
Elasticity of Demand Function
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Structural and Treatment Effects

e The Model
Y=1f(D,Z)+u, EUu|Z,D)=0
D=h(Z)+v, E(v|Z)=0

— D is the target variable of interest (e.g., price) or
the treatment variable (typically, D=0 or 1)

— Z is the set of exogenous covariates or control
variables (instruments, confounders), may be
high-dimensional.

* Partial Linear Model: f(D,Z)=D8+9(2)



Structural and Treatment Effects

* |f D is numeric structural variable
@=o0y/oD
e IfD=1o0r0
— Average Treatment Effect (ATE)
0= E[f(l,Z)— f(O,Z)]
— Average Treatment Effect for the Treated (ATT)
O=E[f(1Z2)-(0,Z)|D=1]



Structural and Treatment Effects

 Based on Partial Linear Model,
— Frisch-Waugh-Lovel Theorem: 0=0
u=Y-60D-g(Z2)
U=Y -4§(2)
7=D-h(2)
— Machine Learning : §(Z)and h(2)
—OLS: 0=V'G/9'V
* This estimate is biased and inefficient!
— De-biased: 9 =V'G/V'D, ingeneral 8 =6

} 0=6V if gandharelinear



Structural and Treatment Effects

 Based on Partial Linear Model,
— Sample Splitting
* {1,...,,N} = Set of all observations

* |, = main sample = set of observation numbers, of size
n, is used to estimate 6; e.g., n=N/2.

* |, = auxilliary sample = set of observations, of size ntn =
N —-n, is used to estimate g;

* |, and |, form a random partition of the set {1,...,N}

— Cross Fitting on {l,,1,} and {l,,1,}



Structural and Treatment Effects

* Cross Fitting on {I,I,} and {l,,1,}
— Machine Learning:
§,(Z)and h(Z)on (l,,1,)
§,(Z) and h,(Z) on (1, 1)
— De-Biased Estimator:
0,=0(1, |2)} 5_0.+0,

6,=6(1,,1,) 2
— O is /N consistent and approximately centered
normal (Chernozhukov, et.al., 2017)



Structural and Treatment Effects

e Extensions

—Based on sample splitting {1,...,N} ={l,,1,},
de-biased estimator may be obtained from

POO
0 =

ed data and ML residuals:

v, O|'a, a,l]/[v, V,|'|D, D,]

— Cross fitting can be k-fold, e.g. k=2, 5, 10



Example: Table Wine Sales in Vancouver BC

* Total Weekly Sales of Imported and Domestic
Table Wine in Vancouver, BC, Canada

from week ending April 4, 2009 to week ending
May 28, 2011 (372,228 sales)

— Irregularly-spaced time series

— Data Source: American Association of Wine
Economists



http://www.wine-economics.org/data/
http://www.wine-economics.org/data/

Example: Table Wine Sales in Vancouver BC

e 372,228 observations of 17 variables in an Excel
spreadsheet:

— SKU #, Product Long Name, Store Category Major
Name, Store Category Sub Name, Store Category
Minor Name, Current Display Price, Bottled Location
Code, Bottle Location Desc, Domestic/Import
Indicator, VQA Indicator, Product Sweetness Code,
Product Sweetness Desc, Alcohol Percent, Julian Week
No, Week Ending Date, Total Weekly Selling Unit, Total

Weekly Volume Litre



Demand Function for Table Wine in Vancouver BC
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Table Wine Sales in Vancouver BC
Double Machine Learning of Price Elasticity

Y=0D+9g(Z)+u, E@Uu|Z,D)=0
D=m(Z)+v, E(v|Z)=0

Y = log of quantity (total weekly selling unit in bottles)
D = log of price (current display price in Canadian S)

Z = { What = Store Category Minor Name (Red/White), Where
= Store Category Sub Name (Countries), Loc = Bottled Location
Code, Alc = Alcohol Percent, Age = Julian Week No, ...}

O = Price Elasticity



Table Wine Sales in Vancouver BC
Double Machine Learning of Price Elasticity

 GLM (Lasso)

K-fold CF Y (val. MSE) | D (Val.MSE) O (Price Elas.)

2.126 0.320 -1.238
5 2.126 0.320 -1.238
10 2.126 0.320 -1.238

 GLM (Elastic Net)

K-fold CF Y (val. MSE) | D (Val. MSE) | O (Price Elas.)

2.129 0.321 -1.228
5 2.127 0.321 -1.232
10 2.127 0.320 -1.233
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Table Wine Sales in Vancouver BC
Double Machine Learning of Price Elasticity

* DL (20,20)

K-fold CF Y (val. MSE) | D (Val.MSE) O (Price Elas.)

1.977 0.273 -1.261
5 1.984 0.273 -1.271
10 1.983 0.274 -1.131

* DL(20,10,5)

K-fold CF Y (val. MSE) | D (Val. MSE) | O (Price Elas.)

1.966 0.273 -1.279
5 1.982 0.274 -1.124
10 1.973 0.273 -1.245

4/22/2019



Table Wine Sales in Vancouver BC
Double Machine Learning of Price Elasticity

 DRF (50 trees, max depth=20)

K-fold CF Y (val. MSE) | D (Val.MSE) O (Price Elas.)

2.126 0.320 -1.129
5 2.130 0.318 -1.135
10 2.129 0.318 -1.136

« GBM (50 trees, max depth=5)

K-fold CF Y (val. MSE) | D (Val. MSE) | O (Price Elas.)

1.943 0.266 -1.192
5 1.944 0.266 -1.192
10 1.941 0.265 -1.193
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Table Wine Sales in Vancouver BC
Double Machine Learning of Price Elasticity

* Conclusion

— Linear regression model may not explain and validate this
set of data. Thus, the price elasticity estimate of 1.23 may
not be reliable.

— The nonparametric Deep Learning Neural Networks and
Gradient Boosting Machine perform better in learning this
dataset.

— Gradient Boosting Machine as applied to a partial linear
model framework in price elasticity is 1.19.

— All computations are done with R package H20:

e Darren Cook, Practical Machine Learning with H20,
O'Reilly Media, Inc., 2017.



http://shop.oreilly.com/product/0636920053170.do

