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Double Machine Learning for Price 
Elasticity of Demand Function 

• This presentation is in part based on: 
– Alexandre Belloni, Victor Chernozhukov, and Christian 

Hansen, High-Dimensional Methods and Inference on 
Structural and Treatment Effects, Journal of Economic 
Perspectives 28:2 (29-50), Spring 2014.  

– Victor Chernozhukov, Denis Chetverikov, Mert Demirer, 
Esther Duflo, Christian Hansen, Whitney Newey, and James 
Robins, Double/Debiased Machine Learning for Treatment 
and Structural Parameters, Econometrics Journal 21:1, 
2018. 
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https://www.aeaweb.org/articles?id=10.1257/jep.28.2.29
https://www.aeaweb.org/articles?id=10.1257/jep.28.2.29
https://www.aeaweb.org/articles?id=10.1257/jep.28.2.29
https://www.aeaweb.org/articles?id=10.1257/jep.28.2.29
https://www.onlinelibrary.wiley.com/doi/pdf/10.1111/ectj.12097
https://www.onlinelibrary.wiley.com/doi/pdf/10.1111/ectj.12097


Structural and Treatment Effects 

• The Model 

 

 
– D is the target variable of interest (e.g., price) or 

the treatment variable (typically, D=0 or 1) 

– Z is the set of exogenous covariates or control 
variables (instruments, confounders), may be 
high-dimensional. 

• Partial Linear Model:  
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Structural and Treatment Effects 

• If D is numeric structural variable  

 

• If D=1 or 0 

– Average Treatment Effect (ATE) 

 

– Average Treatment Effect for the Treated (ATT) 
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Structural and Treatment Effects 

• Based on Partial Linear Model,  
– Frisch-Waugh-Lovel Theorem: 

 

 

 

– Machine Learning :  

– OLS:  
• This estimate is biased and inefficient! 

– De-biased: 
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Structural and Treatment Effects 

• Based on Partial Linear Model,  

– Sample Splitting 

• {1,…,N} = Set of all observations 

• I1 = main sample = set of observation numbers, of size 
n, is used to estimate θ; e.g., n=N/2. 

• I2 = auxilliary sample = set of observations, of size πn = 
N −n, is used to estimate g;  

• I1 and I2 form a random partition of the set {1,...,N} 

– Cross Fitting on {I1,I2} and {I2,I1} 
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Structural and Treatment Effects 

• Cross Fitting on {I1,I2} and {I2,I1} 

– Machine Learning: 

 

 

– De-Biased Estimator: 

 

 

–                 consistent and approximately centered 
normal (Chernozhukov, et.al., 2017) 
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Structural and Treatment Effects 

• Extensions 

–Based on sample splitting {1,…,N} = {I1,I2}, 
de-biased estimator may be obtained from 
pooled data and ML residuals: 

 

–  Cross fitting can be k-fold, e.g. k=2, 5, 10 
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Example: Table Wine Sales in Vancouver BC 

• Total Weekly Sales of Imported and Domestic 
Table Wine in Vancouver, BC, Canada 
from week ending April 4, 2009 to week ending 
May 28, 2011 (372,228 sales) 

– Irregularly-spaced time series 

– Data Source: American Association of Wine 
Economists 
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http://www.wine-economics.org/data/
http://www.wine-economics.org/data/


Example: Table Wine Sales in Vancouver BC 

• 372,228 observations of 17 variables in an Excel 
spreadsheet:  
– SKU #, Product Long Name, Store Category Major 

Name, Store Category Sub Name, Store Category 
Minor Name, Current Display Price, Bottled Location 
Code, Bottle Location Desc, Domestic/Import 
Indicator, VQA Indicator, Product Sweetness Code, 
Product Sweetness Desc, Alcohol Percent, Julian Week 
No, Week Ending Date, Total Weekly Selling Unit, Total 
Weekly Volume Litre 
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Table Wine Sales in Vancouver BC 
 Double Machine Learning of Price Elasticity 

 

 

• Y = log of quantity (total weekly selling unit in bottles) 

• D = log of price (current display price in Canadian $) 

• Z = { What = Store Category Minor Name (Red/White), Where 
= Store Category Sub Name (Countries), Loc = Bottled Location 
Code, Alc = Alcohol Percent, Age = Julian Week No, …} 

•  = Price Elasticity  
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Table Wine Sales in Vancouver BC 
 Double Machine Learning of Price Elasticity 

• GLM (Lasso) 

 

 

 

 

• GLM (Elastic Net) 
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K-fold CF Y (Val. MSE) D (Val.MSE)  (Price Elas.) 

2 2.126 0.320 -1.238 

5 2.126 0.320 -1.238 

10 2.126 0.320 -1.238 

K-fold CF Y (Val. MSE) D (Val. MSE)  (Price Elas.) 

2 2.129 0.321 -1.228 

5 2.127 0.321 -1.232 

10 2.127 0.320 -1.233 



Table Wine Sales in Vancouver BC 
 Double Machine Learning of Price Elasticity 

• DL (20,20) 

 

 

 

 

• DL (20,10,5) 
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K-fold CF Y (Val. MSE) D (Val.MSE)  (Price Elas.) 

2 1.977 0.273 -1.261 

5 1.984 0.273 -1.271 

10 1.983 0.274 -1.131 

K-fold CF Y (Val. MSE) D (Val. MSE)  (Price Elas.) 

2 1.966 0.273 -1.279 

5 1.982 0.274 -1.124 

10 1.973 0.273 -1.245 



Table Wine Sales in Vancouver BC 
 Double Machine Learning of Price Elasticity 

• DRF (50 trees, max depth=20) 

 

 

 

 

• GBM (50 trees, max depth=5) 
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K-fold CF Y (Val. MSE) D (Val.MSE)  (Price Elas.) 

2 2.126 0.320 -1.129 

5 2.130 0.318 -1.135 

10 2.129 0.318 -1.136 

K-fold CF Y (Val. MSE) D (Val. MSE)  (Price Elas.) 

2 1.943 0.266 -1.192 

5 1.944 0.266 -1.192 

10 1.941 0.265 -1.193 



Table Wine Sales in Vancouver BC 
 Double Machine Learning of Price Elasticity 

• Conclusion 

– Linear regression model may not explain and validate this 
set of data.  Thus, the price elasticity estimate of 1.23 may 
not be reliable. 

– The nonparametric Deep Learning Neural Networks and 
Gradient Boosting Machine perform better in learning this 
dataset. 

– Gradient Boosting Machine as applied to a partial linear 
model framework in price elasticity is 1.19. 

– All computations are done with R package H2O: 
• Darren Cook, Practical Machine Learning with H2O,  

O'Reilly Media, Inc., 2017.  
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http://shop.oreilly.com/product/0636920053170.do

