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Machine Learning and Econometrics 

• This introductory lecture is based on 
– Kevin P. Murphy, Machine Learning A Probabilistic 

Perspective, The MIT Press, 2017. 
– Darren Cook, Practical Machine Learning with 

H2O, O'Reilly Media, Inc., 2017. 
– Scott Burger, Introduction to Machine Learning 

with R: Rigorous Mathematical Analysis, O’Reilly 
Media, Inc., 2018. 
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Supervised Machine Learning 

• Regression-based Methods 

– Generalized Linear Models 
• Linear Regression 

• Logistic Regression 

– Deep Learning (Neural Nets) 

• Tree-based Ensemble Methods 

– Random Forest (Bagging: Bootstrap Aggregation) 
• Parallel ensemble to reduce variance  

– Gradient Boost Machine (Boosting) 
• Sequential ensemble to reduce bias 
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Regression-Based Models 

• Generalized Linear Models 

– Linear Regression 

– Logistic Regression 

• Deep Learning (Neural Nets) 

– Feed-Forward ANN with Back-Propagation  
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Generalized Linear Model 

• Generalized Linear Model 

– Regression: OLS 

– Classification: Logit 

• Regularization in GLM 

– Ridge Regression 

– LASSO 

– Elastic Net  
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Generalized Linear Model 

• GLM is a flexible generalization of OLS.  

• OLS restricts the regression coefficients to 
have a constant effect on the dependent 
variable. GLM allows for this effect to vary 
along the range of the explanatory variables.  

• In particular, a nonlinear function links the 
linear parameterization to the expected value 
of the random variable.  
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Generalized Linear Model 

• Let μ = E(Y|X) and η = Xβ. The basic structure 
of GLM is the link function g(μ) = η:  

 

 

• Therefore, Y = g-1(Xβ) + ε 

• The response variable Y may be continuous for 
a regression model or discrete for a 
classification model. 
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Generalized Linear Model 

• The random component ε is assumed to follow a 
family of probability distribution (e.g., Gaussian, 
Gamma, Binomial, Poisson, etc..) which formulates 
the GLM log-likelihood to be maximized. 

• The nonlinear invertible link function g transforms 
the expectation of the response to the linear 
predictor. The following link functions are 
considered: identity, log, inverse, logic etc.. 
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Generalized Linear Model 

• Standard GLM 

– maxβ (GLM Log-likelihood)  

• GLM with Variable Selection  

– maxβ,β0 ( GLM Log-likelihood − Regularization 
Penalty )   

• The elastic net regularization penalty is the 
weighted sum of the L1 and L2 norms of the 
coefficients, with no penalty on the intercept 
term.  
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Generalized Linear Model 

• Regularization Penalty  

– Elastic Net Regularization Penalty  

 

 

 

– Ridge Regression, as a = 0. 

– LASSO (Least Absolute Shrinkage and Selection 
Operator), as a = 1. 
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Generalized Linear Model 

• Variable Selection 

– The intercept 0 is not restricted 

– The predictors Xij should be standardized 

– The tuning parameter  is determined separately 
by cross-validation 

– The elastic net parameter a may be selected by 
grid search based on MSE critria 

– The LASSO model or as a -> 1 can perform 
variable selection to achieve a sparse model 
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Generalized Linear Modeling with H2O 

• Basic Model  
– h2o.glm (x, y, training_frame, model_id = NULL, 

…) 

• Model Specification Options 
– family = c("gaussian", "binomial", 

"quasibinomial", "ordinal", "multinomial", 

"poisson", "gamma", "tweedie", 

"negativebinomial"),  

– tweedie_variance_power = 0,  

– tweedie_link_power = 1, 

– link = c("family_default", "identity", "logit", 

"log", "inverse", "tweedie", "ologit", 

"oprobit", "ologlog"),  
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Generalized Linear Modeling with H2O 

• Cross-Validation Parameters 
– validation_frame = NULL,  

– nfolds = 0, seed = -1, 

– keep_cross_validation_models = TRUE, 

– keep_cross_validation_predictions = FALSE, 

– keep_cross_validation_fold_assignment = FALSE,  

– fold_assignment = c("AUTO", "Random", "Modulo", 

"Stratified"),  

– fold_column = NULL, 
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Generalized Linear Modeling with H2O 

• Regularization Options 
– alpha = NULL,  

– lambda = NULL,  

– lambda_search = FALSE,  

– nlambdas = -1, 

• Early Stopping 
– early_stopping = TRUE, 

– max_active_predictors = -1, 

– max_iterations = -1,   
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Generalized Linear Modeling with H2O 

• Other Important Control Parameters 
– solver = c("AUTO", "IRLSM", "L_BFGS", 

"COORDINATE_DESCENT_NAIVE", 

"COORDINATE_DESCENT") 

– standardize = TRUE 

– intercept = TRUE 

– missing_values_handling = c("MeanImputation", 

"Skip"), 

 

15 Machine Learning and Econometrics 4/18/2019 



Grid Search of Models  

• h2o.grid(algorithm, grid_id, x, y, 

training_frame, ..., hyper_params = 

list(), is_supervised = NULL, 

do_hyper_params_check = FALSE, 

search_criteria = NULL)  
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Deep Learning (Neural Nets) 
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Deep Learning (Neural Nets) 

• Multi-layer feed-forward ANN trained with 
stochastic gradient descent using back-
propagation  

– A larger number of hidden layers consisting of 
neurons with tanh, rectifier, and maxout 
activation functions 

• Generalize from GLM 
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Deep Learning (Neural Nets) 
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Activation Functions 
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Deep Learning with H2O 

• Basic Model  
– h2o.deeplearning (x, y, training_frame, 

model_id = NULL …) 

• Model Specification Options 
– hidden = c(200, 200), epochs = 10, seed = -1, 

– activation = c("Tanh", "TanhWithDropout", 

"Rectifier", "RectifierWithDropout", "Maxout", 

"MaxoutWithDropout"),  

– loss = c("Automatic", "CrossEntropy", 

"Quadratic", "Huber", "Absolute", "Quantile“), 
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Deep Learning with H2O 

• Model Specification Options (Continued) 
– distribution = c("AUTO", "bernoulli", 

"multinomial", "gaussian", "poisson", "gamma", 

"tweedie", "laplace", "quantile", "huber"), 

– quantile_alpha = 0.5,  

– tweedie_power = 1.5,  

– huber_alpha = 0.9,  

– ignore_const_cols = TRUE, 

– weights_column = NULL,  

– offset_column = NULL, 

– standardize = TRUE, 

– checkpoint = NULL, 
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Deep Learning with H2O 

• Cross-Validation Parameters 
– validation_frame = NULL,  

– nfolds = 0, seed = -1, 

– keep_cross_validation_models = TRUE, 

– keep_cross_validation_predictions = FALSE, 

– keep_cross_validation_fold_assignment = FALSE,  

– fold_assignment = c("AUTO", "Random", "Modulo", 

"Stratified"),  

– fold_column = NULL, 
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Deep Learning with H2O 

• Regularization Options 
– l1 = 0, l2 = 0, max_w2 = 3.4028235e+38, 

– input_dropout_ratio = 0,  

– hidden_dropout_ratios = NULL, 

• Early Stopping 
– classification_stop = 0,  

– regression_stop = 1e-06,  

– stopping_rounds = 5, stopping_tolerance = 0,  

– max_runtime_secs = 0, 

– stopping_metric = c("AUTO", "deviance", "logloss", 

"MSE", "RMSE", "MAE", "RMSLE", "AUC", 

"lift_top_group", "misclassification", 

"mean_per_class_error", "custom", 

"custom_increasing"),  
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Deep Learning with H2O 

• Advanced Optimization Options 
– Adaptive Learning  

• adaptive_rate = TRUE,  

• rho = 0.99, epsilon = 1e-08,  

• rate = 0.005, 

– Rate Annealing 
• rate_annealing = 1e-06, rate_decay = 1,  

– Momentum Training 
• momentum_start = 0, momentum_ramp = 1e+06,  

• momentum_stable = 0, 

• nesterov_accelerated_gradient = TRUE,  

 

 

 
25 Machine Learning and Econometrics 4/18/2019 



Deep Learning with H2O 

• Other Important Control Parameters 
 

– train_samples_per_iteration = -2,  

– target_ratio_comm_to_comp = 0.05,  

– pretrained_autoencoder = NULL, 

– score_interval = 5,  

– score_training_samples = 10000, 

– score_validation_samples = 0,  

– score_duty_cycle = 0.1,  

– … 
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