Machine Learning and Applied Econometrics

Regression-Based Models

Machine Learning and Econometrics

- This introductory lecture is based on
 - Kevin P. Murphy, Machine Learning A Probabilistic Perspective, The MIT Press, 2017.
 - Darren Cook, <u>Practical Machine Learning with</u> <u>H2O</u>, O'Reilly Media, Inc., 2017.
 - Scott Burger, <u>Introduction to Machine Learning</u> with R: Rigorous Mathematical Analysis, O'Reilly Media, Inc., 2018.

Supervised Machine Learning

- Regression-based Methods
 - Generalized Linear Models
 - Linear Regression
 - Logistic Regression
 - Deep Learning (Neural Nets)
- Tree-based Ensemble Methods
 - Random Forest (Bagging: Bootstrap Aggregation)
 - Parallel ensemble to reduce variance
 - Gradient Boost Machine (Boosting)
 - Sequential ensemble to reduce bias

Regression-Based Models

- Generalized Linear Models
 - Linear Regression
 - Logistic Regression
- Deep Learning (Neural Nets)
 - Feed-Forward ANN with Back-Propagation

- Generalized Linear Model
 - Regression: OLS
 - Classification: Logit
- Regularization in GLM
 - Ridge Regression
 - LASSO
 - Elastic Net

- GLM is a flexible generalization of OLS.
- OLS restricts the regression coefficients to have a constant effect on the dependent variable. GLM allows for this effect to vary along the range of the explanatory variables.
- In particular, a nonlinear function links the linear parameterization to the expected value of the random variable.

 Let μ = E(Y|X) and η = Xβ. The basic structure of GLM is the link function g(μ) = η:

$$\mu = E(Y \mid X) \xrightarrow{g} \eta = X\beta$$

- Therefore, $Y = g^{-1}(X\beta) + \epsilon$
- The response variable Y may be continuous for a regression model or discrete for a classification model.

- The random component ε is assumed to follow a family of probability distribution (e.g., Gaussian, Gamma, Binomial, Poisson, etc..) which formulates the GLM log-likelihood to be maximized.
- The nonlinear invertible link function g transforms the expectation of the response to the linear predictor. The following link functions are considered: identity, log, inverse, logic etc..

- Standard GLM
 - $-\max_{\beta}$ (GLM Log-likelihood)
- GLM with Variable Selection
 - $max_{\beta,\beta0}$ (GLM Log-likelihood Regularization Penalty)
- The elastic net regularization penalty is the weighted sum of the L1 and L2 norms of the coefficients, with no penalty on the intercept term.

- Regularization Penalty
 - Elastic Net Regularization Penalty $\lambda P(\beta) = \lambda \left[\alpha \parallel \beta \parallel_1 + (1 - \alpha) \parallel \beta \parallel_2 \right]$ $\parallel \beta \parallel_1 = \sum_k \mid \beta_k \mid, \quad \parallel \beta \parallel_2 = \sum_k \beta_k^2$ $0 < \alpha < 1, \quad \lambda > 0$
 - Ridge Regression, as α = 0.
 - LASSO (Least Absolute Shrinkage and Selection Operator), as α = 1.

- Variable Selection
 - The intercept β_0 is not restricted
 - The predictors X_{ii} should be standardized
 - The tuning parameter $\boldsymbol{\lambda}$ is determined separately by cross-validation
 - The elastic net parameter α may be selected by grid search based on MSE critria
 - The LASSO model or as $\alpha \rightarrow 1$ can perform variable selection to achieve a sparse model

- Basic Model
 - h2o.glm (x, y, training_frame, model_id = NULL,
 ...)
- Model Specification Options
 - family = c("gaussian", "binomial", "quasibinomial", "ordinal", "multinomial", "poisson", "gamma", "tweedie", "negativebinomial"),
 - tweedie_variance_power = 0,
 - tweedie_link_power = 1,
 - link = c("family_default", "identity", "logit", "log", "inverse", "tweedie", "ologit", "oprobit", "ologlog"),

Cross-Validation Parameters

- validation_frame = NULL,
- nfolds = 0, seed = -1,
- keep_cross_validation_models = TRUE,
- keep_cross_validation_predictions = FALSE,
- keep_cross_validation_fold_assignment = FALSE,
- fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
- fold_column = NULL,

• Regularization Options

- alpha = NULL,
- lambda = NULL,
- lambda_search = FALSE,
- nlambdas = -1,

• Early Stopping

- early_stopping = TRUE,
- max_active_predictors = -1,
- max_iterations = -1,

- Other Important Control Parameters
 - solver = c("AUTO", "IRLSM", "L_BFGS", "COORDINATE_DESCENT_NAIVE", "COORDINATE_DESCENT")
 - standardize = TRUE
 - intercept = TRUE
 - missing_values_handling = c("MeanImputation", "Skip"),

Grid Search of Models

 h2o.grid(algorithm, grid_id, x, y, training_frame, ..., hyper_params = list(), is_supervised = NULL, do_hyper_params_check = FALSE, search_criteria = NULL)

Deep Learning (Neural Nets)

Figure 8-1. Network, layers, neurons

Deep Learning (Neural Nets)

- Multi-layer feed-forward ANN trained with stochastic gradient descent using backpropagation
 - A larger number of hidden layers consisting of neurons with tanh, rectifier, and maxout activation functions
- Generalize from GLM $\hat{y} = f\left(\sum_{i=1}^{m} w_i x_i + w_0\right)$

Deep Learning (Neural Nets)

$$\hat{y}_{j} = f^{L} \left(\sum_{i=1}^{m^{L}} w_{i}^{L} z_{i}^{L-1} + w_{0}^{L} \right)$$

where
$$z_i^0 = x_i$$
 and $z_k^l = f^l \left(\sum_{i=1}^{m^l} w_i^l z_i^{l-1} + w_0^l \right)$

$$w_i^l = weight \ of \ node \ i \ in \ layer \ l, \ z_i^l$$

 $m^l = nodes \ in \ layer \ l = 1, 2, ..., L$
 $x_i = input; \quad y_j = output$
 $f = activation \ function \ (Tanh, Rectifier, Maxout)$

Activation Functions

Figure 8-2. Rectifier and Tanh activation functions

Basic Model

- h2o.deeplearning (x, y, training_frame, model_id = NULL ...)

Model Specification Options

- hidden = c(200, 200), epochs = 10, seed = -1,

- activation = c("Tanh", "TanhWithDropout", "Rectifier", "RectifierWithDropout", "Maxout", "MaxoutWithDropout"),
- loss = c("Automatic", "CrossEntropy", "Quadratic", "Huber", "Absolute", "Quantile"),

- Model Specification Options (Continued)
 - distribution = c("AUTO", "bernoulli", "multinomial", "gaussian", "poisson", "gamma", "tweedie", "laplace", "quantile", "huber"),
 - quantile_alpha = 0.5,
 - tweedie_power = 1.5,
 - huber_alpha = 0.9,
 - ignore_const_cols = TRUE,
 - weights_column = NULL,
 - offset_column = NULL,
 - standardize = TRUE,
 - checkpoint = NULL,

- Cross-Validation Parameters
 - validation_frame = NULL,
 - nfolds = 0, seed = -1,
 - keep_cross_validation_models = TRUE,
 - keep_cross_validation_predictions = FALSE,
 - keep_cross_validation_fold_assignment = FALSE,
 - fold_assignment = c("AUTO", "Random", "Modulo", "Stratified"),
 - fold_column = NULL,

• Regularization Options

- -11 = 0, 12 = 0, $max_w^2 = 3.4028235e+38$,
- input_dropout_ratio = 0,
- hidden_dropout_ratios = NULL,

• Early Stopping

- classification_stop = 0,
- regression_stop = 1e-06,
- stopping_rounds = 5, stopping_tolerance = 0,
- max_runtime_secs = 0,
- stopping_metric = c("AUTO", "deviance", "logloss", "MSE", "RMSE", "MAE", "RMSLE", "AUC", "lift_top_group", "misclassification", "mean_per_class_error", "custom", "custom_increasing"),

Machine Learning and Econometrics

- Advanced Optimization Options
 - Adaptive Learning
 - adaptive_rate = TRUE,
 - rho = 0.99, epsilon = 1e-08,
 - rate = 0.005,
 - Rate Annealing
 - rate_annealing = 1e-06, rate_decay = 1,
 - Momentum Training
 - momentum_start = 0, momentum_ramp = 1e+06,
 - momentum_stable = 0,
 - nesterov_accelerated_gradient = TRUE,

- Other Important Control Parameters
 - train_samples_per_iteration = -2,
 - target_ratio_comm_to_comp = 0.05,
 - pretrained_autoencoder = NULL,
 - score_interval = 5,
 - score_training_samples = 10000,
 - score_validation_samples = 0,
 - score_duty_cycle = 0.1,

4/18/2019

— ...