Appendix C

IVPs: practice with a simple
oscillator

C.1 overview

Cycles emerge in natural systems for many reasons. In some cases, for example seasonal tempera-
ture variations, the cycle is imposed by an external forcing (in this case, the inclination of Earth’s
spin axis together with Earth’s orbit around the Sun). In other cases, for example predator-prey
population dynamics, cycles arise internally, due to non-linearities in the relationships among com-
ponents of a system. In still other cases, such as the El Nino Southern Oscillation (ENSO) or
Pliocene and Pleistocene glaciations, an internal cycle may be excited by an external forcing and
as a result have characteristics of both.

An oscillation is the repetitive variation of some quantity about a central value. The variation
may be between two extreme states, as is the case with the swinging of a pendulum, or may have
more complicated structure, as is the case with ENSO. The simplest oscillators simply respond to
an initial forcing according to a law like Robert Hooke’s (1635 to 1703) Ut tensio, sic vis. In the
absence of a damping force, the sum of forces acting on the pendulum mass is always the same (put
another way, the potential and kinetic energies always sum to the same total) and the oscillation
persists without end.

For a pendulum weight subject to an initial displacement from the equilibrium position 6 = 6,
conservation of momentum (or of energy) yields

d?0 g

— + =sinf =0 C.1

dt? + L (C.1)
in which g represents the acceleration due to gravity and L represents the length of the pendulum
string. The equation may be linearized by making the small angle approximation sin § =~ 6.

The model may be improved by the addition of a damping force. This force is likely to go with

the angular velocity w of the pendulum
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Finally, we may wish to consider a driving force, a term that varies with the independent variable
and may or may not go with the dependent variable. If the driving force is periodic, we may write

Fdriving (t) = Fycos (27Tft)

in which F, is the amplitude and f represents the frequency of the forcing. All together, the
equation of motion becomes
d26 dd g
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in which we have taken care to be mindful of sign conventions. For our pendulum, Fg;ying may
be a torque applied at its pivot. In a climate problem, a term like Fy;yiny might represent a daily,
seasonal, or longer cycle.

C.2 exercises

1. Suppose you wish to simulate the undamped oscillation of a pendulum with an initial dis-
placement of 90°. Write equation C.1 so that it can be integrated numerically using the Euler
single step scheme. Write an implementation algorithm and then create the corresponding
model in Matlab. Use the values supplied in Table 1.

2. Modify your model to include a damping term and a driving term. Complete the third column
in Table 1. Please create this model in a new Matlab script, that is, do not add it to the
script you wrote for the first two questions. Make a figure showing both the forcing function
and the oscillation of the pendulum. What happens to the frequency of the oscillation over
time?

3. Modify the script you wrote in part 2 to simulate two oscillators, with initial values 180° out
of phase. What happens over time?

C.3 concluding thoughts

Simple oscillator models constructed from coupled reduced-order equations have been used to ex-
plore a number of climate phenomena. For example, Battisti and Hirst (1989) derived a delayed



C.4. REFERENCES 137

oscillator equation for sea surface temperature in the eastern tropical Pacific, with the delay repre-
senting the travel time for Rossby and Kelvin waves across the basin. Ashkenazy and Tziperman
(2004) used a simple model driven by feedbacks among sea ice cover, precipitation, and ice sheet
size to generate glacial cycles excited by orbital (Milankovitch) forcing.
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