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Abstract. The expectation that Ramanujan’s tau function does not vanish, commonly
known as Lehmer’s Conjecture, has inspired several extensions to broader settings. In this
paper, we focus on one such direction, proposed by Rouse, concerning the non-vanishing
of traces of Hecke operators Tn. We refine an algorithm originally introduced by Rouse to
resolve the case n = 2, and, together with tools from our earlier work on the case n = 3 in
level one, we settle the conjecture for T3 in full generality. We also discuss an implication
of our result for the non-vanishing of all coefficients of the characteristic polynomial of T3.

1. Introduction

The modular discriminant ∆ is the normalized Hecke eigenform in the space S12(SL2(Z))
of cusp forms of full level and weight 12, and is given by:

∆(z) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn, with q = e2πiz.

In 1947, Lehmer initiated the study of vanishing of its Hecke eigenvalues τ(n), leading to
what is now commonly known as Lehmer’s Conjecture: the assertion that τ(n) is never zero.
Given that S12(SL2(Z)) is one-dimensional, τ(n) is precisely the trace of the Hecke operator
Tn acting on this space. This naturally raises the question of whether the trace of Tn can
ever be zero.

More generally, we can consider the trace of Tn acting on the space S2k(Γ0(N)) of cusp
forms of level N and weight 2k, denoted by Tr2k(Γ0(N), n). In this setting, the “Generalized
Lehmer Conjecture” was originally posed in 2006 by Rouse [Rou06, Conjecture 1.5] as follows:

Conjecture 1. If n ≥ 1 is not a square, gcd(N, n) = 1 and 2k = 12 or 2k ≥ 16, then

Tr2k(Γ0(N), n) ̸= 0.

As supporting evidence, Rouse proved the conjecture for n = 2. It is worth noting that
in the level one case, the conjecture for n = 2 also follows from the work of Chiriac and
Jorza [CJ22] who have shown that the trace Tr2k(SL2(Z), 2) takes on no repeated values as
k varies, with the sole exception of zero, which occurs only when the space S2k(SL2(Z)) is
trivial. Further progress on the n = 3 case was achieved by Chiriac, Kurzenhauser, and
Williams [CKW24], who verified the Conjecture in level one and several other levels. In fact,
their work furnishes a systematic way of demonstrating that the trace for a fixed level is
non-vanishing, though they were limited in only being able to treat one level at a time. Our
primary objective is to overcome this limitation, providing a comprehensive resolution of the
n = 3 case in all levels.
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Theorem 1. Conjecture 1 is true for n = 3.

Our proof employs a structured computational strategy. Specifically, we implemented
an algorithm described by Rouse and grounded in the Eichler-Selberg trace formula. This
reduces the problem to the vanishing of coefficients in a finite list of rational functions,
which can be thought of as “modified traces”. For n = 2, the algorithm yields a list of size 8,
enabling Rouse to verify the non-vanishing of the trace of T2 by checking each case directly.
In contrast, for n = 3, it returns 240 cases—a number too large for manual verification.
A central component of our work was optimizing this implementation to further reduce
the computational burden. After refining Rouse’s algorithm, the number of cases requiring
explicit verification decreased to a manageable 21. Second, we addressed these remaining
cases individually: many were resolved via ad hoc modular observations, while for the few
that resisted such analysis, we applied the p-adic method from [CKW24].

A related line of inquiry, inspired by the “Generalized Lehmer Conjecture”, investigates
whether coefficients beyond the first in the characteristic polynomial of Tn can vanish. In
this direction, it was shown in [Cla+24] that the second coefficient—when defined—of the
characteristic polynomial of T2 acting on S2k(N) with N odd, vanishes only when 2k = 2
and N ∈ {33, 37, 57}. Recent work by Ross and Xue [RX25] determines the sign of the
even-indexed coefficients of the characteristic polynomial of Tn when N or k is sufficiently
large. A similar statement is provided for the odd-indexed coefficients, under the additional
assumption that the corresponding trace does not vanish; see [RX25, Corollary 4.3]. Our
main result complements their work for n = 3, allowing us to eliminate the trace condition
in the following application:

Corollary 1. If 2k = 12 or 2k ≥ 16 is fixed, then any given coefficient of the characteristic
polynomial of T3 acting on S2k(Γ0(N)) is nonzero for all but finitely many N coprime to 3.

We now give an overview of the paper’s structure. In Section 2, we introduce the necessary
notation and provide background on the Eichler-Selberg Trace Formula. Section 3 outlines
the reduction step and details the optimizations used to make the problem computationally
feasible. In Section 4, we present the non-vanishing arguments for each “modified trace”.
Finally, Section 5 concludes with a discussion of the prospects for extending our methods
for larger values of n.

2. The Trace Formula

Throughout, we fix n ≥ 1 to be a non-square integer that is coprime to the level N . Our
starting point is a version of the Eichler-Selberg Trace Formula due to Hijikata [Hij74], which
makes explicit how the contributing terms depend on the weight and level. It says that for
2k ≥ 4 we have

Tr2k(Γ0(N), n) = −
∑
s∈Z

a(s, k, n)
∑

f |t(s,n)

b(s, f, n)c(s, f,N, n).

These quantities are defined as follows.

• Call an integer s admissible if s2 − 4n is negative or is a positive square.
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• For an admissible integer s, let t0 be the largest integer for which t20 | (s2−4n). Then
define

t(s, n) =

{
t0 if (s2 − 4n)/t20 ≡ 1 (mod 4)

t0/2 if (s2 − 4n)/t20 ≡ 2, 3 (mod 4).

• For an admissable integer s, let y and y be the roots of x2 − sx+ n = 0. Define

a(s, k, n) =


1

2
· y

2k−1 − y2k−1

y − y
if s2 − 4n < 0

min{|y|, |y|}2k−1

|y − y|
if s2 − 4n is a positive square.

• Fix f | t(s, n) and let

b(s, f, n) =


h((s2 − 4n)/f 2)

ω((s2 − 4n)/f 2)
if s2 − 4n < 0

1

2
φ

(√
s2 − 4n

f

)
if s2 − 4n is a positive square.

Here φ is the totient function, h(−d) is the class number for the imaginary order R
of discriminant −d, and ω(−d) is half the number of units in R.

• For f | t(s, n) and a fixed prime ℓ, let v = vℓ(N) and b = vℓ(f). Let A be the number
of distinct solutions modulo ℓv+b to the system

x2 − sx+ n ≡ 0 (mod ℓv+2b) and 2x ≡ s (mod ℓb).

Similarly, let B be the number of distinct solutions modulo ℓv+b to the system

x2 − sx+ n ≡ 0 (mod ℓv+2b+1) and 2x ≡ s (mod ℓb).

Define

c(s, f,N, n, ℓ) =

{
A if (s2 − 4n)/f 2 ̸≡ 0 (mod ℓ)

A+B if (s2 − 4n)/f 2 ≡ 0 (mod ℓ)

and c(s, f,N, n) =
∏

ℓ|N c(s, f,N, n, ℓ).

For convenience, we take the above constants to be zero when s is not an admissible
integer. We also note that the constants are symmetric in the s component.
We also record how the trace formula manifests in the generating function

R(Γ0(N), n;x) =
∑
k≥1

Tr2k(Γ0(N), n)xk−1.

More precisely, as observed in [FOP04, Theorem 3.3], we have:

R(Γ0(N), n;x) = σ1(n) +
∑
d|n

d<
√
n

∑
f |(n

d
−d)

b(n
d
+ d, f, n)c(n

d
+ d, f,N, n)

d2x− 1

− 1

2

∑
s∈Z

s2−4n<0

∑
f |t(s,n)

b(s, f, n)c(s, f,N, n)
nx+ 1

n2x2 + (2n− s2)x+ 1
.
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3. The Reduction Step

A key step in the proof of Theorem 1 is reducing the problem to finitely many cases. To
this end, a general algorithm was developed in [Rou06, Lemma 3.2], though the details of its
implementation are not straightforward. While Rouse worked with the notion of “projective
equivalence,” we found it more convenient to introduce the concept of a “modified trace.”

Definition 1. Let ε be a vector of length ⌊2
√
n⌋+ 1 consisting of only 0’s and 1’s, i.e.

ε =
(
ε0 ε1 . . . ε⌊2√n⌋

)
where εs ∈ {0, 1}. We will use ε to delete terms from Tr2k(Γ0(N), n) and from R(Γ0(N), n;x).
We define the modified trace by

Tr2k(Γ0(N), n, ε) = −
∑

s2−4n<0

εsa(s, k, n)
∑

f |t(s,n)

b(s, f, n)c(s, f,N, n)

−
∑

s2−4n>0

a(s, k, n)
∑

f |t(s,n)

b(s, f, n)c(s, f,N, n)

where we take the convention that ε−s = εs. If we further take εs to be 1 when |s| > 2
√
n,

we can further simplify this formula to

Tr2k(Γ0(N), n, ε) = −
∑
s∈Z

εsa(s, k, n)
∑

f |t(s,n)

b(s, f, n)c(s, f,N, n).

Up to a constant, the generating function for the modified traces is

R(Γ0(N), n, ε;x) = σ1(n) +
∑
d|n

d<
√
n

∑
f |(n

d
−d)

b(n
d
+ d, f, n)c(n

d
+ d, f,N, n)

d2x− 1

− 1

2

∑
s∈Z

s2−4n<0

∑
f |t(s,n)

εsb(s, f, n)c(s, f,N, n)
nx+ 1

n2x2 + (2n− s2)x+ 1
.

The constant term is not relevant in our discussion, since we only aim to prove that the
modified traces are non-vanishing for 2k ≥ 16 (or 2k = 12).

We will also make use of a constant M(n) defined below.

Definition 2. Let ℓ ∤ n be a prime for which there exists either s with ℓ | (s2 − 4n) or
d <

√
n with ℓ | (n/d− d). For such ℓ, define

M(n, ℓ) = max
({

vℓ(s
2 − 4n) : s2 < 4n

}
∪
{
vℓ(n/d− d) : d | n, d <

√
n
})

+ 1,

and for all other primes ℓ set M(n, ℓ) = 0. Finally, define

M(n) =
∏
ℓ

ℓM(n,ℓ).

n 2 3 5 6 7 8
M(n) 49 1936 1397792 13225 467856 24910081

Table 1. First few values of M(n) for n ≥ 1 non-square.
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With this notation, Rouse’s algorithm [Rou06, Lemma 3.2] can be interpreted as follows:

Proposition 1. For a fixed n ≥ 1 that is not a square and any level N coprime to n, there
exist N0 | M(n), λ ∈ Q×, and a vector ε such that for all 2k ≥ 4

Tr2k(Γ0(N), n) = λTr2k(Γ0(N0), n, ε).

3.1. Explicit Examples. Before continuing with further discussion of the reduction step,
we provide explicit examples of Proposition 1 in action.

Example 1. For n = 3 and N = 5, the trace formula says that

Tr2k(Γ0(5), 3) =
∑
s∈Z

a(s, k, 3)
∑

f |t(s,3)

b(s, f, 3)c(s, f, 5, 3).

The only admissible integers in this case are s ∈ {0,±1,±2,±3,±4}. We claim that this will
be equal to a scalar times Tr2k(SL2(Z), 3, ε). To that end, we can work out the constants
involved explicitly:

s 0 ±1 ±2 ±3 ±4
t(s, 3) 2 1 1 1 2

Table 2. t(s, 3) for the admissible choices of s
(s, f) (0, 1) (0, 2) (±1, 1) (±2, 1) (±3, 1) (±4, 1) (±4, 2)

b(s, f, 3) 1 1/3 1 1 1/3 1/2 1/2
c(s, f, 5, 3) 0 0 2 0 0 2 2
c(s, f, 1, 3) 1 1 1 1 1 1 1

Table 3. The other relevant constants to compute.

Hence, we have

Tr2k(Γ0(5), 3) =
∑
s∈Z

a(s, k, 3)
∑

f |t(s,3)

b(s, f, 3)c(s, f, 5, 3)

= 4a(1, k, 3) + 4a(4, k, 3).

On the other hand, choosing ε = (ε0, ε1, ε2, ε3) = (0, 1, 0, 0) gives

Tr2k(SL2(Z), 3, ε) = 2a(1, k, 3) + 2a(4, k, 3).

Therefore

Tr2k(Γ0(5), 3) = 2 · Tr2k(SL2(Z), 3, ε),

as claimed.

Example 2. If N | M(n), then Tr2k(Γ0(N), n) = Tr2k(Γ0(N), n, ε) where ε is the vector of
all 1’s.

5



3.2. Outline of the Reduction Argument. The following is a corollary to Proposition 1
and is what we will use to prove the n = 3 case.

Corollary 2. To verify the “Generalized Lehmer Conjecture” for fixed n ≥ 1 non-square, it
suffices to check that

Tr2k(Γ0(N0), n, ε) ̸= 0

for 2k = 12 or 2k ≥ 16 for all choices of N0 | M(n) and ε.

We note that Tr2k(Γ(N0), n, ε) is given by an explicit linear recurrence which we can read
off using the formula for R(Γ0(N0), n, ε;x). There are a total of d(M(n))·2⌊2

√
n⌋+1 recurrences

that need to be checked. Table 4 gives a rough idea of how quickly this quantity grows. It
will turn out that this bound can be significantly improved; see Section 3.3 for the n = 3
case and Proposition 3 for an improved bound for general n.

n 2 3 5 6 7 8

d(M(n)) · 2⌊2
√
n⌋+1 24 240 1728 288 4800 1728

Table 4. Number of choices (N0, ε) for the first few n

The following definition will allow us to quickly compare modified traces to see if they
produce the same linear recurrence.

Definition 3. For s such that s2 − 4n < 0, let c−(s,N, n) be the vector consisting of
c(s, f,N, n) for all f | t(s, n). Similarly, for d | n and d <

√
n, let c+(d,N, n) be the vector

consisting of c(n/d+ d, f,N, n) for all f | (n/d− d). Define

V (n,N) =
(
c−(0, N, n) . . . c−(⌊2

√
n⌋, N, n) c+(1, N, n) . . . c+(·, N, n)

)
and

V (n,N, ε) =
(
ε0c

−(0, N, n) . . . ε⌊2√n⌋c
−(⌊2

√
n⌋, N, n) c+(1, N, n) . . . c+(·, N, n)

)
where · represents the largest divisor of n smaller than

√
n.

We note that the only parts of Tr2k(Γ0(N), n, ε) that depend on N are the constants
c(s, f,N, n). In particular, if V (n,N1, ε

(1)) = λV (n,N2, ε
(2)) then Tr2k(Γ0(N1), n, ε

(1)) =
λTr2k(Γ0(N2), n, ε

(2)). This reduces the question of when the traces are scalar multiples of
each other into a question about vectors that can be done by inspection.

3.3. Optimizing the Reduction. In the case of n = 2, there are only 8 cases that need
to be checked. For n = 3, there are 240 choices of N0 | M(3) and ε, which makes an ad hoc
solution infeasible. Therefore, some improvements are required to reduce the problem to a
significantly smaller number of cases. We make two optimizations here:

(1) If two choices of (N0, ε) would give the linear recurrence, then we only need to check
non-vanishing for one of them. More specifically, if V (N0, n, ε

(1)) = λV (N0, n, ε
(2))

for some λ ∈ Q× then we only need to check non-vanishing for one of the pairs
(N0, ε

(i)). As a consequence, we note that if c−(s,N, n) = 0 then the choice of εs
does not matter.
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(2) There are certain choices of (N0, εs) which make the non-vanishing of the modified
trace trivial. Indeed, suppose that ε is chosen such that εsc(s, f,N0, n) = 0 for all
|s| < 2

√
n and f . Then Tr2k(Γ0(N0), ε) < 0 for all k, and in particular is non-

vanishing [Rou06, Proof of Theorem 1.7]. This allows us to ignore several N0 where
we may otherwise need to check that the modified trace doesn’t vanish.

In Section 5 we discuss the feasibility of applying these optimizations to n = 5 and beyond.
Proposition 3 applies this reasoning to obtain an upper bound on the number of cases for
arbitrary n.

We now categorize V (3, N0, ε) subject to the above optimizations. We start by record-
ing V (3, N0) for the divisors of M(3) = 1936 = 24 · 112 in Table 5. From this table,
we immediately see that we won’t need to check any case where the level N0 is in the set
{8, 16, 44, 88, 176, 484, 968, 1936}. This leaves only 7 levels to verifying non-vanishing in. Fur-
ther imposing that εsc(s, f,N0, 3) ̸= 0 for some s further reduces this to 71 cases. When
we group the choices of ε(i) with V (3, N0, ε

(1)) = V (3, N0, ε
(2)), we obtain only 25 cases. Of

these, 4 are actually a scalar multiple of a lower level, bringing the final number of cases to
21, which we list in Table 6.

N0 V (n,N0)
1 (1 1 1 1 1 1 1)
2 (2 0 0 1 0 2 2)
4 (2 0 0 0 0 4 2)
8 (0 0 0 0 0 6 2)
11 (0 0 1 2 0 2 2)
16 (0 0 0 0 0 6 2)
22 (0 0 0 2 0 4 4)
44 (0 0 0 0 0 8 4)

N0 V (n,N0)
88 (0 0 0 0 0 12 4)
121 (0 0 0 2 0 2 2)
176 (0 0 0 0 0 12 4)
242 (0 0 0 2 0 4 4)
484 (0 0 0 0 0 8 4)
968 (0 0 0 0 0 12 4)
1936 (0 0 0 0 0 12 4)

Table 5. V (3, N0) for N0 | M(n). N0 is bolded if V (3, N0) contains a non-zero c+(s,N0, n).

i N0 ε V (3, N0, ε)
1 1 (1, 0, 0, 0) (1 1 0 0 0 1 1)
2 1 (0, 1, 0, 0) (0 0 1 0 0 1 1)
3 1 (1, 1, 0, 0) (1 1 1 0 0 1 1)
4 1 (0, 0, 1, 0) (0 0 0 1 0 1 1)
5 1 (1, 0, 1, 0) (1 1 0 1 0 1 1)
6 1 (0, 1, 1, 0) (0 0 1 1 0 1 1)
7 1 (1, 1, 1, 0) (1 1 1 1 0 1 1)
8 1 (0, 0, 0, 1) (0 0 0 0 1 1 1)
9 1 (1, 0, 0, 1) (1 1 0 0 1 1 1)
10 1 (0, 1, 0, 1) (0 0 1 0 1 1 1)
11 1 (1, 1, 0, 1) (1 1 1 0 1 1 1)

i N0 ε V (3, N0, ε)
12 1 (0, 0, 1, 1) (0 0 0 1 1 1 1)
13 1 (1, 0, 1, 1) (1 1 0 1 1 1 1)
14 1 (0, 1, 1, 1) (0 0 1 1 1 1 1)
15 1 (1, 1, 1, 1) (1 1 1 1 1 1 1)
16 2 (1, ∗, 0, ∗) (2 0 0 0 0 2 2)
17 2 (0, ∗, 1, ∗) (0 0 0 1 0 2 2)
18 2 (1, ∗, 1, ∗) (2 0 0 1 0 2 2)
19 4 (1, ∗, ∗, ∗) (2 0 0 0 0 4 2)
20 11 (∗, 1, 0, ∗) (0 0 1 0 0 2 2)
21 11 (∗, 1, 1, ∗) (0 0 1 2 0 2 2)

Table 6. V (3, N0, ε) for non-trivial choices of (N0, ε), duplicates removed.
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4. Verifying Non-vanishing

We have reduced the problem to verifying that a list of 21 linear recurrences are non-
vanishing. To achieve this, we combine two approaches: reduction modulo suitable integers
and p-adic methods developed by Mignotte and Tzanakis. For each recurrence, we work
with its generating function and the initial terms of its power series expansion. These data
are compiled in Tables 10 and 11 of Appendix A.

4.1. Modular Arithmetic. We first note that if the generating function of a linear re-
currence {an} is P (x)/Q(x), then the characteristic polynomial of {an} is xkQ(1/x) (where
k = degQ(x)). We can therefore reduce this characteristic polynomial modulo a convenient
integer m and show that the sequence modulo m is non-vanishing. The reduction is neces-
sarily periodic, so it will suffice to find a threshold after which the sequence is periodic with
no zero terms. In each of the cases below, the sequence becomes periodic after n = 3. We
will only show all the details for a handful of the series, but we list the appropriate values
of m in Table 7.

i m an (mod m)
1 2 an−2

2 4 an−3

3 5 3an−1 + 4an−2 + 2an−3 + 2an−4

4 4 3an−1 + an−2 + an−3

5 3 2an−1 + 2an−2

7 4 3an−1 + an−2 + 2an−3 + an−4 + 3an−5 + 3an−6

8 7 4an−1 + 2an−2 + 2an−3

9 3 an−1

10 2 an−1 + an−2 + an−3 + an−4 + an−5

11 2 an−6

12 3 2an−1 + 2an−2

13 4 3an−1 + an−2 + 2an−3 + an−4 + 3an−5 + 3an−6

14 4 an−1 + 2an−3 + 2an−4 + 3an−6 + an−7

16 2 an−2

17 2 an−1 + an−2 + an−3

21 3 2an−3

Table 7. Recurrence relations for each sequence reduced modulom. We omit
the moduli for sequences i = 6, 15, 18, 19, 20, which require different methods.

For i = 2, we have a linear recurrence {an} with generating function (36x3 − 10x2 − 9x−
2)/(9x3 − 4x2 − 4x − 1). This lets us read off that 9an−3 − 4an−2 − 4an−1 = an for n ≥ 2.
Reducing modulo 4 gives that an ≡ an−3 (mod 4). This reduces the non-vanishing of i = 2
to checking that a0 ≡ 2a1 ≡ a2 ≡ 2 (mod 4).
For i = 8, the sequence {an} satisfies 27an−3 − 36an−2 + 12an−1 = 3an. Reducing modulo

7 and rearranging gives that for n ≥ 3 we have

an ≡ 4an−1 + 2an−2 + 2an−3 (mod 7).

It follows that an modulo 7 is periodic and cycles between 4, 3, and 1.
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In the cases of i = 5 and i = 12, we need to reduce modulo 3 even though the first term
does not make sense modulo 3. If we ignore the first term (say by letting the sequence begin
at n = 1 instead of n = 0), we will obtain sequences which are periodic for n ≥ 2.

4.2. p-adic Methods. The remaining five power series appear to resist the methods used
above. While it may still be possible to find a modulus with the desired properties, we instead
transition to p-adic methods. These were previously employed in [CKW24] to establish non-
vanishing of the trace in levels 1, 2, and 4, which correspond to the sequences with indices
i = 15, 18 and 19, respectively. We present a slightly simplified setup; specifically, we fix the
parameters A = 1 and c = 0.
Consider a k-th degree linear recurrence {un} with characteristic polynomial g(x). Assume

that g has integer coefficients and k distinct complex roots ω1, . . . , ωk. For a finite set of
solutions M to the equation un = 0, [MT91] provides a method of certifying that M is in
fact the set of all solutions. Suppose that we can produce a prime p ≥ 3 such that:

• the prime p does not divide the discriminant of g or any of its coefficients;
• each root ωi is a p-adic unit;
• there is a positive integer S such that each ωi satisfies ω

S
i ≡ 1 (mod p).

Then the following result from [MT91] holds.

Proposition 2. Let (p, S) be as above and let M be a finite set of solutions m ∈ Z to the
equation um = 0. Let P be a complete set of residues modulo S such that M ⊆ P. Assume
the following conditions hold:

(1) um = 0 for all m ∈ M;
(2) for n ∈ P, if un ≡ 0 (mod p), then n ∈ M;
(3) for each m ∈ M, um+S ̸≡ um (mod p2).

Then un = 0 implies n ∈ M.

As mentioned previously, in [CKW24] it was shown that the trace is non-vanishing for
three of the five remaining sequences, namely i = 15, 18, 19. It thus remains to show that
the technique works for i = 6 and i = 20.

Lemma 1. (a) For i = 6, the pair (p, S) = (59, 29) works.
(b) For i = 20, the pair (p, S) = (23, 11) works.

Proof. (a) From the generating function, we find that g(x) = (x2+2x+9)(x2+5x+9)(x−1)
is the characteristic polynomial of

un = Tr2n(SL2(Z), 3, (0, 1, 1, 0)).

The polynomial x2 + 2x+ 9 has roots

ω1 = 12 + 43 · 59 + 28 · 592 +O(593) and ω2 = 45 + 15 · 59 + 30 · 592 +O(593).

Similarly, the polynomial x2 + 5x+ 9 has roots

ω3 = 5 + 55 · 59 + 57 · 592 +O(593) and ω4 = 49 + 3 · 59 + 1 · 592 +O(593).

The fifth root of g(x) is ω5 = 1. It’s easy to compute that(
12

59

)
=

(
45

59

)
=

(
5

59

)
=

(
49

59

)
=

(
1

59

)
= 1.
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Thus ω29
i ≡ 1 (mod 59) for each i. Here, M = {2, 5} so we choose P = {0, 1, . . . , 28}.

Conditions (1) and (2) can be checked by direct calculation, and for (3) we have that

u2+29 ≡ 2773 ̸≡ u2 (mod 592) and u5+29 ≡ 2714 ̸≡ u5 (mod 592).

(b) Here we have the sequence

ũn = Tr2n(Γ0(11), 3, (∗, 1, 0, ∗))
with characteristic polynomial g̃(x) = (x2 + 5x+ 9)(x− 1). Besides 1, the roots of g̃ are:

ω1 = 16 + 17 · 23 + 12 · 232 +O(233) and ω2 = 2 + 5 · 23 + 20 · 232 +O(233).

As in (a), we can easily check that(
16

23

)
=

(
2

23

)
=

(
1

23

)
= 1,

so ω11
i ≡ 1 (mod 23). Choosing M = {2} and P = {0, 1, . . . , 10}, we see that (1) and (2)

are satisfied. For (3), we simply note that ũ2+11 ≡ 483 ̸≡ ũ2 (mod 232).
□

5. Concluding Remarks

Based on the preliminary estimates in Table 4, the number of recurrences to verify grows
quickly with n. The following observation reflects a significant refinement achieved via our
method.

Proposition 3. Fix a non-square integer n ≥ 2. The number of recurrences that need to be
checked to establish Conjecture 1 for Tn does not exceed∑

N0|M(n)

2(# of nonzero c−(s,N0, n)’s) − 1.

This refined bound reduces the number of recurrences to check by incroporating the two
optimizations we made in Section 3. Namely, each vanishing c−(s,N0, n) eliminates a corre-
sponding choice of εs, and cases in which all εs are zero can be omitted entirely.

n 2 3 5 6 7
Refined Bound 8 25 47 55 144

Table 8. Refined bounds on the number of recurrences to check.

For n = 5, the number of recurrences can be further reduced to 43 by discarding those
V (5, N0, ε)’s that are scalar multiples of one other. Consequently, a proof of the non-
vanishing of the trace of T5 appears to be within reach.
On the other hand, V (n, 1) consists entirely of 1’s for every n, so each distinct choice of ε

yields a distinct modified trace. It follows that

2⌊2
√
n⌋+1 − 1

is a sharp lower bound on the number of cases that must be checked. While this still
represents an improvement over the formula from Table 4, it is clear that computationally
challenges may arise quite early.
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We conclude with a comment on the weight restriction in Conjecture 1. In level one,
the condition 2k = 12 or 2k ≥ 16 is equivalent to requiring that the space of cusp forms
S2k(SL2(Z)) be non-trivial. However, this equivalence does not hold at higher levels. In other
words, for each weight 2k ∈ {2, 4, 6, 8, 10, 14} there are levels N for which dimS2k(Γ0(N)) ≥
1, yet the trace vanishes. The following table provides such examples for T2:

2k 2 4 6 8 10 14
N 19 9 23 113 113 23

dimS2k(Γ0(N)) 1 1 9 66 84 25

Table 9. Pairs (2k,N) for which dimS2k(Γ0(N)) ≥ 1 but Tr2k(Γ0(N), 2) = 0.

It would be interesting to gain a more conceptual understanding of this phenomenon.
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i N0 ε R(Γ0(N0), 3, ε;x)

1 1 (1, 0, 0, 0)
36x2 − 17x− 7

9x2 − 6x− 3

2 1 (0, 1, 0, 0)
36x3 − 10x2 − 9x− 2

9x3 − 4x2 − 4x− 1

3 1 (1, 1, 0, 0)
324x4 − 103x2 − 37x− 4

81x4 − 9x3 − 48x2 − 21x− 3

4 1 (0, 0, 1, 0)
36x3 − 22x2 − 2

9x3 − 7x2 − x− 1

5 1 (1, 0, 1, 0)
324x4 − 108x3 − 52x2 − 16x− 4

81x4 − 36x3 − 30x2 − 12x− 3

6 1 (0, 1, 1, 0)
324x5 − 45x4 − 62x3 − 30x2 − 6x− 1

81x5 − 18x4 − 35x3 − 21x2 − 6x− 1

7 1 (1, 1, 1, 0)
2916x6 + 405x5 − 657x4 − 386x3 − 102x2 − 15x− 1

729x6 + 81x5 − 369x4 − 294x3 − 117x2 − 27x− 3

8 1 (0, 0, 0, 1)
108x3 − 120x2 + 41x− 8

27x3 − 36x2 + 12x− 3

9 1 (1, 0, 0, 1)
108x4 − 90x3 + 9x2 + 3x− 2

27x4 − 27x3 + x− 1

10 1 (0, 1, 0, 1)
972x5 − 621x4 − 42x3 + 13x2 − 2x− 5

243x5 − 189x4 − 45x3 − 3x2 − 3x− 3

11 1 (1, 1, 0, 1)
972x6 − 351x5 − 207x4 + 9x3 + 3x2 − 5x− 1

243x6 − 108x5 − 108x4 − 18x3 − 4x2 − 4x− 1

12 1 (0, 0, 1, 1)
972x5 − 945x4 + 318x3 − 110x2 + 22x− 5

243x5 − 270x4 + 63x3 − 39x2 + 6x− 3

13 1 (1, 0, 1, 1)
972x6 − 675x5 + 63x4 − 18x3 − 6x2 + x− 1

243x6 − 189x5 − 27x4 − 18x3 − 7x2 − x− 1

14 1 (0, 1, 1, 1)
8748x7 − 4374x6 − 324x5 − 264x4 + 20x3 − 24x2 − 2

2187x7 − 1215x6 − 540x5 − 306x4 − 78x3 − 36x2 − 9x− 3

15 1 (1, 1, 1, 1)
8748x8 − 1944x7 − 1512x6 − 252x5

2187x8 − 486x7 − 945x6 − 486x5 − 180x4 − 62x3 − 21x2 − 6x− 1

16 2 (1, ∗, 0, ∗) 12x2 − 3x− 1

3x2 − 2x− 1

17 2 (0, ∗, 1, ∗) 36x3 − 13x2 + 2x− 1

9x3 − 7x2 − x− 1

18 2 (1, ∗, 1, ∗) 108x4 − 12x3

27x4 − 12x3 − 10x2 − 4x− 1

19 4 (1, ∗, ∗, ∗) 12x2

3x2 − 2x− 1

20 11 (∗, 1, 0, ∗) 36x3 − x2 − 4x− 1

9x3 − 4x2 − 4x− 1

21 11 (∗, 1, 1, ∗) 324x5 + 9x4 + 4x3 + 14x2 + 8x+ 1

81x5 − 18x4 − 35x3 − 21x2 − 6x− 1
Table 10. Generating functions for the 21 choices of N0 and ε we need to check.
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i N0 ε R(Γ0(N0), 3, ε;x)

1 1 (1, 0, 0, 0)
7
3
+ x− 7x2 + 17x3 − 55x4 + 161x5 − 487x6 + 1457x7 − 4375x8

+13121x9 − 39367x10 + 118097x11 +O(x12)

2 1 (0, 1, 0, 0)
2 + x− 2x2 − 14x3 + 73x4 − 254x5 + 598x6 − 719x7 − 1802x8

+15466x9 − 61127x10 + 166426x11 +O(x12)

3 1 (1, 1, 0, 0)
4
3
+ 3x− 8x2 + 4x3 + 19x4 − 92x5 + 112x6 + 739x7 − 6176x8

+28588x9 − 100493x10 + 284524x11 +O(x12)

4 1 (0, 0, 1, 0)
2− 2x+ 10x2 − 14x3 − 74x4 + 262x5 + 130x6 − 2630x7 + 4078x8

+15502x9 − 67718x10 − 4094x11 +O(x12)

5 1 (1, 0, 1, 0)
4
3
+ 4x2 + 4x3 − 128x4 + 424x5 − 356x6 − 1172x7 − 296x8

+28624x9 − 107084x10 + 114004x11 +O(x12)

6 1 (0, 1, 1, 0)
1 + 9x2 − 27x3 + 9x5 + 729x6 − 3348x7 + 2277x8

+30969x9 − 128844x10 + 162333x11 +O(x12)

7 1 (1, 1, 1, 0)
1
3
+ 2x+ 3x2 − 9x3 − 54x4 + 171x5 + 243x6 − 1890x7 − 2097x8

+44091x9 − 168210x10 + 280431x11 +O(x12)

8 1 (0, 0, 0, 1)
8
3
− 3x− 4x2 + 8x3 + 53x4 + 80x5 − 244x6 − 1459x7 − 2188x8

+6560x9 + 39365x10 + 59048x11 +O(x12)

9 1 (1, 0, 0, 1)
2− x− 10x2 + 26x3 − x4 + 242x5 − 730x6 − x7 − 6562x8

+19682x9 − x10 + 177146x11 +O(x12)

10 1 (0, 1, 0, 1)
5
3
− x− 5x2 − 5x3 + 127x4 − 173x5 + 355x6 − 2177x7 − 3989x8

+22027x9 − 21761x10 + 225475x11 +O(x12)

11 1 (1, 1, 0, 1)
1 + x− 11x2 + 13x3 + 73x4 − 11x5 − 131x6 − 719x7 − 8363x8

+35149x9 − 61127x10 + 343573x11 +O(x12)

12 1 (0, 0, 1, 1)
5
3
− 4x+ 7x2 − 5x3 − 20x4 + 343x5 − 113x6 − 4088x7 + 1891x8

+22063x9 − 28352x10 + 54955x11 +O(x12)

13 1 (1, 0, 1, 1)
1− 2x+ x2 + 13x3 − 74x4 + 505x5 − 599x6 − 2630x7 − 2483x8

+35185x9 − 67718x10 + 173053x11 +O(x12)

14 1 (0, 1, 1, 1)
2
3
− 2x+ 6x2 − 18x3 + 54x4 + 90x5 + 486x6 − 4806x7 + 90x8

+37530x9 − 89478x10 + 221382x11 +O(x12)

15 1 (1, 1, 1, 1)
252x5 − 3348x7 − 4284x8

+50652x9 − 128844x10 + 339480x11 +O(x12)

16 2 (1, ∗, 0, ∗) 1 + x− 11x2 + 25x3 − 83x4 + 241x5 − 731x6 + 2185x7 − 6563x8

+19681x9 − 59051x10 + 177145x11 +O(x12)

17 2 (0, ∗, 1, ∗) 1− 3x+ 9x2 − 15x3 − 75x4 + 261x5 + 129x6 − 2631x7 + 4077x8

+15501x9 − 67719x10 − 4095x11 +O(x12)

18 2 (1, ∗, 1, ∗) 12x3 − 156x4 + 504x5 − 600x6 − 444x7 − 2484x8

+35184x9 − 126768x10 + 173052x11 +O(x12)

19 4 (1, ∗, ∗, ∗) −12x2 + 24x3 − 84x4 + 240x5 − 732x6 + 2184x7 − 6564x8

+19680x9 − 59052x10 + 177144x11 +O(x12)

20 11 (∗, 1, 0, ∗) 1− 3x2 − 15x3 + 72x4 − 255x5 + 597x6 − 720x7 − 1803x8

+15465x9 − 61128x10 + 166425x11 +O(x12)

21 11 (∗, 1, 1, ∗) −1− 2x+ 19x2 − 41x3 − 74x4 + 271x5 + 859x6 − 5978x7

+6355x8 + 46471x9 − 196562x10 + 158239x11 +O(x12)
Table 11. Generating functions written as power series.
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