2-adic Valuation of T_2 on the Space of Cusp Forms of Level 1
\begin{align*}v_2(\operatorname{Tr}(T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=3 +\\&+v_2(k-\ldots 0111001011110100101110111011110100011010001000101101100100101110001101101011001111101100010000000111).\end{align*}
\begin{align*} v_2(\operatorname{Tr}(\wedge^2 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=9 + \\&+ v_2(k-\ldots 1101010110110111111000111100111111010001010011101101001100001011110011001111011110100001100001001101)\\
&+ v_2(k-\ldots 0000001010001111001001100111010101001101110101001000000111001111001010100000001111010110010000001011)\\
&+ v_2(k-\ldots 0001000001101110010100011100100011010111110010011110110011111010001010110110001000111011001000001010)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^3 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=18 + \\
&+ v_2(k-\ldots 1010101001001100001101111101010010100001111110000100000011110101000110010001100010100011000000001111)\\
&+ v_2(k-\ldots 1001110010110110011101101010111111011001101011100001101011111101001011010000000000000000000000010011)\\
&+ v_2(k-\ldots 1011111010100000000011100110010011111101001100000000001010100110011110000111011110010101110011010001)\\
&+ v_2(k-\ldots 1100101101101010111100000111111111111010101000000100001010111110001101000011101110001001000111001101)\\
&+ v_2(k-\ldots 0110101011111001000001100011000011000110100110100011001011100000001101111000110000101010010000001110)\\
&+ v_2(k-\ldots 0100110101100000000010001011010110100010010111000000111001000000001101000001101000101011011101010000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^4 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=30 + \\
&+ \min(15, 2 \cdot v_2(k - 10011)) \\
&+ v_2(k-\ldots 1010011110001110110010010101100000111010000001011000001101110010101111001110100011111011011100010101) \\
&+ v_2(k-\ldots 0110001111001001110111010111110000110011110101011001001101001010011000000000000000000000000000010111) \\
&+ v_2(k-\ldots 0111100001010111110111011000000000110111100110100010010101110100010000011001011010011010110101010001) \\
&+ v_2(k-\ldots 0001010010011011010011110101011001010001000110001110111011011000000010001111101100100100100000011001) \\
&+ v_2(k-\ldots 0101011111111110000000010110111100101011010011100010000001010100011011101101000000100011000000010010) \\
&+ v_2(k-\ldots 1010110100001100101110110110111000000100110001101011110101101011100010000000000000000000000000010110) \\
&+ v_2(k-\ldots 0101010010000110101000010110101100101000100110110111111010111000010101100110100110011010001111010100) \\
&+ v_2(k-\ldots 0111001101111010000011010010011101110010111111000010110101100100001011010101010001111100001011010000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^5 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=45 + \\
&+ \min(15, 2 \cdot v_2(k - 10110)) \\
&+ \min(16, 2 \cdot v_2(k - 10010111)) \\
&+ v_2(k-\ldots 1011110101110000011100110110000101000110100011000100000101110001110010010011010101000111000000011001) \\
&+ v_2(k-\ldots 1000100000010001101011101101011000101001101101000111001111100101001001110111010010000000000000010011) \\
&+ v_2(k-\ldots 0000111101101010111101001110010100110100010101110111001011000111000000000000000000000000000000011011) \\
&+ v_2(k-\ldots 1110001011000111111011010110000110101110101010010010011000010000000000001000000000000000000000011111) \\
&+ v_2(k-\ldots 0110100001100001101010101001111100111111110110101000101010110100110101111111100000110111100100011001) \\
&+ v_2(k-\ldots 1000000101010000010101101011101111010100100100001001100011010000011000101011111000110010100000011101) \\
&+ v_2(k-\ldots 1100101001101110001011101000010001010110000111001011110111111001100101110100100100011011100100010101) \\
&+ v_2(k-\ldots 1001010010000101101111111011111010100001100011001000111010000011000000000000000000000000000000011010) \\
&+ v_2(k-\ldots 1010000011110010111110010000010110000011001000110101010110000001010001101011110010010000100000011100) \\
&+ v_2(k-\ldots 1110110100100001110010011000011011011011001101000111010011011000011011000001001111001001011001010100) \\
&+ v_2(k-\ldots 1111111011010000101001111111010101101111100111000100110000111000111111011110101010110100101100011000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^6 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=63 + \\
&+ \min(16, 2 \cdot v_2(k - 10011010)) \\
&+ \min(17, 2 \cdot v_2(k - 100011011)) \\
&+ \min(23, 2 \cdot v_2(k - 100000011111)) \\
&+ v_2(k-\ldots 1110101111111010101110100001101010101011000011001111110101000001101001101000101110111011000000011101) \\
&+ v_2(k-\ldots 1000100100010010100011011001001110000011101111001010000001001010011000010110011111101111011100011001) \\
&+ v_2(k-\ldots 1011001011110101011011000100011000111110011011011101010101100010010110110011010111010000000000100101) \\
&+ v_2(k-\ldots 1100100010000101010011110000010000110010011001001100011011011101000001110110101110000000000000010111) \\
&+ v_2(k-\ldots 0100011110010101110111100101000000011011100101001000001011011001011100000010100011011101100000100001) \\
&+ v_2(k-\ldots 1100011011011001010111111100001110000110000111001011110101000010111011000001111100000110110010011101) \\
&+ v_2(k-\ldots 1101011110111110100000011001011100101011010011001100000100100110111101000000000000000000000000100011) \\
&+ v_2(k-\ldots 1010000000111001010001110001010001101001001100011110101101111001001011111010001110111001000000011001) \\
&+ v_2(k-\ldots 0111101101000011001101000001111010011010111101011101110101000000010110010000010010000000000000010110) \\
&+ v_2(k-\ldots 0111000010011010110011001001000011110001101011000101001111101011110000001000000000000000000000100010) \\
&+ v_2(k-\ldots 1100101111001001010010000101100001110110100110110000111001011000000000000000000000000000000000011110) \\
&+ v_2(k-\ldots 1101000000001110000111111111000100101111011100011001010110101110011100101110010000101111000000011100) \\
&+ v_2(k-\ldots 0110000001001111011010000001110001000101011010001110010100001010000101010001010110100101110100011100) \\
&+ v_2(k-\ldots 0111101000111110010011001011011000111000110001010101100100101111100000000011111110111010010100011000) \\
&+ v_2(k-\ldots 1011000110000101110000110100110111110010100000110101101100001101110001101001110001010110100000100000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^7 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=84 + \\
&+ \min(17, 2 \cdot v_2(k - 11111)) \\
&+ \min(17, 2 \cdot v_2(k - 100011110)) \\
&+ \min(23, 2 \cdot v_2(k - 100000100010)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000100011)) \\
&+ v_2(k-\ldots 1100100111101111010110101010000000000111010000010011001100101010110010111000011001100011100000100101) \\
&+ v_2(k-\ldots 0001010100010000001011111011001011000111011101010101110110101111101000100011101101000101011110011101) \\
&+ v_2(k-\ldots 1010100001100000111010011010101111011111111100011000111110111011111110000000000000000000000000100111) \\
&+ v_2(k-\ldots 0111010111000011001110000000010001000100001111000111010000101010100011111011010000011011100000011001) \\
&+ v_2(k-\ldots 0001100111010011101111011001000010000110000100010111011010110000100011001100100101000101000000011101) \\
&+ v_2(k-\ldots 1101101100010010011101100110000000000011110100101011111000100000010101001101101010000000000000011011) \\
&+ v_2(k-\ldots 0101011001011010001100011000101010111011101111111100100010001110000000000000000000000000000000101011) \\
&+ v_2(k-\ldots 1100010110101101101000100100111000010001100100110010110001100000111010010101101110110000000000101001) \\
&+ v_2(k-\ldots 1000000000110000010001111001010100111000101111111001100010100111111111110100000000000000000000011111) \\
&+ v_2(k-\ldots 1100110101100110000001010111101111100000100110000111110100000000000011001110110010010000000000100101) \\
&+ v_2(k-\ldots 0001001001111000100001100111111000001101000000011100110011100101101011000011100111111000000110100001) \\
&+ v_2(k-\ldots 0010100111101001011111110001110100110101110100000010000001111000101001001011000100100101000000100001) \\
&+ v_2(k-\ldots 1101001010100001111111001010101100111001100101101010110011100010101100110000101110000000000000011010) \\
&+ v_2(k-\ldots 1101000011010110010001011010001000000000011111000110111001000100101101000000000000000000000000100110) \\
&+ v_2(k-\ldots 0001000000001011110010010001010000110011000110110000101010101000100000110011101001100001100000100100) \\
&+ v_2(k-\ldots 0000100001011010011111101000000100100001001100000111101010011101001001110100000001101001001100011100) \\
&+ v_2(k-\ldots 0110101001101000111101010001111100111110110000010100111111011000011011011001010011010001000000011100) \\
&+ v_2(k-\ldots 0101101111100001110001010101100101101000110100100100111111000011111110011010000000010000000000101000) \\
&+ v_2(k-\ldots 1010000011011000100000101000111001000110110111100100010011110010111001101101011111110011000000100000) \\
&+ v_2(k-\ldots 0010110101101010111100000011000000110001010111100010011010101011111010110001100110011010101010100000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^8 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=108 + \\
&+ \min(17, 2 \cdot v_2(k - 100010)) \\
&+ \min(35, 2 \cdot v_2(k - 101011)) \\
&+ \min(17, 2 \cdot v_2(k - 100100011)) \\
&+ \min(23, 2 \cdot v_2(k - 100000011111)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000100110)) \\
&+ \min(26, 2 \cdot v_2(k - 1000000100111)) \\
&+ v_2(k-\ldots 0100110001000011110001000011010101111000011000101100010111111001101011101111101001100000000000101101) \\
&+ v_2(k-\ldots 0001100001000100000010000110000100100000010010011101010000011111010111010011110001110000000000101001) \\
&+ v_2(k-\ldots 1000111111010000000111101001100000110011011111001000011100011101111110000000100100000000000000110001) \\
&+ v_2(k-\ldots 0110101010101100011011010110101011100010000001001111011110110010011100100010000011101110000000101001) \\
&+ v_2(k-\ldots 1111001010001101110111100011101110100100101101100000100000011011111101100001010100010001000000100101) \\
&+ v_2(k-\ldots 0001011101001000100100101100110000001000000001010100100010010100110001011111101111011011000000100001) \\
&+ v_2(k-\ldots 0111111001111001100101000001011011100111110010111101011100101001100000011011101011100010001010100001) \\
&+ v_2(k-\ldots 1011001101100001000101111100011100001000110111000110100100011011010110101100101011111000000000100101) \\
&+ v_2(k-\ldots 1010011110110110011110101110100110000001010000110001111001000101100100100000000000000000000000100011) \\
&+ v_2(k-\ldots 0010010001111111000110110110011110000101010000000111110010111010111001101110010100011000111100100101) \\
&+ v_2(k-\ldots 1111100100101010110101001011101110110111001110000011110001110110000000000000000000000000000000101111) \\
&+ v_2(k-\ldots 0101001101010000111000110010101111100101010011010110100010000010011011110111111100001101100000011101) \\
&+ v_2(k-\ldots 0111101111010111000111010110111110111100101001110001101100110000111110000000000000000000000000101010) \\
&+ v_2(k-\ldots 1101100100011000011000010010010100100110001011100101000000011110010111110100000000000000000000100010) \\
&+ v_2(k-\ldots 1100101000101100100010001011001001010100011000111100101001010000001100001100101010000000000000011110) \\
&+ v_2(k-\ldots 0001100111010100100100001100000011010110000101101100100100001110000000000000000000000000000000101110) \\
&+ v_2(k-\ldots 1010100000110000000110100110011100000001101100001111110011101100101101010001101011110000000000101100) \\
&+ v_2(k-\ldots 1100111000001101010000111001001011100000100001101001001011100101110000001010111010011101000000100100) \\
&+ v_2(k-\ldots 1011101101111000001000001011101111101001000110010011101110000111100100000001000001110111111110100100) \\
&+ v_2(k-\ldots 0111110011000001111000101101100101010100011101111111101001000010101110001100111010101111100000011100) \\
&+ v_2(k-\ldots 1010001011010101010001100100000001000111100110000011010110011000000111111100100100101111100000101000) \\
&+ v_2(k-\ldots 1010000011011001110011111100000111011110000011000001000101011110100001010000110111010000000000101000) \\
&+ v_2(k-\ldots 1011001100011100111100011111101101010011010010101011001011001011111101110100110100001101000000100000) \\
&+ v_2(k-\ldots 0111100101001111101110111000110100001011011101001101111110001000010001000111011001011011100110100000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^9 T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=135 + \\
&+ \min(25, 2 \cdot v_2(k - 1000000100011)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000101011)) \\
&+ \min(15, 2 \cdot v_2(k - 10100111)) \\
&+ \min(35, 2 \cdot v_2(k - 100000000000101111)) \\
&+ \min(17, 2 \cdot v_2(k - 100100110)) \\
&+ \min(23, 2 \cdot v_2(k - 100000100010)) \\
&+ \min(35, 2 \cdot v_2(k - 101110)) \\
&+ \min(26, 2 \cdot v_2(k - 1000000101010)) \\
&+ v_2(k-\ldots 1100111000011101111011101010100001100110100011110100101110110100010010000101110000000000000000110001) \\
&+ v_2(k-\ldots 0010110011000010101110110110011110100111111100100111110001000110110010010101110000100000000000110001) \\
&+ v_2(k-\ldots 1111110100110011001010000000101011101011000110111011111111111110010001011001010100001000000000100101) \\
&+ v_2(k-\ldots 1001100011110100110001101100111100010101000101010000101111100000000000000000000000000000000000110111) \\
&+ v_2(k-\ldots 1110100000101101000100001100000001001000100001010001101110101111111111011000000000000000000000011111) \\
&+ v_2(k-\ldots 0001000011110101001110001111000011100010111010100101001001011000100001001110101011000110000000101101) \\
&+ v_2(k-\ldots 0011010110111011110010110101011010011111100001001111000110100101111001110100101001100010100000100001) \\
&+ v_2(k-\ldots 1000101111111110011001011011001000011010100100111010100001100110000011000000000000000000000000100111) \\
&+ v_2(k-\ldots 0000100000001110100001101000110010001101011110111011010101001001010011010010011001111010100100101001) \\
&+ v_2(k-\ldots 1110011100111000000111001001000100011100101110010100001000011101010001000010111100101100000000101001) \\
&+ v_2(k-\ldots 0110001011110110010101111000010100101000010001101001001110101110000000000000000000000000000000110011) \\
&+ v_2(k-\ldots 1110001110101000010000010111110010001111110001001011101000011000000001010010001111101111000000100101) \\
&+ v_2(k-\ldots 0110000001010100001000110011101111010100110010001101111110001000000000110010100100000000000000110101) \\
&+ v_2(k-\ldots 0001100011001100101000100011101011101011011010101011110100100110000000000000000000000000000000101011) \\
&+ v_2(k-\ldots 1110110010100101100001111110101111011011001100101001100011011000011011101000000100011000000000101001) \\
&+ v_2(k-\ldots 1000110010110111110001100100100110001100101010010011011010011011100111111010011011100000000000101101) \\
&+ v_2(k-\ldots 0100001101010110101001111000101001100010011100100011011011010010100101001000001011101010000100100101) \\
&+ v_2(k-\ldots 0110100000001010110101010001000110110101111101011000111001110110000000000000000000000000000000110010) \\
&+ v_2(k-\ldots 1000001010110010000000000001100110010101000001110101101010011000111100100000000000000000000000100110) \\
&+ v_2(k-\ldots 1010110000010011011011011011100001011110100110011111011110000100110111101100111111111000010010100100) \\
&+ v_2(k-\ldots 1100101101101000111100100101110100001101100110001100110111111000111000000100011010110000000000101100) \\
&+ v_2(k-\ldots 1111111011100011101001011010001110011111111000100100101001100001001011111010111001100011000000100100) \\
&+ v_2(k-\ldots 1000101110101001010100001010111011010101011001000100110110001110101110010101100100000000000000110100) \\
&+ v_2(k-\ldots 0100000001001000000110111100100010011011000010000101011100011100011001101010101001111110000000101100) \\
&+ v_2(k-\ldots 0101111000101010011110100001011011001111101101100011101100010000110100010000111100011100001100101000) \\
&+ v_2(k-\ldots 0100000101111110010111001100101010011011100010101110101111010001110100010001100001011001000000101000) \\
&+ v_2(k-\ldots 1001110101100000000010010110100011001110110110101110100010101110111001110100111001011000000000101000) \\
&+ v_2(k-\ldots 1110110011010001000110110010001101011011110001011000101011100011110010101101111111100000000000110000) \\
&+ v_2(k-\ldots 0001100101111111010001010100101111000000000101101011110001100110010100100011010011101001100000100000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^{10} T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=165 + \\
&+ \min(41, 2 \cdot v_2(k - 100000000000000110111)) \\
&+ \min(27, 2 \cdot v_2(k - 10000000101111)) \\
&+ \min(33, 2 \cdot v_2(k - 101011)) \\
&+ \min(26, 2 \cdot v_2(k - 1000000100111)) \\
&+ \min(15, 2 \cdot v_2(k - 101011)) \\
&+ \min(35, 2 \cdot v_2(k - 110011)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000100110)) \\
&+ \min(35, 2 \cdot v_2(k - 100000000000110010)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000101110)) \\
&+ \min(15, 2 \cdot v_2(k - 10101010)) \\
&+ v_2(k-\ldots 0000111001000011001000110111000011100011011010101100110100010110111001101100010100000000000000111001) \\
&+ v_2(k-\ldots 1111111101110001011010001010100011001010010111100011111111010100110011100010010000000000000000111101) \\
&+ v_2(k-\ldots 0110110011010100001001110111101010010100000100111110000001010111110000100000000011110000000000110101) \\
&+ v_2(k-\ldots 1000011001111001000101101011110110001100001110010110101001000000000000000000000000000000000000111011) \\
&+ v_2(k-\ldots 0111110001001110110110000111001000000010111011010100000100101110000000000000000000000000000000101111) \\
&+ v_2(k-\ldots 1101111101000100001010100111100011001100010110001010100000010010000001011101000111100100000000101101) \\
&+ v_2(k-\ldots 0000011101110011110011011010000000010101111100100010000111010101100111010001110110100000000000110001) \\
&+ v_2(k-\ldots 0110000000000111100011110011000010001100000100101000111100001101111110001101111011101000000000101001) \\
&+ v_2(k-\ldots 1010111110000000011111001110010010101001100010000010111000000101011000001001001101110000000000100101) \\
&+ v_2(k-\ldots 1101101010000111111001101110010011001001011001100011101000111101001111000000000000000000000000100011) \\
&+ v_2(k-\ldots 0111010000101111000001110101111111011101111000001100110101010100000011101101110110001000011100101001) \\
&+ v_2(k-\ldots 0101001111011010111000001100011011111001011111001001110001010101010010010000001011010000000000101101) \\
&+ v_2(k-\ldots 0110101100000101101000111101101011101011101011110011110011011111000100100101110000000000000000110101) \\
&+ v_2(k-\ldots 0011000000010001000001100011110101010101110010110110111100000111000101011010111011011100100000100101) \\
&+ v_2(k-\ldots 1001111101010100101010000110101111111110010101101111100100111000111110101010010000100010000000110001) \\
&+ v_2(k-\ldots 1001011111110001100111001101001001000111100111101000100011010001011101100010010110101001011011101101) \\
&+ v_2(k-\ldots 1101111011000000110110011001011011110111101100000110010001011101010000011000100011010100000000101001) \\
&+ v_2(k-\ldots 1111011010011100001110011111000010100001010110100110001001101100100111101000110000000000000000110001) \\
&+ v_2(k-\ldots 1110111111010011010110010100011100011101111110000110011110100110000000000000000000000000000000101110) \\
&+ v_2(k-\ldots 1101011000110110101000100011001111110101100111000111111100101110000000000000000000000000000000110110) \\
&+ v_2(k-\ldots 0101110001000110000100011101000010100110100100001100111111100000000000000000000000000000000000111010) \\
&+ v_2(k-\ldots 0110011110101100100101101011001000011111011010010010110001100101001111011000000000000000000000100010) \\
&+ v_2(k-\ldots 0111111100101010101101000001000101111001101011010101011100110110100011000000000000000000000000101010) \\
&+ v_2(k-\ldots 1010001000111001101110110111110011101010000010000001110110101010010110000100110110100000000000110100) \\
&+ v_2(k-\ldots 0001000000001100010001111010000101000000011011111110000100101000010100110100101011011100110100101100) \\
&+ v_2(k-\ldots 1010100110010000101011011010001001100110001111001101010110010000000101011100010011011110100000100100) \\
&+ v_2(k-\ldots 0101010111011101001011001000011101101001011111101000010100110011110111001011010111111000000000101100) \\
&+ v_2(k-\ldots 0111011111001110010001100111011100111111001101101111110101100110000101010001110000000000000000110100) \\
&+ v_2(k-\ldots 1010110100000011011111110101111101001011001011000001010111100110011011100000111010101100000000101100) \\
&+ v_2(k-\ldots 0011111000101011000100010010110001001110110111110010001101101010111010001010000010100111000000101000) \\
&+ v_2(k-\ldots 1000110000101000101101110101001110000000110010000000110001010100010000100001000110101000000000101000) \\
&+ v_2(k-\ldots 0110001000000011100101110101100111001011000110001001000111010101111100000011100100000000000000111000) \\
&+ v_2(k-\ldots 1101001101001111111111010100000100100101000011110011000001000000101011000011001100011110110100101000) \\
&+ v_2(k-\ldots 0110010101100100001011001010010001010100001010110011110000011110100110011110010010110110000000110000) \\
&+ v_2(k-\ldots 1110111111001110100010111000110101000111001010100010001101110110110100001001011001100000000000110000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^{11} T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=198 + \\
&+ \min(25, 2 \cdot v_2(k - 1000000101011)) \\
&+ \min(34, 2 \cdot v_2(k - 10000000000101111)) \\
&+ \min(19, 2 \cdot v_2(k - 1000101111)) \\
&+ \min(37, 2 \cdot v_2(k - 110111)) \\
&+ \min(25, 2 \cdot v_2(k - 110011)) \\
&+ \min(26, 2 \cdot v_2(k - 1000000101010)) \\
&+ \min(41, 2 \cdot v_2(k - 100000000000000111010)) \\
&+ \min(33, 2 \cdot v_2(k - 101110)) \\
&+ \min(15, 2 \cdot v_2(k - 101110)) \\
&+ \min(27, 2 \cdot v_2(k - 10000000110010)) \\
&+ \min(35, 2 \cdot v_2(k - 110110)) \\
&+ v_2(k-\ldots 1011000101100110111110110011111010001100001101010000111101000010000011001000110000000000000000110101) \\
&+ v_2(k-\ldots 0101010111111011000100001010010110011101001111011100111011000110000000000000000000000000000000110011) \\
&+ v_2(k-\ldots 1001101011001100101110000010001011000000111011100010000001111101110111101011111110110000000000110101) \\
&+ v_2(k-\ldots 0000110010010111101110101010011000011111111100111100001101001101000111000111011001111111110001110001) \\
&+ v_2(k-\ldots 0101101110001100110000011111100010011001011101111001101111100111111101101101000100000000000000111101) \\
&+ v_2(k-\ldots 1011110111011010011000010110111001111010110111110001111111001011111011011110110000000000000000111001) \\
&+ v_2(k-\ldots 0000110001001111000111001101001110010101000101011000111100001100101110101110010100010000000000111001) \\
&+ v_2(k-\ldots 0011001101100110001110110111000000000000000000000000000000000000000000000000000000000000000000110111) \\
&+ v_2(k-\ldots 1010010101010110001001110001101011001000010101100011011010010100101101100111110100110000000000101101) \\
&+ v_2(k-\ldots 1110010000111100100010111111111000011101100010000101001010011100000011110001001101011010000000110101) \\
&+ v_2(k-\ldots 0111010111000110101111010111000111011111110001100101011010000110110101011110011000011100000000101101) \\
&+ v_2(k-\ldots 0111011000101111110000111111100110110010001001110000010010001101010110100110011100000000000000111011) \\
&+ v_2(k-\ldots 1111000110000001010000111110100101011001101010101111010010011000000000000000000000000000000000101011) \\
&+ v_2(k-\ldots 0110001110101001101110101010101011001110101010111001011101010001110100000100001110010000000000101001) \\
&+ v_2(k-\ldots 1000000010101111100011101000000010110100001111101100111101000110001010000100110100010010000000101001) \\
&+ v_2(k-\ldots 0001101111111100001100110011111111001100110010001101111110111010001001011001100100000000000000111011) \\
&+ v_2(k-\ldots 1000001001001000011100010111100111011100000110000011000101010100001010000000000000000000000000100111) \\
&+ v_2(k-\ldots 0100001001011000111000000000000100010001110001011000100010111100001101111001110010111011011101101101) \\
&+ v_2(k-\ldots 0011000101111000110010100101000010000011100011111101001100110111111101100100101000110000000000100101) \\
&+ v_2(k-\ldots 0111110111010000010011001110001011100010010011000110110000000000000000000000000000000000000000111111) \\
\end{align*}
\begin{align*}
&+ v_2(k-\ldots 0000100100011000100101010011000100001101011000000000000000000000000000000000000000000000000001000011) \\
&+ v_2(k-\ldots 0000100000010101011000100011000011001110011011110010110001001111110101101010111000000000000000110001) \\
&+ v_2(k-\ldots 1101011001101010000110001001000100010111010111000110100001100001110001001100010111110000000000110001) \\
&+ v_2(k-\ldots 0111000100100111001100010001001011110000100100001110001100011001011101000110110000000000000001000001) \\
&+ v_2(k-\ldots 0101101110001001100111100001000101011010110001010100100111111110011010101001110000000000000000111101) \\
&+ v_2(k-\ldots 1111111001111010011110010111010000010100100101100001010111101110111000000001000010001100000000110001) \\
&+ v_2(k-\ldots 0011000101100110100000011111100101101110000000110111101100101110000000000000000000000000000000110010) \\
&+ v_2(k-\ldots 0010011001001010101111101000110001011010000110010001011001000000000000000000000000000000000000111110) \\
&+ v_2(k-\ldots 0100110100000101101100011001101011101110010000011101100010101000011111000000000000000000000000100110) \\
&+ v_2(k-\ldots 1011101001101011100001101100000011001111101000010010100000111100000100001010100101010100000000101100) \\
&+ v_2(k-\ldots 0010111110000111101010111111101001101100100010000101100100010101001010101110100100100000000000110100) \\
&+ v_2(k-\ldots 1111111011001111100111010010111001101110000001111110100011110101001001001011000101010010000000110100) \\
&+ v_2(k-\ldots 0011000101101010001001101110001111000000101111101001100011110010000010100100110000000000000000110100) \\
&+ v_2(k-\ldots 0000001100000100011101111100111111101000011111101100000010100101101010110000111010101110001100101100) \\
&+ v_2(k-\ldots 0001100100101001110110001100000100101000100111101011000100010110111100111010101000001000000000101100) \\
&+ v_2(k-\ldots 0011111100011000011110000111110110111000011101011011111101111100111010111111010100000000000000111100) \\
&+ v_2(k-\ldots 0001011001100000000010001001101100010111000100001100011000111100101111000111001000110000000000101000) \\
&+ v_2(k-\ldots 1110010010011111001011011000111001011100000100101110011010101010000010100000110110110000000000111000) \\
&+ v_2(k-\ldots 0111101001011101010101000000000100101011100100001010011101100111100001100101000000010000100000101000) \\
&+ v_2(k-\ldots 1000110110100010000010010010000111001100001111110101010100001000011000100001110000000000000000111000) \\
&+ v_2(k-\ldots 1110010101101101001000010110101100000111100110100101000111110010010100101001001011000100000000110000) \\
&+ v_2(k-\ldots 1100101000000111110111100011101110001101001111010011110010111000001101011010011111110110101111110000) \\
&+ v_2(k-\ldots 0111110001100111011001001011000100111000000111001001010010111000100111010101111100010000000000110000) \\
&+ v_2(k-\ldots 1001001001010110000000011010111011001111110001110111101011111000110001101001010000000000000001000000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^{12} T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=234 + \\
&+ \min(17, 2 \cdot v_2(k - 100110011)) \\
&+ \min(43, 2 \cdot v_2(k - 1000000000000000111101)) \\
&+ \min(33, 2 \cdot v_2(k - 110011)) \\
&+ \min(49, 2 \cdot v_2(k - 1000011)) \\
&+ \min(25, 2 \cdot v_2(k - 110111)) \\
&+ \min(41, 2 \cdot v_2(k - 110111)) \\
&+ \min(37, 2 \cdot v_2(k - 1000000000000111011)) \\
&+ \min(35, 2 \cdot v_2(k - 101011)) \\
&+ \min(27, 2 \cdot v_2(k - 10000000101111)) \\
&+ \min(42, 2 \cdot v_2(k - 100000000000000111111)) \\
&+ \min(25, 2 \cdot v_2(k - 110110)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000101110)) \\
&+ \min(19, 2 \cdot v_2(k - 1000110010)) \\
&+ \min(34, 2 \cdot v_2(k - 10000000000110010)) \\
&+ \min(37, 2 \cdot v_2(k - 111010)) \\
&+ v_2(k-\ldots 0100011000000110011110100000010110110101010110101010001011000100010101010110100011110001001000110101) \\
&+ v_2(k-\ldots 1010001001010010011111001111010010110111101110101001001110000000101110010010001101010100000000110101) \\
&+ v_2(k-\ldots 1011011010010010100000100011110110100001101001100110100101110000000101000010111000000000000000110101) \\
&+ v_2(k-\ldots 1110011011001100000101010111110100010011001000000000000000000000000000000000000000000000000001000111) \\
&+ v_2(k-\ldots 1010010101110111010101001100110100011111111011001110011100011011010100100110011101110100000000110001) \\
&+ v_2(k-\ldots 0000011010010110000000111000001100110000110101111000100001011111011011101011101000010000000000110001) \\
&+ v_2(k-\ldots 1111101100100100000101000101001110100100110101111100101000011111001111010100100111010000000000111001) \\
&+ v_2(k-\ldots 0010111000000010100010111101010101111010000100011011001011001111000011001100000000000000000001000101) \\
&+ v_2(k-\ldots 1011110011101010010011110000100000010110100111111011000101011010101100000010010001010000000000101001) \\
&+ v_2(k-\ldots 0000011000111010000100110111101101101010111101001101001010110001110011101001010000000000000001000001) \\
&+ v_2(k-\ldots 0001000111000110010011011100001100100111100111011101010101000000100101010101001100111010000000101101) \\
&+ v_2(k-\ldots 0101010010110110000001111100011001010010100100110111011101001010101100110101110000000000000000111001) \\
&+ v_2(k-\ldots 1111101110010000011111001010101011111010011101100001101111111010101010100000000000000000000001001001) \\
&+ v_2(k-\ldots 1110100001010111011001111001010111011000001101100100101001101111101110111101011100000000000001000001) \\
&+ v_2(k-\ldots 1001111110011001001101100110100111101000100101001001010111111010001010010101001000000000000000110001) \\
\end{align*}
\begin{align*}
&+ v_2(k-\ldots 0010010011100000110111000000000000000000000000000000000000000000000000000000000000000000000000111011) \\
&+ v_2(k-\ldots 0111010011011011110001100100101100111010010110001111000101001010000011100101100100100000000000101101) \\
&+ v_2(k-\ldots 1101011001001101001111110001100011001010110011111100000100101110001100011110001000011000000000110101) \\
&+ v_2(k-\ldots 1001101001111110110111011110110000010111110010101100110100010110011101000011011010111101000111110001) \\
&+ v_2(k-\ldots 0000010111110101011001011110000110001011101101010000010010111000000000000000000000000000000000101111) \\
&+ v_2(k-\ldots 0100100001111011000000100000000100101110011110011111000011110000100000010100111000100001000000111001) \\
&+ v_2(k-\ldots 0001011011010010111100101001001010110100010000011110101000010011101101110000110001000000000000111101) \\
&+ v_2(k-\ldots 0100010000000011111111011100100010011100111111000111100000001011001010000000000000000000000000101010) \\
&+ v_2(k-\ldots 0111100100010010001011001001011101100001011000000000000000000000000000000000000000000000000001000110) \\
&+ v_2(k-\ldots 0000000010110101110110101000100001010111111000011001111010011000000000000000000000000000000000101110) \\
&+ v_2(k-\ldots 0001110000101101000010111000000000000000000000000000000000000000000000000000000000000000000000111010) \\
&+ v_2(k-\ldots 0101011001010111001110111100001111111110101011001100001011001001011000011111100100000000000000111110) \\
&+ v_2(k-\ldots 1010110011000001111000110101010110011110010110000110110000000000000000000000000000000000000001000010) \\
&+ v_2(k-\ldots 1000101111001111001101110111011000100010011001101011111100011110000111100000011100000000000000111110) \\
&+ v_2(k-\ldots 0010100111111110010010001011110000000011011101101000000001000110000000000000000000000000000000110110) \\
&+ v_2(k-\ldots 0111110111000111101101111000010011000111000011101010111000000111001011101101110000000000000001000100) \\
&+ v_2(k-\ldots 0110110100111001101000001011011000101010100111010100001110010110011100110100001011010000000000111100) \\
&+ v_2(k-\ldots 1000001010110001101001000110011000001000110101100101011101011001011110010011100101010000000000101100) \\
&+ v_2(k-\ldots 1100101101110000101011111001000000011000110010010011000001010101100100101011010000110000000000110100) \\
&+ v_2(k-\ldots 1010110110000111111010010000100100110000110100100111100100010100000010010110001110000010000000101100) \\
&+ v_2(k-\ldots 1110110001101100100101111111001101101100011000010111111011111100000011010010110000000000000000111100) \\
&+ v_2(k-\ldots 0010110000101110101101000101110011010010000001101101010110011101010001101010010000001001100101110100) \\
&+ v_2(k-\ldots 1001001010111011000001001001111100010101000000111001100100001010000000100000000011101100000000110100) \\
&+ v_2(k-\ldots 0001111010001100101000010101000101010001100000111101110001000110111101110000111000000000000000110100) \\
&+ v_2(k-\ldots 0010100001100000001111110110001010101011111100001101000101000110101001110100110000000000000000111000) \\
&+ v_2(k-\ldots 0001000001111011011010010001011011100011000000110110110010010101000010110010011000101010000000111000) \\
&+ v_2(k-\ldots 1100010111010110000101011100100110001010011011100000000101100111110011001000000101110000000000111000) \\
&+ v_2(k-\ldots 1100110010101010010001000100010111101001111101101100011101100010010010111101111111110000000000101000) \\
&+ v_2(k-\ldots 0101100110101001100011010100010110110000010010100000111000100001101111110010110001110101001001110000) \\
&+ v_2(k-\ldots 1011100001010101101000101001000111100101011011111000011000101111111001100010000011110000000000110000) \\
&+ v_2(k-\ldots 1000110100001101100100011101100011101000111001111111010110100111011010111010010100111100000000110000) \\
&+ v_2(k-\ldots 0101001100011011010001000111000000000111100001111101100110111101111111110101000100000000000001000000) \\
&+ v_2(k-\ldots 0100101000100100010000001000011001001000100111000101101101001011001111111110110000000000000001000000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^{13} T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=273 + \\
&+ \min(35, 2 \cdot v_2(k - 100000000000101111)) \\
&+ \min(49, 2 \cdot v_2(k - 1000000000000000001000111)) \\
&+ \min(43, 2 \cdot v_2(k - 1000000000000001000001)) \\
&+ \min(36, 2 \cdot v_2(k - 100000000000111111)) \\
&+ \min(25, 2 \cdot v_2(k - 111011)) \\
&+ \min(35, 2 \cdot v_2(k - 110111)) \\
&+ \min(41, 2 \cdot v_2(k - 111011)) \\
&+ \min(15, 2 \cdot v_2(k - 110111)) \\
&+ \min(43, 2 \cdot v_2(k - 111101)) \\
&+ \min(25, 2 \cdot v_2(k - 110011)) \\
&+ \min(33, 2 \cdot v_2(k - 110110)) \\
&+ \min(37, 2 \cdot v_2(k - 1000000000000111110)) \\
&+ \min(35, 2 \cdot v_2(k - 101110)) \\
&+ \min(42, 2 \cdot v_2(k - 100000000000001000010)) \\
&+ \min(41, 2 \cdot v_2(k - 111010)) \\
&+ \min(49, 2 \cdot v_2(k - 1000110)) \\
&+ \min(17, 2 \cdot v_2(k - 100110110)) \\
&+ \min(25, 2 \cdot v_2(k - 111010)) \\
&+ \min(27, 2 \cdot v_2(k - 10000000110010)) \\
&+ \min(43, 2 \cdot v_2(k - 1000000000000001000000)) \\
&+ v_2(k-\ldots 0111111100110100001000000000000000000000000000000000000000000000000000000000000000000000000000111111) \\
&+ v_2(k-\ldots 1001001101111101011011000001011000101011111000001100001000001111000000000000000000000000000000101011) \\
&+ v_2(k-\ldots 1110001111111000100000110110100110011110111101000000010011001001111010111101001000000000000000110101) \\
&+ v_2(k-\ldots 1011001010001110111011110001110000101111101111110110010101001101110100100000000000000000000001001101) \\
&+ v_2(k-\ldots 0111100101110110111010011110010100111011100111110100110011011011111000100010101000000110000000111001) \\
&+ v_2(k-\ldots 0101000011001001111101111011111100101001001110011111111110110011011000111111101101000000000000111101) \\
&+ v_2(k-\ldots 0110000000111011000001100110110110110010010111010001101000110001100110110101001010111110111000111001) \\
&+ v_2(k-\ldots 0000100111110111011100111100101100101110010001100100000001011001011010111000111001111000111000110101) \\
&+ v_2(k-\ldots 0110111100100010111100101001001001111110111101001010010111111001010110110110000110101101000000111101) \\
&+ v_2(k-\ldots 0001000011100100100110000111000010000010100000101000011110100000000000000000000000000000000000110111) \\
&+ v_2(k-\ldots 0000111100100110000011011101010101100011010101111101111101101011011000010111010000000000000000110001) \\
&+ v_2(k-\ldots 0111111111110010000110000111000011000010011101100010101010001000101110101010110101111000000000111001) \\
&+ v_2(k-\ldots 0010111001011101010010011001010000101000011010000000000000000000000000000000000000000000000001000011) \\
&+ v_2(k-\ldots 1101100110111000101010011111101000110001101011010001100110101000011111000110011100000000000001000011) \\
&+ v_2(k-\ldots 1100111110101100010011101101111010011111001110001000011101100001111111000100100111011110000000110001) \\
&+ v_2(k-\ldots 0011100110110111111000000011101001001101010111000010010011101100011100000100000000000000000001000101) \\
&+ v_2(k-\ldots 1110011001111100000101110000000100101111100001100010000110011101111000001110001001100000000000110001) \\
&+ v_2(k-\ldots 0001100100001010010111000110100110001000101111010010010111111000111101011001010010101100000000110101) \\
&+ v_2(k-\ldots 0110000010001110110101110110100010001111111100100100110010110011010011110000010110100000000000101101) \\
\end{align*}
\begin{align*}
&+ v_2(k-\ldots 0111100001001000011101110100011000101101111000000000000000000000000000000000000000000000000001001011) \\
&+ v_2(k-\ldots 1010011111100001001110000110101000110100110100101010011111110100011100010100000000000000000001001001) \\
&+ v_2(k-\ldots 1011100111101001000111110100110100110100000000000000000000000000000000000000000000000000000001001111) \\
&+ v_2(k-\ldots 0101111010011000001100101000101000011101001001111000001111111100011100111111011000000000000000111001) \\
&+ v_2(k-\ldots 1011111111111000101111111100001001110100111101110011101100011000000000000000000000000000000000110011) \\
&+ v_2(k-\ldots 0011111111000100100001111011011011011001100100011001000011101011000000111001100100000000000001000011) \\
&+ v_2(k-\ldots 0111100101010100011001000100010001001101110000000100000101000111010001000000000000000000000001001001) \\
&+ v_2(k-\ldots 1101101110111001100100110001001010011011001010100100000111110010010010010100011011000000000001000001) \\
&+ v_2(k-\ldots 1000011010100000101111011000100000010011111011110111111101001011011010011111001100000000000001000101) \\
&+ v_2(k-\ldots 1010011000111111110010101001000001011110100011100101011000111011010010110111110111101000000000110101) \\
&+ v_2(k-\ldots 0111111001011010110011111000000101101011001000000000000000000000000000000000000000000000000001001010) \\
&+ v_2(k-\ldots 1000111000101100000100110110000110111000000011011110110010111000000000000000000000000000000000110010) \\
&+ v_2(k-\ldots 0000001101111000011000000000000000000000000000000000000000000000000000000000000000000000000000111110) \\
&+ v_2(k-\ldots 0011011101101101001000110101000101100100110001000011101101000101011001101110000010010000000000111100) \\
&+ v_2(k-\ldots 1111100110010101110001111110101010101100101011001100000100000011000010001111001000000000000000110100) \\
&+ v_2(k-\ldots 1111011000011100001010000100110110011110101111101010001010010100001100111001110000000000000000111100) \\
&+ v_2(k-\ldots 0001010010100010101111001010110010000110111000110100111010010011101011011111011100010100000000110100) \\
&+ v_2(k-\ldots 0011000110001110001100101100001000101111110001010111000101011110101111011100011111111001000000111100) \\
&+ v_2(k-\ldots 0110010011111100100111101100001001100111000000100101010100010000111110100000000000000000000001001100) \\
&+ v_2(k-\ldots 1111000100111110000110110011000100111100101010010110011010001110001111001100101111010000000000110100) \\
&+ v_2(k-\ldots 1011110101000010001101101000000010010111111010011010011001101001110100000110010100010000000000101100) \\
&+ v_2(k-\ldots 1001111011011001101000000101101100010111001101010001100001010001110010001001010100011100010011110100) \\
&+ v_2(k-\ldots 1001100010001101100000110001001001010000000111110001100001010101110001011110010000000000000001000100) \\
&+ v_2(k-\ldots 1111101010000001001110001101001101100111000001110011100001110010001010101101011100000000000001000100) \\
&+ v_2(k-\ldots 0010011100111011011001111101111000011111100000000001110111101000011110010111110100111000000000111000) \\
&+ v_2(k-\ldots 1010000000111100110110101000001110000111000011110100011100101111101100101011100011011110101000111000) \\
&+ v_2(k-\ldots 0010110001011011110110000100110110111100001101000101110100100111011010011100000000000000000001001000) \\
&+ v_2(k-\ldots 0100000001000011100000010111011001001011110010011001110001001001010101110001100100010100000000111000) \\
&+ v_2(k-\ldots 0110101110011001110110001011000101101001010011011010101110010010000100000000111000000000000000111000) \\
&+ v_2(k-\ldots 1101001000110101111101111100011111001110111100101101111000000001111100110011100101001010000000110000) \\
&+ v_2(k-\ldots 0010110100000100000000000011001011000001101111010010100110010000001011010110100110100000000000110000) \\
&+ v_2(k-\ldots 0110111110000110010100100101110110010001001011101011010000001111001100101111100101000000000001000000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^{14} T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&= 315 + \\
&+ \min(48, 2 \cdot v_2(k - 100000000000000001000011)) \\
&+ \min(59, 2 \cdot v_2(k - 100000000000000000000001001111)) \\
&+ \min(35, 2 \cdot v_2(k - 110011)) \\
&+ \min(25, 2 \cdot v_2(k - 110111)) \\
&+ \min(41, 2 \cdot v_2(k - 100000000000001000111)) \\
&+ \min(43, 2 \cdot v_2(k - 1000001)) \\
&+ \min(37, 2 \cdot v_2(k - 1000000000001000011)) \\
&+ \min(25, 2 \cdot v_2(k - 1000000111111)) \\
&+ \min(41, 2 \cdot v_2(k - 110111)) \\
&+ \min(41, 2 \cdot v_2(k - 111111)) \\
&+ \min(36, 2 \cdot v_2(k - 100000000001000010)) \\
&+ \min(35, 2 \cdot v_2(k - 111010)) \\
&+ \min(15, 2 \cdot v_2(k - 111010)) \\
&+ \min(25, 2 \cdot v_2(k - 110110)) \\
&+ \min(25, 2 \cdot v_2(k - 111110)) \\
&+ \min(41, 2 \cdot v_2(k - 111110)) \\
&+ \min(35, 2 \cdot v_2(k - 100000000000110010)) \\
&+ \min(49, 2 \cdot v_2(k - 1000000000000000001001010)) \\
&+ \min(43, 2 \cdot v_2(k - 1000000)) \\
&+ \min(43, 2 \cdot v_2(k - 1000000000000001000100)) \\
&+ v_2(k-\ldots 1101110000111000001101100110110001011100011110000000000000000000000000000000000000000000000001000111) \\
&+ v_2(k-\ldots 0100011110001010011011010010001111010001101001110101010011101010100111010000101010100110000000110101) \\
&+ v_2(k-\ldots 1011111000010010100101001110111111110100001100010110111101000101101001101000111101110001101000111011) \\
&+ v_2(k-\ldots 1101010111110110100100111011101100000111001001011110011100100010010110010101010000000000000000111101) \\
&+ v_2(k-\ldots 1101001010011010100011110101110010110010110101101001011001000111110010011010110100101011001000111001) \\
&+ v_2(k-\ldots 0101101110101110110001111100111110010101101001110011011011000000000000000000000000000000000000111011) \\
&+ v_2(k-\ldots 0010110000101000100101100011011000110001100111111010001010011000010111000011110001100100011000111011) \\
&+ v_2(k-\ldots 0000111111000001010011000000010110111011111101100000111000000001001111100010000000000000000001001101) \\
&+ v_2(k-\ldots 0110100111111011011000111001111010101001000110101011010001000100100011000000000000000000000001001001) \\
&+ v_2(k-\ldots 0001010101100011000010101100011001100000011101001101111110010001000000110011000000000000000001000101) \\
&+ v_2(k-\ldots 1111100111011101001101000110100100010001110100011111000011000111011010010100001000100000000000111011) \\
&+ v_2(k-\ldots 0101010110101100010011111110010010000011001100111100100100001101100011000000101000000000000000111001) \\
&+ v_2(k-\ldots 0000110110001000110111111001100011100110000110100100001100111110100000111100000000000000000001001011) \\
&+ v_2(k-\ldots 0111110111011000100000011001111100111011011000001111001001000011001011100001101000000110000000111101) \\
&+ v_2(k-\ldots 0000011101110111110111111100101100101111100100011100110011010010001110111011110001100000000000111101) \\
&+ v_2(k-\ldots 1101100000011111000011010101010100011111110010000111001000001100011010101011110111100000000000111011) \\
&+ v_2(k-\ldots 0110100010110011011010001101110101110001001010000001110000100110111111110000010000000000000001000101) \\
&+ v_2(k-\ldots 0011010101111010011000101100001000010110111000011000100100000001111011111011001010001000000000111001) \\
&+ v_2(k-\ldots 0011101111100011011000011000001100101111010101001011000011110110011001100000000000000000000001010001) \\
&+ v_2(k-\ldots 1110110010011101010010110110110000111100011100100001000110011101011110000110000011011011000001000001) \\
&+ v_2(k-\ldots 0110010000110000111010100100101010011110101110110010110001100011000000000000000000000000000000101111) \\
&+ v_2(k-\ldots 0100011000001110100110001111001111101111101001010000001101001110111000111110100101110000000001000101) \\
&+ v_2(k-\ldots 1101100010011000001010111000011111011100001101110111001111111110010110010000111100000000000001001001) \\
\end{align*}
\begin{align*}
&+ v_2(k-\ldots 0111000011100111001000100111110101111010110100000001100111111001100001001010001111100000000000110001) \\
&+ v_2(k-\ldots 0110111010101000001110111011000100111111100010011100100110111011101101111010010000000000000000110001) \\
&+ v_2(k-\ldots 0001000111101001001001000010001001010110111111110100010011100000111011010000101111000000000001000001) \\
&+ v_2(k-\ldots 0111011000011101000001011001100000001100011100111101000010111111110110101100000001010000000000110101) \\
&+ v_2(k-\ldots 0100111101001101110001100110111100110111111001001100100101011000110001000111001000000000000000111101) \\
&+ v_2(k-\ldots 0111010001110100010111101100101001111111100101110000110010010001100101000000000000000000000001001101) \\
&+ v_2(k-\ldots 1100001000000001111110100111101111010000101111000111110011000001011111000100000000000000000001001011) \\
&+ v_2(k-\ldots 0011111111111100001000000000000111001011001111001101100011100000100011101101001111010001000100111101) \\
&+ v_2(k-\ldots 1100110100000100101100001111110001010000000000000000000000000000000000000000000000000000000001010011) \\
&+ v_2(k-\ldots 1001011101111110011101011010100100000011111001010001100000101000111100110110011111111010000000111001) \\
&+ v_2(k-\ldots 1001011100001111101110101100011000101100110010010011110111000101111100110111010000000000000000110101) \\
&+ v_2(k-\ldots 1111001010110111110010010100101101000011111111100100001011110111110110011100000000000000000001001001) \\
&+ v_2(k-\ldots 0111110101011001100000110110110110001011001110010011101010101010011000000000000000000000000001010101) \\
&+ v_2(k-\ldots 0000110101011100010100110111110100011011011010000000000000000000000000000000000000000000000001000110) \\
&+ v_2(k-\ldots 1111000111110010110101011101000000110100000000000000000000000000000000000000000000000000000001010010) \\
&+ v_2(k-\ldots 1101100000000010100101010010000011011010101100000100000001001111000000000000000000000000000000101110) \\
&+ v_2(k-\ldots 0100001010011110010101001101100001001111011001000011100111100011010111110011100100000000000001000110) \\
&+ v_2(k-\ldots 1011000010100010001111010001101001001110001000010101001110100000000000000000000000000000000000111010) \\
&+ v_2(k-\ldots 1010010000011100101011101111001001111001111000000000000000000000000000000000000000000000000001001110) \\
&+ v_2(k-\ldots 1101011011011001000000000000000000000000000000000000000000000000000000000000000000000000000001000010) \\
&+ v_2(k-\ldots 1110100010100001101000001101000000001101110110100000000100011000000000000000000000000000000000110110) \\
&+ v_2(k-\ldots 0010100100001110101010010100001001000111011100000100000000010000001000001100011100000000000001000110) \\
&+ v_2(k-\ldots 0110011010111110110111111111001010010111110011010000000000011000011001000000000000000000000001001100) \\
&+ v_2(k-\ldots 1110110100001111011001111010101010101001011010010000111110100101111101011011010000000000000000110100) \\
&+ v_2(k-\ldots 0001010111010100000011110100011000100010100000000000010101111000110011101001001111000000000001000100) \\
&+ v_2(k-\ldots 0100111010001010010000110100011110101011000101011110000010000110111010110100011100011010011000111100) \\
&+ v_2(k-\ldots 0100101101100001011100110100010011001101010010101010011111110100100000110001011011100000000000110100) \\
&+ v_2(k-\ldots 0100010111010001001111010010111000110101111011011000000001001011110001111001011000000000000000111100) \\
&+ v_2(k-\ldots 1001110011111111100111010101011011001000000101101111011100010010000010000101110010101110000000110100) \\
&+ v_2(k-\ldots 0111101101110000111001111011010011010100010000100000001001101011110001100001101010110110000000111100) \\
&+ v_2(k-\ldots 1010010110110010011000101111001000100011110010000011001111110101001010100100000000000000000001001100) \\
&+ v_2(k-\ldots 0001101101010100100100000101000010110010000010010110000101001001101100010100000000011000000000111100) \\
&+ v_2(k-\ldots 1111001111001101000100011001100111010101111010110100111001100111111011111111001000000000000000111000) \\
&+ v_2(k-\ldots 1010010000011011000101110100101001110010100010011000000000110111000101111001111011101100000000111000) \\
&+ v_2(k-\ldots 0001101110001011010111010001101001100011010101101101011100011111110111101110001011001000000000111000) \\
&+ v_2(k-\ldots 1110001010011010100100011011110111111111011000000110010101000000010001001010001100000000000001001000) \\
&+ v_2(k-\ldots 1000111011101110001111111111010010100101011100111001111000101100111110111011110010011011011000111000) \\
&+ v_2(k-\ldots 1001110100011000100001001101100001000110111010011000111000101101000111110100000000000000000001001000) \\
&+ v_2(k-\ldots 0011110011001111100100101001110001011001000100110010100011001110010000100000000000000000000001010000) \\
&+ v_2(k-\ldots 1010110101101010000101011001110101100011000110100000010101001101000000110010000000100000000000110000) \\
&+ v_2(k-\ldots 1001111010010001111000111001110111100000101000010011001100010101011010000101011110110101000001000000) \\
&+ v_2(k-\ldots 1011100000010000011000101111010100101011010001001101010010011111000110111011010001000000000001000000)
.\end{align*}
\begin{align*}v_2(\operatorname{Tr}(\wedge^{15} T_2|S_{2k}(\operatorname{SL}_2(\mathbb{Z}))))&=360 + \\
&+ \min(45, 2 \cdot v_2(k - 1000111)) \\
&+ \min(19, 2 \cdot v_2(k - 111111)) \\
&+ \min(33, 2 \cdot v_2(k - 10000000000111111)) \\
&+ \min(37, 2 \cdot v_2(k - 110111)) \\
&+ \min(25, 2 \cdot v_2(k - 111011)) \\
&+ \min(37, 2 \cdot v_2(k - 1000111)) \\
&+ \min(43, 2 \cdot v_2(k - 1000000000000001001011)) \\
&+ \min(41, 2 \cdot v_2(k - 111011)) \\
&+ \min(41, 2 \cdot v_2(k - 1000011)) \\
&+ \min(59, 2 \cdot v_2(k - 1010011)) \\
&+ \min(25, 2 \cdot v_2(k - 1000011)) \\
&+ \min(53, 2 \cdot v_2(k - 1001111)) \\
&+ \min(41, 2 \cdot v_2(k - 111010)) \\
&+ \min(41, 2 \cdot v_2(k - 1000010)) \\
&+ \min(37, 2 \cdot v_2(k - 1000000000001000110)) \\
&+ \min(41, 2 \cdot v_2(k - 100000000000001001010)) \\
&+ \min(35, 2 \cdot v_2(k - 110110)) \\
&+ \min(48, 2 \cdot v_2(k - 100000000000000001000110)) \\
&+ \min(59, 2 \cdot v_2(k - 100000000000000000000001010010)) \\
&+ \min(25, 2 \cdot v_2(k - 111010)) \\
&+ \min(25, 2 \cdot v_2(k - 1000001000010)) \\
&+ \min(43, 2 \cdot v_2(k - 1000100)) \\
&+ v_2(k-\ldots 0001101010100000001010010011101011011100001011100010100111011001001101101101000000000000000001001001) \\
&+ v_2(k-\ldots 0110010101000100100111010010001110100000001000001110010110101011110001100100001110100000000000111101) \\
&+ v_2(k-\ldots 1110000011110010110011001110011000010101000000100011001011000010110100010000111100000000000001001101) \\
&+ v_2(k-\ldots 0001010011110011111111101010011001011011001111011110110111001100100011101110111000000000000001000001) \\
&+ v_2(k-\ldots 1101001110100111100001010110010111110100111101001000110100110100010110100110000001101010000001000001) \\
&+ v_2(k-\ldots 0011101011101111010001101101100111000010101010110111010111011000111011011010010000000000000000110101) \\
&+ v_2(k-\ldots 1001100010101001110001101111010100100101101001011011000100101000000000000000000000000000000000110111) \\
&+ v_2(k-\ldots 0001111100101010000111001001101111101100100101001000100000011010100100110111111100010000000000110101) \\
&+ v_2(k-\ldots 1110101111011010011011101011111000110100011101111111101000111101000011110001110000000000000001000001) \\
&+ v_2(k-\ldots 1011000111100011111000010111110000000110000001111110001010111111000111000000000000000000000001010001) \\
&+ v_2(k-\ldots 1001000001000000010101001001010000100000000000000000000000000000000000000000000000000000000001010111) \\
&+ v_2(k-\ldots 1110001010001000001001110101000111000001110101100110100101011000011111000000000000000000000001001101) \\
&+ v_2(k-\ldots 0111110100110111101000010001110100000100111001011111111011100111101011100000000000000000000001010101) \\
&+ v_2(k-\ldots 1001111001101001011100110001011100110101110000010111110110110001001111110000011111111010000000111101) \\
&+ v_2(k-\ldots 0101101011011010100011110001100001011110001111110111011101001100010001100111000001111011101101000001) \\
&+ v_2(k-\ldots 1100110110000011001100011111100001101010000000000000000000000000000000000000000000000000000001001111) \\
&+ v_2(k-\ldots 0100101011100001110110111000110110001100101011001000000110110110101011110110101110010111000001000101) \\
&+ v_2(k-\ldots 0001001000001010110111101011000011101101010010000000000000000000000000000000000000000000000001001011) \\
&+ v_2(k-\ldots 1100010010010010000000011000011111010101011011001100011110000110010000100000000000000000000001001001) \\
\end{align*}
\begin{align*}
&+ v_2(k-\ldots 1010001000110110000100110010110000111010110010100110101110100101101001101010110000000000000000111101) \\
&+ v_2(k-\ldots 0010000101110000011101010011111101100111001101011110111010111100100010001111010000000000000001001001) \\
&+ v_2(k-\ldots 0000110110011010101110001101011101001001011000111100010000000000000000000000000000000000000000111111) \\
&+ v_2(k-\ldots 0010000000010000001101010100000110010010110110111101001011010001101000000000000000000000000001011001) \\
&+ v_2(k-\ldots 1011001001000011001001001011011010010110110010100010010110010101010100100010010000000000000001000101) \\
&+ v_2(k-\ldots 0011100000011100011101100111101011110011000010001111101100011111000000000000000000000000000000110011) \\
&+ v_2(k-\ldots 1100010101000011101000001110010011110011010011100100110110111101010011001010010000000000000000111001) \\
&+ v_2(k-\ldots 1101011111000000011001111010010000000000000000000000000000000000000000000000000000000000000001011011) \\
&+ v_2(k-\ldots 1010110011011000000110100101100100001101001010011001101011010110110001010010010000010000000001001001) \\
&+ v_2(k-\ldots 1010100010101010011001000110010100100000110101011010010110100010011101000011011000110000000000111001) \\
&+ v_2(k-\ldots 1001101101101010110010011101010010110001010110000000100111011100101000010010000000000000000001000101) \\
&+ v_2(k-\ldots 1001111011010111011101001110101100010110000100001010100001010000100001111111011100000000000000110001) \\
&+ v_2(k-\ldots 0000011000101010000100111111001110101110110111000011111001110001001110111000111000000000000000111101) \\
&+ v_2(k-\ldots 1101100000110100100110010001111100000011011001000100011110101010010001010110000000000000000001001101) \\
&+ v_2(k-\ldots 0000010000100111100110010011110011101000100111011010111111010101011000000000000000000000000001010101) \\
&+ v_2(k-\ldots 1110010000000101001001111110011101000111110110011001001110010001101110100110000000000000000001010001) \\
&+ v_2(k-\ldots 0101000100010101010011010100100100101110110000101110101011011110010000101010000000100000000001000001) \\
&+ v_2(k-\ldots 0011011100010111011101000100110101010000001111100000110100101010110001111100001000000011011100111101) \\
&+ v_2(k-\ldots 0101100001101100101100111010000101101011110000101100101101110001000000100010001010110000000001000101) \\
&+ v_2(k-\ldots 0100100010111001110110101011001110111100101010000000000000000000000000000000000000000000000001000011) \\
&+ v_2(k-\ldots 1000001000100110001101111000001110000000001101011111001001011110011000100110011001011111000000111001) \\
&+ v_2(k-\ldots 0101110010001100110000011000000000000011001001001000110101100011000000000000000000000000000000110010) \\
&+ v_2(k-\ldots 0011110011111011111110011111001111011101001000001111111100000101110011111010001100100000000000111110) \\
&+ v_2(k-\ldots 0000001110001000001110001100111001111000100111001011101011000000000000000000000000000000000000111110) \\
&+ v_2(k-\ldots 1011011000100011000110011100011111100100101100011101111111111111010001000101110011100000000000111110) \\
&+ v_2(k-\ldots 0101100000111010111100001011011000001000010110010011001100000011111110000011101001010000101000111110) \\
&+ v_2(k-\ldots 0111100101001101001100011100001101010000000000000000000000000000000000000000000000000000000001010110) \\
&+ v_2(k-\ldots 1001111011011111101010111101001000011001000111010010111100011010001110001010011000100101011000111110) \\
&+ v_2(k-\ldots 0010110010001101100111110010000000110110011110000000000000000000000000000000000000000000000001001010) \\
&+ v_2(k-\ldots 0111010011010101000110001011000110001010111100000010011111101111010111011100000000000000000001001110) \\
&+ v_2(k-\ldots 0011110110101011100101001001001000000011110011101001100000010000101000100100000000000000000001001110) \\
&+ v_2(k-\ldots 1101100111000101100110100010100110110111000001000110101110101001111010101110010000000000000000110100) \\
&+ v_2(k-\ldots 0010001111100100100110100011011001100101101011100001001101000100101111001100000000000000000001001100) \\
&+ v_2(k-\ldots 0100100100111111010100100011001010010001011100001100110000010011011110001101101001100011000001000100) \\
&+ v_2(k-\ldots 0110011101101101001111010111111010100001111110001110001101011100010001001010010011000000000001000100) \\
&+ v_2(k-\ldots 0000011001011010000010100011001111010001101010011111111010010101111011000000000000000000000001001100) \\
&+ v_2(k-\ldots 0001111011100011011101000010110000011100001010100101100111001100001011001001111100000000000001001100) \\
&+ v_2(k-\ldots 0001010110110010011101111000100000100010100000100001101111111110001110000110101000000000000000111100) \\
&+ v_2(k-\ldots 1011000111000000011111010110101011101100111100111100010010001001101001011011001001100000000000110100) \\
&+ v_2(k-\ldots 1111101100011000011011010100101110100000010000111100000011010100001010001101011101001010000000111100) \\
&+ v_2(k-\ldots 0011010001111000111101011010001111101000110110101100001111111001000101100000000000000000000001010100) \\
&+ v_2(k-\ldots 0100100000000010101100100111001000110110111101001110110000010110100001011000100100111111101000111100) \\
&+ v_2(k-\ldots 0110010001000110000011011010100101011111011101011100110100000111010101000001111111101000000000111100) \\
&+ v_2(k-\ldots 0101010010011110000010011101101001011110101111101000110110111111111000000000000000000000000001011000) \\
&+ v_2(k-\ldots 0110000100001011000110011000001111010100011101100100100110010100010001010111000000000000000001001000) \\
&+ v_2(k-\ldots 0011010110111000000011001011001011011011010110100000101101000001010110001011010000000000000000111000) \\
&+ v_2(k-\ldots 0011100111100110101110101111100011111110110110100100111000001011011110100000010000000000000001001000) \\
&+ v_2(k-\ldots 0001010110001000001011000010110110111111011101100010011110011000110000010101011111010110000000111000) \\
&+ v_2(k-\ldots 1110001010100010100100010110100000001101010110010111000001011010010000001111111010010000000000111000) \\
&+ v_2(k-\ldots 1100000001111110001001111010100101101100010000100001100011111001010110100101010000110000000001001000) \\
&+ v_2(k-\ldots 1101100111000100001000101110110010011000111010100110011110111000111101000000000000000000000001010000) \\
&+ v_2(k-\ldots 1101011111110001111010111000010110111011011001000100011101101101111101111010000000000000000001010000) \\
&+ v_2(k-\ldots 0111110011111100010110001101000101000110010111101011011010101100010101011111111111100000000001000000) \\
&+ v_2(k-\ldots 0010011000100111001000100100100000001000011001101011010110010111001011111111000101110110000001000000) \\
&+ v_2(k-\ldots 1100001111000100100011001001110011000011110000011101000110101110011001100010010000000000000001000000) \\
&+ v_2(k-\ldots 0000100010011001011101101101110110101101011110001001110000000100100100001000001000000000000001000000) \\
&+ v_2(k-\ldots 1010001000100000111110111101101101101011101011111010110001100010100111101101100110111110110101000000)
.\end{align*}
\begin{array}{r | lllllllllllllll}
k\to\omega & T_2 & \wedge^{2} T_2& \wedge^{3} T_2& \wedge^{4} T_2& \wedge^{5} T_2& \wedge^{6} T_2& \wedge^{7} T_2& \wedge^{8} T_2& \wedge^{9} T_2& \wedge^{10} T_2& \wedge^{11} T_2& \wedge^{12} T_2& \wedge^{13} T_2& \wedge^{14} T_2& \wedge^{15} T_2\\
\hline
\ldots 0111001011110100101110111011110100011010001000101101100100101110001101101011001111101100010000000111 & \infty & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & 314 & 371 & 426 & 488\\
\hline
\ldots 1101010110110111111000111100111111010001010011101101001100001011110011001111011110100001100001001101 & 4 & \infty & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 372 & 434 & 501\\
\ldots 0000001010001111001001100111010101001101110101001000000111001111001010100000001111010110010000001011 & 5 & \infty & 25 & 41 & 62 & 86 & 115 & 147 & 185 & 227 & 269 & 315 & 368 & 424 & 486\\
\ldots 0001000001101110010100011100100011010111110010011110110011111010001010110110001000111011001000001010 & 3 & \infty & 21 & 37 & 56 & 82 & 106 & 138 & 174 & 217 & 256 & 302 & 353 & 413 & 471\\
\hline
\ldots 1010101001001100001101111101010010100001111110000100000011110101000110010001100010100011000000001111 & 6 & 12 & \infty & 40 & 63 & 86 & 115 & 147 & 185 & 223 & 270 & 315 & 370 & 425 & 486\\
\ldots 1001110010110110011101101010111111011001101011100001101011111101001011010000000000000000000000010011 & 5 & 13 & \infty & 50 & 77 & 85 & 114 & 146 & 183 & 223 & 268 & 318 & 368 & 424 & 485\\
\ldots 1011111010100000000011100110010011111101001100000000001010100110011110000111011110010101110011010001 & 4 & 12 & \infty & 45 & 60 & 85 & 114 & 147 & 183 & 223 & 270 & 318 & 367 & 425 & 487\\
\ldots 1100101101101010111100000111111111111010101000000100001010111110001101000011101110001001000111001101 & 4 & 17 & \infty & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 368 & 426 & 489\\
\ldots 0110101011111001000001100011000011000110100110100011001011100000001101111000110000101010010000001110 & 3 & 11 & \infty & 37 & 56 & 80 & 107 & 139 & 174 & 215 & 260 & 305 & 354 & 410 & 469\\
\ldots 0100110101100000000010001011010110100010010111000000111001000000001101000001101000101011011101010000 & 3 & 10 & \infty & 41 & 55 & 79 & 107 & 138 & 173 & 212 & 258 & 305 & 353 & 411 & 473\\
\hline
\ldots 1010011110001110110010010101100000111010000001011000001101110010101111001110100011111011011100010101 & 4 & 13 & 25 & \infty & 66 & 85 & 114 & 146 & 183 & 224 & 268 & 316 & 368 & 425 & 486\\
\ldots 0110001111001001110111010111110000110011110101011001001101001010011000000000000000000000000000010111 & 7 & 12 & 25 & \infty & 70 & 100 & 113 & 145 & 185 & 223 & 268 & 316 & 372 & 424 & 485\\
\ldots 0111100001010111110111011000000000110111100110100010010101110100010000011001011010011010110101010001 & 4 & 12 & 29 & \infty & 60 & 85 & 114 & 147 & 183 & 223 & 270 & 318 & 367 & 426 & 489\\
\ldots 0001010010011011010011110101011001010001000110001110111011011000000010001111101100100100100000011001 & 4 & 12 & 25 & \infty & 73 & 97 & 122 & 145 & 181 & 222 & 267 & 316 & 368 & 424 & 485\\
19 & 5 & 13 & 50 & 50 & 77 & 85 & 114 & 146 & 183 & 223 & 268 & 318 & 368 & 424 & 485\\
\ldots 0101011111111110000000010110111100101011010011100010000001010100011011101101000000100011000000010010 & 3 & 12 & 21 & \infty & 55 & 81 & 107 & 139 & 174 & 215 & 256 & 306 & 354 & 412 & 470\\
\ldots 1010110100001100101110110110111000000100110001101011110101101011100010000000000000000000000000010110 & 3 & 11 & 22 & \infty & 65 & 95 & 106 & 138 & 173 & 213 & 256 & 304 & 357 & 410 & 469\\
\ldots 0101010010000110101000010110101100101000100110110111111010111000010101100110100110011010001111010100 & 3 & 10 & 21 & \infty & 60 & 78 & 106 & 138 & 174 & 213 & 256 & 306 & 357 & 409 & 470\\
\ldots 0111001101111010000011010010011101110010111111000010110101100100001011010101010001111100001011010000 & 3 & 10 & 26 & \infty & 55 & 79 & 107 & 138 & 173 & 212 & 258 & 305 & 353 & 410 & 471\\
\hline
\ldots 1011110101110000011100110110000101000110100011000100000101110001110010010011010101000111000000011001 & 4 & 12 & 25 & 49 & \infty & 99 & 121 & 145 & 181 & 222 & 267 & 316 & 368 & 424 & 485\\
\ldots 1000100000010001101011101101011000101001101101000111001111100101001001110111010010000000000000010011 & 5 & 13 & 41 & 50 & \infty & 85 & 114 & 146 & 183 & 223 & 268 & 318 & 368 & 424 & 485\\
\ldots 0000111101101010111101001110010100110100010101110111001011000111000000000000000000000000000000011011 & 5 & 14 & 25 & 41 & \infty & 94 & 129 & 145 & 182 & 224 & 268 & 316 & 369 & 425 & 486\\
\ldots 1110001011000111111011010110000110101110101010010010011000010000000000001000000000000000000000011111 & 6 & 12 & 26 & 40 & \infty & 100 & 146 & 160 & 207 & 220 & 267 & 314 & 369 & 424 & 485\\
\ldots 0110100001100001101010101001111100111111110110101000101010110100110101111111100000110111100100011001 & 4 & 12 & 25 & 46 & \infty & 95 & 118 & 145 & 181 & 222 & 267 & 316 & 368 & 424 & 485\\
\ldots 1000000101010000010101101011101111010100100100001001100011010000011000101011111000110010100000011101 & 4 & 14 & 26 & 40 & \infty & 96 & 124 & 153 & 180 & 223 & 268 & 315 & 368 & 425 & 485\\
\ldots 1100101001101110001011101000010001010110000111001011110111111001100101110100100100011011100100010101 & 4 & 13 & 25 & 46 & \infty & 85 & 114 & 146 & 183 & 224 & 268 & 316 & 368 & 425 & 486\\
151 & 7 & 12 & 25 & 44 & 72 & 88 & 113 & 145 & 185 & 223 & 268 & 316 & 372 & 424 & 485\\
\ldots 1001010010000101101111111011111010100001100011001000111010000011000000000000000000000000000000011010 & 3 & 13 & 21 & 37 & \infty & 88 & 121 & 137 & 172 & 215 & 256 & 304 & 355 & 414 & 469\\
22 & 3 & 11 & 22 & 65 & 65 & 95 & 106 & 138 & 173 & 213 & 256 & 304 & 357 & 410 & 469\\
\ldots 1010000011110010111110010000010110000011001000110101010110000001010001101011110010010000100000011100 & 3 & 10 & 21 & 37 & \infty & 91 & 118 & 146 & 172 & 211 & 255 & 303 & 355 & 410 & 469\\
\ldots 1110110100100001110010011000011011011011001101000111010011011000011011000001001111001001011001010100 & 3 & 10 & 21 & 41 & \infty & 78 & 106 & 138 & 174 & 213 & 256 & 306 & 357 & 409 & 472\\
\ldots 1111111011010000101001111111010101101111100111000100110000111000111111011110101010110100101100011000 & 3 & 10 & 22 & 37 & \infty & 84 & 106 & 138 & 173 & 213 & 257 & 304 & 355 & 410 & 470\\
\hline
\ldots 1110101111111010101110100001101010101011000011001111110101000001101001101000101110111011000000011101 & 4 & 14 & 26 & 40 & 68 & \infty & 126 & 152 & 180 & 223 & 268 & 315 & 368 & 425 & 485\\
\ldots 1000100100010010100011011001001110000011101111001010000001001010011000010110011111101111011100011001 & 4 & 12 & 25 & 46 & 71 & \infty & 118 & 145 & 181 & 222 & 267 & 316 & 368 & 424 & 485\\
\ldots 1011001011110101011011000100011000111110011011011101010101100010010110110011010111010000000000100101 & 4 & 13 & 25 & 41 & 61 & \infty & 135 & 169 & 205 & 242 & 278 & 313 & 366 & 423 & 484\\
\ldots 1100100010000101010011110000010000110010011001001100011011011101000001110110101110000000000000010111 & 7 & 12 & 25 & 56 & 70 & \infty & 113 & 145 & 185 & 223 & 268 & 316 & 372 & 424 & 485\\
\ldots 0100011110010101110111100101000000011011100101001000001011011001011100000010100011011101100000100001 & 4 & 12 & 26 & 42 & 60 & \infty & 124 & 156 & 189 & 220 & 267 & 316 & 367 & 424 & 485\\
\ldots 1100011011011001010111111100001110000110000111001011110101000010111011000001111100000110110010011101 & 4 & 14 & 26 & 40 & 64 & \infty & 121 & 148 & 180 & 223 & 268 & 315 & 368 & 425 & 485\\
\ldots 1101011110111110100000011001011100101011010011001100000100100110111101000000000000000000000000100011 & 5 & 13 & 26 & 43 & 62 & \infty & 130 & 179 & 198 & 248 & 266 & 316 & 368 & 424 & 485\\
\ldots 1010000000111001010001110001010001101001001100011110101101111001001011111010001110111001000000011001 & 4 & 12 & 25 & 49 & 75 & \infty & 121 & 145 & 181 & 222 & 267 & 316 & 368 & 424 & 485\\
2079 & 6 & 12 & 26 & 40 & 70 & 101 & 131 & 161 & 190 & 220 & 267 & 314 & 369 & 424 & 485\\
283 & 5 & 14 & 25 & 41 & 66 & 95 & 118 & 145 & 182 & 224 & 268 & 316 & 369 & 425 & 486\\
\ldots 0111101101000011001101000001111010011010111101011101110101000000010110010000010010000000000000010110 & 3 & 11 & 22 & 53 & 65 & \infty & 106 & 138 & 173 & 213 & 256 & 304 & 357 & 410 & 469\\
\ldots 0111000010011010110011001001000011110001101011000101001111101011110000001000000000000000000000100010 & 3 & 12 & 21 & 38 & 55 & \infty & 121 & 170 & 187 & 237 & 253 & 303 & 353 & 411 & 469\\
\ldots 1100101111001001010010000101100001110110100110110000111001011000000000000000000000000000000000011110 & 3 & 11 & 23 & 37 & 56 & \infty & 115 & 153 & 172 & 212 & 257 & 304 & 355 & 411 & 470\\
154 & 3 & 13 & 21 & 37 & 59 & 90 & 109 & 137 & 172 & 215 & 256 & 304 & 355 & 414 & 469\\
\ldots 1101000000001110000111111111000100101111011100011001010110101110011100101110010000101111000000011100 & 3 & 10 & 21 & 37 & 64 & \infty & 120 & 145 & 172 & 211 & 255 & 303 & 355 & 410 & 469\\
\ldots 0110000001001111011010000001110001000101011010001110010100001010000101010001010110100101110100011100 & 3 & 10 & 21 & 37 & 61 & \infty & 116 & 142 & 172 & 211 & 255 & 303 & 355 & 410 & 469\\
\ldots 0111101000111110010011001011011000111000110001010101100100101111100000000011111110111010010100011000 & 3 & 10 & 22 & 37 & 61 & \infty & 106 & 138 & 173 & 213 & 257 & 304 & 355 & 410 & 470\\
\ldots 1011000110000101110000110100110111110010100000110101101100001101110001101001110001010110100000100000 & 3 & 10 & 23 & 38 & 55 & \infty & 117 & 148 & 180 & 210 & 256 & 304 & 354 & 410 & 470\\
\hline
\ldots 1100100111101111010110101010000000000111010000010011001100101010110010111000011001100011100000100101 & 4 & 13 & 25 & 41 & 61 & 92 & \infty & 164 & 200 & 237 & 272 & 313 & 366 & 423 & 484\\
\ldots 0001010100010000001011111011001011000111011101010101110110101111101000100011101101000101011110011101 & 4 & 14 & 26 & 40 & 64 & 93 & \infty & 148 & 180 & 223 & 268 & 315 & 368 & 425 & 485\\
\ldots 1010100001100000111010011010101111011111111100011000111110111011111110000000000000000000000000100111 & 8 & 12 & 25 & 41 & 64 & 85 & \infty & 161 & 216 & 237 & 293 & 313 & 369 & 423 & 484\\
\ldots 0111010111000011001110000000010001000100001111000111010000101010100011111011010000011011100000011001 & 4 & 12 & 25 & 50 & 73 & 97 & \infty & 145 & 181 & 222 & 267 & 316 & 368 & 424 & 485\\
\ldots 0001100111010011101111011001000010000110000100010111011010110000100011001100100101000101000000011101 & 4 & 14 & 26 & 40 & 68 & 98 & \infty & 152 & 180 & 223 & 268 & 315 & 368 & 425 & 485\\
\ldots 1101101100010010011101100110000000000011110100101011111000100000010101001101101010000000000000011011 & 5 & 14 & 25 & 41 & 77 & 94 & \infty & 145 & 182 & 224 & 268 & 316 & 369 & 425 & 486\\
\ldots 0101011001011010001100011000101010111011101111111100100010001110000000000000000000000000000000101011 & 5 & 15 & 25 & 41 & 62 & 86 & \infty & 172 & 233 & 255 & 315 & 340 & 398 & 422 & 483\\
\ldots 1100010110101101101000100100111000010001100100110010110001100000111010010101101110110000000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & \infty & 168 & 206 & 246 & 287 & 327 & 366 & 423 & 484\\
\ldots 1000000000110000010001111001010100111000101111111001100010100111111111110100000000000000000000011111 & 6 & 12 & 26 & 40 & 85 & 100 & \infty & 160 & 205 & 220 & 267 & 314 & 369 & 424 & 485\\
\ldots 1100110101100110000001010111101111100000100110000111110100000000000011001110110010010000000000100101 & 4 & 13 & 25 & 41 & 61 & 99 & \infty & 169 & 205 & 242 & 278 & 313 & 366 & 423 & 484\\
\ldots 0001001001111000100001100111111000001101000000011100110011100101101011000011100111111000000110100001 & 4 & 12 & 26 & 42 & 60 & 88 & \infty & 153 & 184 & 220 & 267 & 316 & 367 & 424 & 485\\
\ldots 0010100111101001011111110001110100110101110100000010000001111000101001001011000100100101000000100001 & 4 & 12 & 26 & 42 & 60 & 92 & \infty & 158 & 188 & 220 & 267 & 316 & 367 & 424 & 485\\
31 & 6 & 12 & 26 & 40 & 86 & 100 & 146 & 160 & 206 & 220 & 267 & 314 & 369 & 424 & 485\\
4131 & 5 & 13 & 26 & 43 & 62 & 93 & 131 & 162 & 199 & 229 & 266 & 316 & 368 & 424 & 485\\
\ldots 1101001010100001111111001010101100111001100101101010110011100010101100110000101110000000000000011010 & 3 & 13 & 21 & 37 & 71 & 88 & \infty & 137 & 172 & 215 & 256 & 304 & 355 & 414 & 469\\
\ldots 1101000011010110010001011010001000000000011111000110111001000100101101000000000000000000000000100110 & 3 & 11 & 22 & 38 & 58 & 80 & \infty & 154 & 206 & 228 & 281 & 302 & 355 & 410 & 469\\
2082 & 3 & 12 & 21 & 38 & 55 & 88 & 122 & 155 & 188 & 220 & 253 & 303 & 353 & 411 & 469\\
286 & 3 & 11 & 23 & 37 & 56 & 84 & 116 & 142 & 172 & 212 & 257 & 304 & 355 & 411 & 470\\
\ldots 0001000000001011110010010001010000110011000110110000101010101000100000110011101001100001100000100100 & 3 & 10 & 21 & 38 & 57 & 78 & \infty & 148 & 183 & 219 & 253 & 303 & 355 & 409 & 469\\
\ldots 0000100001011010011111101000000100100001001100000111101010011101001001110100000001101001001100011100 & 3 & 10 & 21 & 37 & 61 & 89 & \infty & 142 & 172 & 211 & 255 & 303 & 355 & 410 & 469\\
\ldots 0110101001101000111101010001111100111110110000010100111111011000011011011001010011010001000000011100 & 3 & 10 & 21 & 37 & 64 & 93 & \infty & 145 & 172 & 211 & 255 & 303 & 355 & 410 & 469\\
\ldots 0101101111100001110001010101100101101000110100100100111111000011111110011010000000010000000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & \infty & 159 & 196 & 235 & 275 & 314 & 352 & 408 & 468\\
\ldots 1010000011011000100000101000111001000110110111100100010011110010111001101101011111110011000000100000 & 3 & 10 & 23 & 38 & 55 & 86 & \infty & 150 & 179 & 210 & 256 & 304 & 354 & 410 & 470\\
\ldots 0010110101101010111100000011000000110001010111100010011010101011111010110001100110011010101010100000 & 3 & 10 & 23 & 38 & 55 & 82 & \infty & 145 & 175 & 210 & 256 & 304 & 354 & 410 & 470\\
\hline
\ldots 0100110001000011110001000011010101111000011000101100010111111001101011101111101001100000000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & \infty & 204 & 246 & 290 & 335 & 379 & 422 & 483\\
\ldots 0001100001000100000010000110000100100000010010011101010000011111010111010011110001110000000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 128 & \infty & 206 & 246 & 287 & 327 & 366 & 423 & 484\\
\ldots 1000111111010000000111101001100000110011011111001000011100011101111110000000100100000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & \infty & 210 & 258 & 306 & 354 & 402 & 450 & 499\\
\ldots 0110101010101100011011010110101011100010000001001111011110110010011100100010000011101110000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 123 & \infty & 203 & 243 & 284 & 323 & 366 & 423 & 484\\
\ldots 1111001010001101110111100011101110100100101101100000100000011011111101100001010100010001000000100101 & 4 & 13 & 25 & 41 & 61 & 93 & 129 & \infty & 203 & 237 & 273 & 313 & 366 & 423 & 484\\
\ldots 0001011101001000100100101100110000001000000001010100100010010100110001011111101111011011000000100001 & 4 & 12 & 26 & 42 & 60 & 92 & 126 & \infty & 188 & 220 & 267 & 316 & 367 & 424 & 485\\
\ldots 0111111001111001100101000001011011100111110010111101011100101001100000011011101011100010001010100001 & 4 & 12 & 26 & 42 & 60 & 88 & 121 & \infty & 184 & 220 & 267 & 316 & 367 & 424 & 485\\
\ldots 1011001101100001000101111100011100001000110111000110100100011011010110101100101011111000000000100101 & 4 & 13 & 25 & 41 & 61 & 96 & 132 & \infty & 206 & 240 & 276 & 313 & 366 & 423 & 484\\
\ldots 1010011110110110011110101110100110000001010000110001111001000101100100100000000000000000000000100011 & 5 & 13 & 26 & 43 & 62 & 110 & 130 & \infty & 198 & 246 & 266 & 316 & 368 & 424 & 485\\
\ldots 0010010001111111000110110110011110000101010000000111110010111010111001101110010100011000111100100101 & 4 & 13 & 25 & 41 & 61 & 89 & 122 & \infty & 195 & 230 & 269 & 313 & 366 & 423 & 484\\
\ldots 1111100100101010110101001011101110110111001110000011110001110110000000000000000000000000000000101111 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & \infty & 209 & 273 & 300 & 363 & 393 & 454 & 483\\
\ldots 0101001101010000111000110010101111100101010011010110100010000010011011110111111100001101100000011101 & 4 & 14 & 26 & 40 & 69 & 96 & 124 & \infty & 180 & 223 & 268 & 315 & 368 & 425 & 485\\
2079 & 6 & 12 & 26 & 40 & 70 & 101 & 131 & 161 & 190 & 220 & 267 & 314 & 369 & 424 & 485\\
43 & 5 & 15 & 25 & 41 & 62 & 86 & 147 & 172 & 231 & 255 & 317 & 340 & 398 & 422 & 483\\
291 & 5 & 13 & 26 & 43 & 62 & 89 & 122 & 159 & 190 & 225 & 266 & 316 & 368 & 424 & 485\\
4135 & 8 & 12 & 25 & 41 & 64 & 85 & 121 & 163 & 198 & 239 & 273 & 313 & 369 & 423 & 484\\
\ldots 0111101111010111000111010110111110111100101001110001101100110000111110000000000000000000000000101010 & 3 & 14 & 21 & 37 & 56 & 82 & 106 & \infty & 188 & 246 & 270 & 329 & 352 & 411 & 468\\
\ldots 1101100100011000011000010010010100100110001011100101000000011110010111110100000000000000000000100010 & 3 & 12 & 21 & 38 & 55 & 103 & 121 & \infty & 187 & 235 & 253 & 303 & 353 & 411 & 469\\
\ldots 1100101000101100100010001011001001010100011000111100101001010000001100001100101010000000000000011110 & 3 & 11 & 23 & 37 & 56 & 95 & 115 & \infty & 172 & 212 & 257 & 304 & 355 & 411 & 470\\
\ldots 0001100111010100100100001100000011010110000101101100100100001110000000000000000000000000000000101110 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & \infty & 199 & 263 & 288 & 351 & 379 & 440 & 467\\
34 & 3 & 12 & 21 & 38 & 55 & 104 & 121 & 170 & 187 & 236 & 253 & 303 & 353 & 411 & 469\\
4134 & 3 & 11 & 22 & 38 & 58 & 80 & 114 & 155 & 189 & 229 & 262 & 302 & 355 & 410 & 469\\
\ldots 1010100000110000000110100110011100000001101100001111110011101100101101010001101011110000000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & \infty & 195 & 236 & 279 & 323 & 366 & 408 & 468\\
\ldots 1100111000001101010000111001001011100000100001101001001011100101110000001010111010011101000000100100 & 3 & 10 & 21 & 38 & 57 & 78 & 113 & \infty & 185 & 218 & 253 & 303 & 355 & 409 & 469\\
\ldots 1011101101111000001000001011101111101001000110010011101110000111100100000001000001110111111110100100 & 3 & 10 & 21 & 38 & 57 & 78 & 109 & \infty & 180 & 214 & 253 & 303 & 355 & 409 & 469\\
\ldots 0111110011000001111000101101100101010100011101111111101001000010101110001100111010101111100000011100 & 3 & 10 & 21 & 37 & 65 & 91 & 118 & \infty & 172 & 211 & 255 & 303 & 355 & 410 & 469\\
\ldots 1010001011010101010001100100000001000111100110000011010110011000000111111100100100101111100000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 113 & \infty & 191 & 230 & 270 & 308 & 352 & 408 & 468\\
\ldots 1010000011011001110011111100000111011110000011000001000101011110100001010000110111010000000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 120 & \infty & 196 & 235 & 275 & 314 & 352 & 408 & 468\\
\ldots 1011001100011100111100011111101101010011010010101011001011001011111101110100110100001101000000100000 & 3 & 10 & 23 & 38 & 55 & 86 & 119 & \infty & 179 & 210 & 256 & 304 & 354 & 410 & 470\\
\ldots 0111100101001111101110111000110100001011011101001101111110001000010001000111011001011011100110100000 & 3 & 10 & 23 & 38 & 55 & 82 & 114 & \infty & 175 & 210 & 256 & 304 & 354 & 410 & 470\\
\hline
\ldots 1100111000011101111011101010100001100110100011110100101110110100010010000101110000000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 162 & \infty & 262 & 307 & 355 & 405 & 453 & 498\\
\ldots 0010110011000010101110110110011110100111111100100111110001000110110010010101110000100000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 159 & \infty & 257 & 303 & 351 & 400 & 448 & 495\\
\ldots 1111110100110011001010000000101011101011000110111011111111111110010001011001010100001000000000100101 & 4 & 13 & 25 & 41 & 61 & 96 & 132 & 170 & \infty & 240 & 276 & 313 & 366 & 423 & 484\\
\ldots 1001100011110100110001101100111100010101000101010000101111100000000000000000000000000000000000110111 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & \infty & 253 & 331 & 362 & 439 & 470 & 545\\
\ldots 1110100000101101000100001100000001001000100001010001101110101111111111011000000000000000000000011111 & 6 & 12 & 26 & 40 & 87 & 100 & 146 & 160 & \infty & 220 & 267 & 314 & 369 & 424 & 485\\
\ldots 0001000011110101001110001111000011100010111010100101001001011000100001001110101011000110000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 154 & \infty & 242 & 286 & 331 & 374 & 422 & 483\\
\ldots 0011010110111011110010110101011010011111100001001111000110100101111001110100101001100010100000100001 & 4 & 12 & 26 & 42 & 60 & 93 & 124 & 156 & \infty & 220 & 267 & 316 & 367 & 424 & 485\\
\ldots 1000101111111110011001011011001000011010100100111010100001100110000011000000000000000000000000100111 & 8 & 12 & 25 & 41 & 64 & 85 & 139 & 161 & \infty & 237 & 291 & 313 & 369 & 423 & 484\\
\ldots 0000100000001110100001101000110010001101011110111011010101001001010011010010011001111010100100101001 & 4 & 12 & 25 & 42 & 62 & 86 & 118 & 153 & \infty & 234 & 273 & 318 & 366 & 423 & 484\\
\ldots 1110011100111000000111001001000100011100101110010100001000011101010001000010111100101100000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 124 & 164 & \infty & 246 & 284 & 324 & 366 & 423 & 484\\
\ldots 0110001011110110010101111000010100101000010001101001001110101110000000000000000000000000000000110011 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & \infty & 248 & 317 & 347 & 415 & 448 & 514\\
\ldots 1110001110101000010000010111110010001111110001001011101000011000000001010010001111101111000000100101 & 4 & 13 & 25 & 41 & 61 & 93 & 129 & 167 & \infty & 237 & 273 & 313 & 366 & 423 & 484\\
\ldots 0110000001010100001000110011101111010100110010001101111110001000000000110010100100000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & \infty & 250 & 302 & 354 & 406 & 458 & 510\\
\ldots 0001100011001100101000100011101011101011011010101011110100100110000000000000000000000000000000101011 & 5 & 15 & 25 & 41 & 62 & 86 & 149 & 172 & \infty & 255 & 315 & 340 & 398 & 422 & 483\\
\ldots 1110110010100101100001111110101111011011001100101001100011011000011011101000000100011000000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 125 & 165 & \infty & 247 & 285 & 325 & 366 & 423 & 484\\
\ldots 1000110010110111110001100100100110001100101010010011011010011011100111111010011011100000000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 160 & \infty & 246 & 290 & 335 & 379 & 422 & 483\\
\ldots 0100001101010110101001111000101001100010011100100011011011010010100101001000001011101010000100100101 & 4 & 13 & 25 & 41 & 61 & 89 & 122 & 159 & \infty & 230 & 269 & 313 & 366 & 423 & 484\\
4131 & 5 & 13 & 26 & 43 & 62 & 93 & 131 & 162 & 199 & 229 & 266 & 316 & 368 & 424 & 485\\
4139 & 5 & 15 & 25 & 41 & 62 & 86 & 122 & 161 & 207 & 246 & 291 & 329 & 374 & 422 & 483\\
167 & 8 & 12 & 25 & 41 & 64 & 85 & 116 & 151 & 194 & 227 & 268 & 313 & 369 & 423 & 484\\
131119 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 159 & 210 & 251 & 300 & 343 & 394 & 435 & 483\\
\ldots 0110100000001010110101010001000110110101111101011000111001110110000000000000000000000000000000110010 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & \infty & 239 & 306 & 336 & 402 & 435 & 499\\
\ldots 1000001010110010000000000001100110010101000001110101101010011000111100100000000000000000000000100110 & 3 & 11 & 22 & 38 & 58 & 80 & 131 & 154 & \infty & 228 & 279 & 302 & 355 & 410 & 469\\
294 & 3 & 11 & 22 & 38 & 58 & 80 & 110 & 146 & 186 & 220 & 258 & 302 & 355 & 410 & 469\\
2082 & 3 & 12 & 21 & 38 & 55 & 88 & 122 & 155 & 188 & 220 & 253 & 303 & 353 & 411 & 469\\
46 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 171 & 199 & 261 & 288 & 353 & 379 & 440 & 467\\
4138 & 3 & 14 & 21 & 37 & 56 & 82 & 106 & 145 & 190 & 228 & 272 & 309 & 352 & 411 & 468\\
\ldots 1010110000010011011011011011100001011110100110011111011110000100110111101100111111111000010010100100 & 3 & 10 & 21 & 38 & 57 & 78 & 109 & 145 & \infty & 214 & 253 & 303 & 355 & 409 & 469\\
\ldots 1100101101101000111100100101110100001101100110001100110111111000111000000100011010110000000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 152 & \infty & 236 & 279 & 323 & 366 & 408 & 468\\
\ldots 1111111011100011101001011010001110011111111000100100101001100001001011111010111001100011000000100100 & 3 & 10 & 21 & 38 & 57 & 78 & 113 & 150 & \infty & 218 & 253 & 303 & 355 & 409 & 469\\
\ldots 1000101110101001010100001010111011010101011001000100110110001110101110010101100100000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & \infty & 240 & 291 & 342 & 393 & 444 & 495\\
\ldots 0100000001001000000110111100100010011011000010000101011100011100011001101010101001111110000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 147 & \infty & 233 & 276 & 320 & 362 & 408 & 468\\
\ldots 0101111000101010011110100001011011001111101101100011101100010000110100010000111100011100001100101000 & 3 & 10 & 22 & 37 & 56 & 79 & 110 & 146 & \infty & 225 & 263 & 305 & 352 & 408 & 468\\
\ldots 0100000101111110010111001100101010011011100010101110101111010001110100010001100001011001000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 114 & 153 & \infty & 233 & 270 & 309 & 352 & 408 & 468\\
\ldots 1001110101100000000010010110100011001110110110101110100010101110111001110100111001011000000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 117 & 156 & \infty & 236 & 273 & 312 & 352 & 408 & 468\\
\ldots 1110110011010001000110110010001101011011110001011000101011100011110010101101111111100000000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & \infty & 234 & 279 & 326 & 374 & 421 & 467\\
\ldots 0001100101111111010001010100101111000000000101101011110001100110010100100011010011101001100000100000 & 3 & 10 & 23 & 38 & 55 & 87 & 117 & 148 & \infty & 210 & 256 & 304 & 354 & 410 & 470\\
\hline
\ldots 0000111001000011001000110111000011100011011010101100110100010110111001101100010100000000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & \infty & 293 & 349 & 405 & 461 & 517\\
\ldots 1111111101110001011010001010100011001010010111100011111111010100110011100010010000000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & \infty & 301 & 360 & 421 & 483 & 542\\
\ldots 0110110011010100001001110111101010010100000100111110000001010111110000100000000011110000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 194 & \infty & 300 & 350 & 402 & 455 & 507\\
\ldots 1000011001111001000101101011110110001100001110010110101001000000000000000000000000000000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & \infty & 298 & 379 & 415 & 495 & 531\\
\ldots 0111110001001110110110000111001000000010111011010100000100101110000000000000000000000000000000101111 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 181 & 209 & \infty & 300 & 363 & 393 & 454 & 483\\
\ldots 1101111101000100001010100111100011001100010110001010100000010010000001011101000111100100000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 155 & 199 & \infty & 289 & 331 & 375 & 422 & 483\\
\ldots 0000011101110011110011011010000000010101111100100010000111010101100111010001110110100000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 159 & 209 & \infty & 303 & 351 & 400 & 448 & 495\\
\ldots 0110000000000111100011110011000010001100000100101000111100001101111110001101111011101000000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 125 & 165 & 207 & \infty & 285 & 325 & 366 & 423 & 484\\
\ldots 1010111110000000011111001110010010101001100010000010111000000101011000001001001101110000000000100101 & 4 & 13 & 25 & 41 & 61 & 98 & 134 & 169 & 205 & \infty & 279 & 313 & 366 & 423 & 484\\
\ldots 1101101010000111111001101110010011001001011001100011101000111101001111000000000000000000000000100011 & 5 & 13 & 26 & 43 & 62 & 112 & 130 & 179 & 198 & \infty & 266 & 316 & 368 & 424 & 485\\
\ldots 0111010000101111000001110101111111011101111000001100110101010100000011101101110110001000011100101001 & 4 & 12 & 25 & 42 & 62 & 86 & 118 & 153 & 194 & \infty & 273 & 318 & 366 & 423 & 484\\
\ldots 0101001111011010111000001100011011111001011111001001110001010101010010010000001011010000000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 157 & 201 & \infty & 291 & 333 & 377 & 422 & 483\\
\ldots 0110101100000101101000111101101011101011101011110011110011011111000100100101110000000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 198 & \infty & 306 & 355 & 407 & 461 & 513\\
\ldots 0011000000010001000001100011110101010101110010110110111100000111000101011010111011011100100000100101 & 4 & 13 & 25 & 41 & 61 & 92 & 129 & 164 & 200 & \infty & 272 & 313 & 366 & 423 & 484\\
\ldots 1001111101010100101010000110101111111110010101101111100100111000111110101010010000100010000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 155 & 199 & \infty & 295 & 343 & 392 & 439 & 491\\
\ldots 1001011111110001100111001101001001000111100111101000100011010001011101100010010110101001011011101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 147 & 184 & \infty & 273 & 316 & 367 & 422 & 483\\
\ldots 1101111011000000110110011001011011110111101100000110010001011101010000011000100011010100000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 124 & 164 & 206 & \infty & 284 & 324 & 366 & 423 & 484\\
\ldots 1111011010011100001110011111000010100001010110100110001001101100100111101000110000000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 162 & 214 & \infty & 307 & 355 & 405 & 453 & 498\\
1048631 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 200 & 254 & 310 & 361 & 417 & 469 & 526\\
8239 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 155 & 201 & 248 & 294 & 340 & 385 & 431 & 483\\
43 & 5 & 15 & 25 & 41 & 62 & 86 & 147 & 172 & 231 & 255 & 317 & 340 & 398 & 422 & 483\\
4135 & 8 & 12 & 25 & 41 & 64 & 85 & 121 & 163 & 198 & 239 & 273 & 313 & 369 & 423 & 484\\
43 & 5 & 15 & 25 & 41 & 62 & 86 & 147 & 172 & 231 & 255 & 317 & 340 & 398 & 422 & 483\\
51 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 215 & 248 & 315 & 347 & 417 & 448 & 514\\
\ldots 1110111111010011010110010100011100011101111110000110011110100110000000000000000000000000000000101110 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 173 & 199 & \infty & 288 & 351 & 379 & 440 & 467\\
\ldots 1101011000110110101000100011001111110101100111000111111100101110000000000000000000000000000000110110 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & \infty & 281 & 353 & 386 & 457 & 493\\
\ldots 0101110001000110000100011101000010100110100100001100111111100000000000000000000000000000000000111010 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & \infty & 286 & 367 & 401 & 481 & 515\\
\ldots 0110011110101100100101101011001000011111011010010010110001100101001111011000000000000000000000100010 & 3 & 12 & 21 & 38 & 55 & 105 & 121 & 170 & 187 & \infty & 253 & 303 & 353 & 411 & 469\\
\ldots 0111111100101010101101000001000101111001101011010101011100110110100011000000000000000000000000101010 & 3 & 14 & 21 & 37 & 56 & 82 & 106 & 163 & 188 & \infty & 270 & 327 & 352 & 411 & 468\\
4134 & 3 & 11 & 22 & 38 & 58 & 80 & 114 & 155 & 189 & 229 & 262 & 302 & 355 & 410 & 469\\
131122 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 186 & 240 & 284 & 336 & 382 & 436 & 480\\
4142 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 146 & 188 & 237 & 279 & 327 & 368 & 416 & 467\\
170 & 3 & 14 & 21 & 37 & 56 & 82 & 106 & 140 & 178 & 224 & 260 & 304 & 352 & 411 & 468\\
\ldots 1010001000111001101110110111110011101010000010000001110110101010010110000100110110100000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 186 & \infty & 290 & 339 & 390 & 442 & 493\\
\ldots 0001000000001100010001111010000101000000011011111110000100101000010100110100101011011100110100101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 142 & 180 & \infty & 267 & 309 & 357 & 408 & 468\\
\ldots 1010100110010000101011011010001001100110001111001101010110010000000101011100010011011110100000100100 & 3 & 10 & 21 & 38 & 57 & 78 & 114 & 148 & 183 & \infty & 253 & 303 & 355 & 409 & 469\\
\ldots 0101010111011101001011001000011101101001011111101000010100110011110111001011010111111000000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 149 & 192 & \infty & 280 & 321 & 364 & 408 & 468\\
\ldots 0111011111001110010001100111011100111111001101101111110101100110000101010001110000000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 189 & \infty & 295 & 343 & 394 & 447 & 498\\
\ldots 1010110100000011011111110101111101001011001011000001010111100110011011100000111010101100000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 148 & 191 & \infty & 279 & 320 & 363 & 408 & 468\\
\ldots 0011111000101011000100010010110001001110110111110010001101101010111010001010000010100111000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 114 & 153 & 194 & \infty & 270 & 309 & 352 & 408 & 468\\
\ldots 1000110000101000101101110101001110000000110010000000110001010100010000100001000110101000000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 117 & 156 & 197 & \infty & 273 & 312 & 352 & 408 & 468\\
\ldots 0110001000000011100101110101100111001011000110001001000111010101111100000011100100000000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & \infty & 283 & 338 & 393 & 448 & 503\\
\ldots 1101001101001111111111010100000100100101000011110011000001000000101011000011001100011110110100101000 & 3 & 10 & 22 & 37 & 56 & 79 & 110 & 146 & 186 & \infty & 263 & 305 & 352 & 408 & 468\\
\ldots 0110010101100100001011001010010001010100001010110011110000011110100110011110010010110110000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 181 & \infty & 275 & 322 & 370 & 416 & 467\\
\ldots 1110111111001110100010111000110101000111001010100010001101110110110100001001011001100000000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 187 & \infty & 279 & 326 & 374 & 421 & 467\\
\hline
\ldots 1011000101100110111110110011111010001100001101010000111101000010000011001000110000000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 198 & 254 & \infty & 355 & 407 & 461 & 513\\
\ldots 0101010111111011000100001010010110011101001111011100111011000110000000000000000000000000000000110011 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 217 & 248 & \infty & 347 & 415 & 448 & 514\\
\ldots 1001101011001100101110000010001011000000111011100010000001111101110111101011111110110000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 194 & 248 & \infty & 350 & 402 & 455 & 507\\
\ldots 0000110010010111101110101010011000011111111100111100001101001101000111000111011001111111110001110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 148 & 185 & 226 & \infty & 323 & 370 & 425 & 484\\
\ldots 0101101110001100110000011111100010011001011101111001101111100111111101101101000100000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 238 & \infty & 358 & 418 & 478 & 538\\
\ldots 1011110111011010011000010110111001111010110111110001111111001011111011011110110000000000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 237 & \infty & 353 & 406 & 462 & 520\\
\ldots 0000110001001111000111001101001110010101000101011000111100001100101110101110010100010000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 233 & \infty & 347 & 401 & 457 & 514\\
\ldots 0011001101100110001110110111000000000000000000000000000000000000000000000000000000000000000000110111 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & \infty & 362 & 438 & 470 & 545\\
\ldots 1010010101010110001001110001101011001000010101100011011010010100101101100111110100110000000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 157 & 201 & 247 & \infty & 333 & 377 & 422 & 483\\
\ldots 1110010000111100100010111111111000011101100010000101001010011100000011110001001101011010000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 191 & 240 & \infty & 344 & 396 & 449 & 500\\
\ldots 0111010111000110101111010111000111011111110001100101011010000110110101011110011000011100000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 155 & 199 & 245 & \infty & 331 & 375 & 422 & 483\\
\ldots 0111011000101111110000111111100110110010001001110000010010001101010110100110011100000000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 239 & \infty & 357 & 414 & 472 & 530\\
\ldots 1111000110000001010000111110100101011001101010101111010010011000000000000000000000000000000000101011 & 5 & 15 & 25 & 41 & 62 & 86 & 147 & 172 & 231 & 255 & \infty & 340 & 398 & 422 & 483\\
\ldots 0110001110101001101110101010101011001110101010111001011101010001110100000100001110010000000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 127 & 167 & 206 & 246 & \infty & 328 & 366 & 423 & 484\\
\ldots 1000000010101111100011101000000010110100001111101100111101000110001010000100110100010010000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 123 & 164 & 203 & 243 & \infty & 323 & 366 & 423 & 484\\
\ldots 0001101111111100001100110011111111001100110010001101111110111010001001011001100100000000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 239 & \infty & 357 & 414 & 472 & 530\\
\ldots 1000001001001000011100010111100111011100000110000011000101010100001010000000000000000000000000100111 & 8 & 12 & 25 & 41 & 64 & 85 & 141 & 161 & 216 & 237 & \infty & 313 & 369 & 423 & 484\\
\ldots 0100001001011000111000000000000100010001110001011000100010111100001101111001110010111011011101101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 147 & 184 & 229 & \infty & 316 & 367 & 422 & 483\\
\ldots 0011000101111000110010100101000010000011100011111101001100110111111101100100101000110000000000100101 & 4 & 13 & 25 & 41 & 61 & 98 & 134 & 169 & 205 & 243 & \infty & 313 & 366 & 423 & 484\\
\ldots 0111110111010000010011001110001011100010010011000110110000000000000000000000000000000000000000111111 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & \infty & 344 & 434 & 469 & 558\\
\ldots 0000100100011000100101010011000100001101011000000000000000000000000000000000000000000000000001000011 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & \infty & 355 & 448 & 486 & 581\\
\ldots 0000100000010101011000100011000011001110011011110010110001001111110101101010111000000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 162 & 211 & 259 & \infty & 356 & 403 & 451 & 498\\
\ldots 1101011001101010000110001001000100010111010111000110100001100001110001001100010111110000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 158 & 205 & 253 & \infty & 351 & 397 & 445 & 494\\
\ldots 0111000100100111001100010001001011110000100100001110001100011001011101000110110000000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & \infty & 349 & 412 & 477 & 543\\
\ldots 0101101110001001100111100001000101011010110001010100100111111110011010101001110000000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 241 & \infty & 360 & 421 & 482 & 543\\
\ldots 1111111001111010011110010111010000010100100101100001010111101110111000000001000010001100000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 156 & 201 & 249 & \infty & 347 & 393 & 441 & 492\\
4139 & 5 & 15 & 25 & 41 & 62 & 86 & 122 & 161 & 207 & 246 & 291 & 329 & 374 & 422 & 483\\
65583 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 158 & 207 & 250 & 302 & 342 & 391 & 434 & 483\\
559 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 151 & 193 & 235 & 287 & 327 & 377 & 427 & 483\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
51 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 215 & 248 & 315 & 347 & 417 & 448 & 514\\
\ldots 0011000101100110100000011111100101101110000000110111101100101110000000000000000000000000000000110010 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 208 & 239 & \infty & 336 & 402 & 435 & 499\\
\ldots 0010011001001010101111101000110001011010000110010001011001000000000000000000000000000000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & \infty & 334 & 418 & 457 & 540\\
\ldots 0100110100000101101100011001101011101110010000011101100010101000011111000000000000000000000000100110 & 3 & 11 & 22 & 38 & 58 & 80 & 133 & 154 & 206 & 228 & \infty & 302 & 355 & 410 & 469\\
4138 & 3 & 14 & 21 & 37 & 56 & 82 & 106 & 145 & 190 & 228 & 272 & 309 & 352 & 411 & 468\\
1048634 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 230 & 287 & 346 & 400 & 459 & 514\\
46 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 171 & 199 & 261 & 288 & 353 & 379 & 440 & 467\\
46 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 171 & 199 & 261 & 288 & 353 & 379 & 440 & 467\\
8242 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 182 & 231 & 281 & 330 & 379 & 427 & 476\\
54 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 245 & 281 & 351 & 386 & 459 & 493\\
\ldots 1011101001101011100001101100000011001111101000010010100000111100000100001010100101010100000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 148 & 191 & 236 & \infty & 320 & 363 & 408 & 468\\
\ldots 0010111110000111101010111111101001101100100010000101100100010101001010101110100100100000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 186 & 239 & \infty & 339 & 390 & 442 & 493\\
\ldots 1111111011001111100111010010111001101110000001111110100011110101001001001011000101010010000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 182 & 229 & \infty & 331 & 382 & 434 & 484\\
\ldots 0011000101101010001001101110001111000000101111101001100011110010000010100100110000000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 189 & 244 & \infty & 343 & 394 & 447 & 498\\
\ldots 0000001100000100011101111100111111101000011111101100000010100101101010110000111010101110001100101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 142 & 180 & 224 & \infty & 309 & 357 & 408 & 468\\
\ldots 0001100100101001110110001100000100101000100111101011000100010110111100111010101000001000000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 149 & 192 & 237 & \infty & 321 & 364 & 408 & 468\\
\ldots 0011111100011000011110000111110110111000011101011011111101111100111010111111010100000000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & \infty & 329 & 388 & 447 & 506\\
\ldots 0001011001100000000010001001101100010111000100001100011000111100101111000111001000110000000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 119 & 158 & 196 & 235 & \infty & 315 & 352 & 408 & 468\\
\ldots 1110010010011111001011011000111001011100000100101110011010101010000010100000110110110000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 224 & \infty & 336 & 389 & 444 & 500\\
\ldots 0111101001011101010101000000000100101011100100001010011101100111100001100101000000010000100000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 113 & 153 & 191 & 230 & \infty & 308 & 352 & 408 & 468\\
\ldots 1000110110100010000010010010000111001100001111110101010100001000011000100001110000000000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 228 & \infty & 342 & 394 & 449 & 506\\
\ldots 1110010101101101001000010110101100000111100110100101000111110010010100101001001011000100000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 182 & 229 & \infty & 325 & 370 & 417 & 467\\
\ldots 1100101000000111110111100011101110001101001111010011110010111000001101011010011111110110101111110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 174 & 214 & \infty & 309 & 355 & 409 & 467\\
\ldots 0111110001100111011001001011000100111000000111001001010010111000100111010101111100010000000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 184 & 231 & \infty & 327 & 372 & 419 & 467\\
\ldots 1001001001010110000000011010111011001111110001110111101011111000110001101001010000000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & \infty & 337 & 399 & 463 & 528\\
\hline
\ldots 0100011000000110011110100000010110110101010110101010001011000100010101010110100011110001001000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 187 & 232 & 280 & \infty & 385 & 436 & 492\\
\ldots 1010001001010010011111001111010010110111101110101001001110000000101110010010001101010100000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 192 & 242 & 294 & \infty & 400 & 450 & 502\\
\ldots 1011011010010010100000100011110110100001101001100110100101110000000101000010111000000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 198 & 251 & 303 & \infty & 408 & 459 & 511\\
\ldots 1110011011001100000101010111110100010011001000000000000000000000000000000000000000000000000001000111 & 9 & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & \infty & 407 & 503 & 546\\
\ldots 1010010101110111010101001100110100011111111011001110011100011011010100100110011101110100000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 156 & 201 & 249 & 299 & \infty & 393 & 441 & 492\\
\ldots 0000011010010110000000111000001100110000110101111000100001011111011011101011101000010000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 158 & 205 & 253 & 303 & \infty & 397 & 445 & 494\\
\ldots 1111101100100100000101000101001110100100110101111100101000011111001111010100100111010000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 233 & 291 & \infty & 401 & 457 & 514\\
\ldots 0010111000000010100010111101010101111010000100011011001011001111000011001100000000000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & \infty & 403 & 470 & 539\\
\ldots 1011110011101010010011110000100000010110100111111011000101011010101100000010010001010000000000101001 & 4 & 12 & 25 & 42 & 62 & 86 & 127 & 167 & 206 & 246 & 288 & \infty & 366 & 423 & 484\\
\ldots 0000011000111010000100110111101101101010111101001101001010110001110011101001010000000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 285 & \infty & 412 & 477 & 542\\
\ldots 0001000111000110010011011100001100100111100111011101010101000000100101010101001100111010000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 154 & 199 & 242 & 286 & \infty & 374 & 422 & 483\\
\ldots 0101010010110110000001111100011001010010100100110111011101001010101100110101110000000000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 237 & 297 & \infty & 406 & 462 & 520\\
\ldots 1111101110010000011111001010101011111010011101100001101111111010101010100000000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & \infty & 411 & 483 & 557\\
\ldots 1110100001010111011001111001010111011000001101100100101001101111101110111101011100000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 282 & \infty & 410 & 474 & 538\\
\ldots 1001111110011001001101100110100111101000100101001001010111111010001010010101001000000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 162 & 211 & 259 & 308 & \infty & 403 & 451 & 498\\
\ldots 0010010011100000110111000000000000000000000000000000000000000000000000000000000000000000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 261 & 298 & \infty & 415 & 494 & 531\\
\ldots 0111010011011011110001100100101100111010010110001111000101001010000011100101100100100000000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 159 & 203 & 246 & 290 & \infty & 380 & 422 & 483\\
\ldots 1101011001001101001111110001100011001010110011111100000100101110001100011110001000011000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 193 & 244 & 296 & \infty & 402 & 452 & 504\\
\ldots 1001101001111110110111011110110000010111110010101100110100010110011101000011011010111101000111110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 148 & 185 & 226 & 275 & \infty & 370 & 425 & 484\\
\ldots 0000010111110101011001011110000110001011101101010000010010111000000000000000000000000000000000101111 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 179 & 209 & 271 & 300 & \infty & 393 & 454 & 483\\
\ldots 0100100001111011000000100000000100101110011110011111000011110000100000010100111000100001000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 229 & 281 & \infty & 393 & 449 & 506\\
\ldots 0001011011010010111100101001001010110100010000011110101000010011101101110000110001000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 236 & 294 & \infty & 416 & 474 & 534\\
307 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 186 & 229 & 277 & 331 & 377 & 429 & 486\\
2097213 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 239 & 299 & 361 & 420 & 483 & 541\\
51 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 215 & 248 & 315 & 347 & 417 & 448 & 514\\
67 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 318 & 355 & 448 & 486 & 581\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
262203 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 237 & 294 & 356 & 410 & 470 & 526\\
43 & 5 & 15 & 25 & 41 & 62 & 86 & 147 & 172 & 231 & 255 & 317 & 340 & 398 & 422 & 483\\
8239 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 155 & 201 & 248 & 294 & 340 & 385 & 431 & 483\\
1048639 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 282 & 346 & 408 & 468 & 531\\
\ldots 0100010000000011111111011100100010011100111111000111100000001011001010000000000000000000000000101010 & 3 & 14 & 21 & 37 & 56 & 82 & 106 & 165 & 188 & 246 & 270 & \infty & 352 & 411 & 468\\
\ldots 0111100100010010001011001001011101100001011000000000000000000000000000000000000000000000000001000110 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & \infty & 394 & 490 & 531\\
\ldots 0000000010110101110110101000100001010111111000011001111010011000000000000000000000000000000000101110 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 171 & 199 & 261 & 288 & \infty & 379 & 440 & 467\\
\ldots 0001110000101101000010111000000000000000000000000000000000000000000000000000000000000000000000111010 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & \infty & 401 & 480 & 515\\
\ldots 0101011001010111001110111100001111111110101011001100001011001001011000011111100100000000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 272 & \infty & 396 & 456 & 517\\
\ldots 1010110011000001111000110101010110011110010110000110110000000000000000000000000000000000000001000010 & 3 & 12 & 21 & 38 & 55 & 82 & 109 & 142 & 175 & 214 & 253 & \infty & 383 & 476 & 514\\
\ldots 1000101111001111001101110111011000100010011001101011111100011110000111100000011100000000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 272 & \infty & 396 & 456 & 517\\
\ldots 0010100111111110010010001011110000000011011101101000000001000110000000000000000000000000000000110110 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 247 & 281 & \infty & 386 & 457 & 493\\
54 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 245 & 281 & 351 & 386 & 459 & 493\\
4142 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 146 & 188 & 237 & 279 & 327 & 368 & 416 & 467\\
562 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 178 & 223 & 268 & 323 & 366 & 419 & 472\\
65586 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 185 & 237 & 283 & 338 & 381 & 433 & 479\\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
\ldots 0111110111000111101101111000010011000111000011101010111000000111001011101101110000000000000001000100 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & \infty & 388 & 454 & 522\\
\ldots 0110110100111001101000001011011000101010100111010100001110010110011100110100001011010000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 266 & \infty & 386 & 443 & 502\\
\ldots 1000001010110001101001000110011000001000110101100101011101011001011110010011100101010000000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 151 & 194 & 236 & 279 & \infty & 367 & 408 & 468\\
\ldots 1100101101110000101011111001000000011000110010010011000001010101100100101011010000110000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 185 & 235 & 286 & \infty & 390 & 439 & 490\\
\ldots 1010110110000111111010010000100100110000110100100111100100010100000010010110001110000010000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 147 & 191 & 233 & 276 & \infty & 362 & 408 & 468\\
\ldots 1110110001101100100101111111001101101100011000010111111011111100000011010010110000000000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 270 & \infty & 392 & 448 & 507\\
\ldots 0010110000101110101101000101110011010010000001101101010110011101010001101010010000001001100101110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 175 & 215 & 259 & \infty & 362 & 412 & 470\\
\ldots 1001001010111011000001001001111100010101000000111001100100001010000000100000000011101100000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 183 & 231 & 282 & \infty & 386 & 435 & 486\\
\ldots 0001111010001100101000010101000101010001100000111101110001000110111101110000111000000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 189 & 241 & 292 & \infty & 395 & 445 & 496\\
\ldots 0010100001100000001111110110001010101011111100001101000101000110101001110100110000000000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 228 & 287 & \infty & 394 & 449 & 506\\
\ldots 0001000001111011011010010001011011100011000000110110110010010101000010110010011000101010000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 221 & 273 & \infty & 383 & 438 & 494\\
\ldots 1100010111010110000101011100100110001010011011100000000101100111110011001000000101110000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 224 & 281 & \infty & 389 & 444 & 500\\
\ldots 1100110010101010010001000100010111101001111101101100011101100010010010111101111111110000000000101000 & 3 & 10 & 22 & 37 & 56 & 79 & 119 & 158 & 196 & 235 & 276 & \infty & 352 & 408 & 468\\
\ldots 0101100110101001100011010100010110110000010010100000111000100001101111110010110001110101001001110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 174 & 214 & 262 & \infty & 355 & 409 & 467\\
\ldots 1011100001010101101000101001000111100101011011111000011000101111111001100010000011110000000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 184 & 231 & 280 & \infty & 372 & 419 & 467\\
\ldots 1000110100001101100100011101100011101000111001111111010110100111011010111010010100111100000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 182 & 229 & 278 & \infty & 370 & 417 & 467\\
\ldots 0101001100011011010001000111000000000111100001111101100110111101111111110101000100000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 271 & \infty & 397 & 460 & 523\\
\ldots 0100101000100100010000001000011001001000100111000101101101001011001111111110110000000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 274 & \infty & 399 & 463 & 527\\
\hline
\ldots 0111111100110100001000000000000000000000000000000000000000000000000000000000000000000000000000111111 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 308 & 344 & \infty & 469 & 557\\
\ldots 1001001101111101011011000001011000101011111000001100001000001111000000000000000000000000000000101011 & 5 & 15 & 25 & 41 & 62 & 86 & 146 & 172 & 230 & 255 & 314 & 340 & \infty & 422 & 483\\
\ldots 1110001111111000100000110110100110011110111101000000010011001001111010111101001000000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 198 & 251 & 303 & 356 & \infty & 459 & 511\\
\ldots 1011001010001110111011110001110000101111101111110110010101001101110100100000000000000000000001001101 & 4 & 21 & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & \infty & 466 & 542\\
\ldots 0111100101110110111010011110010100111011100111110100110011011011111000100010101000000110000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 230 & 283 & 339 & \infty & 453 & 507\\
\ldots 0101000011001001111101111011111100101001001110011111111110110011011000111111101101000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 236 & 294 & 356 & \infty & 474 & 534\\
\ldots 0110000000111011000001100110110110110010010111010001101000110001100110110101001010111110111000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 226 & 275 & 328 & \infty & 441 & 496\\
\ldots 0000100111110111011100111100101100101110010001100100000001011001011010111000111001111000111000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 187 & 232 & 280 & 333 & \infty & 436 & 492\\
\ldots 0110111100100010111100101001001001111110111101001010010111111001010110110110000110101101000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 230 & 282 & 336 & \infty & 456 & 516\\
\ldots 0001000011100100100110000111000010000010100000101000011110100000000000000000000000000000000000110111 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 222 & 253 & 331 & 362 & \infty & 470 & 545\\
\ldots 0000111100100110000011011101010101100011010101111101111101101011011000010111010000000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 162 & 213 & 261 & 307 & 355 & \infty & 454 & 498\\
\ldots 0111111111110010000110000111000011000010011101100010101010001000101110101010110101111000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 232 & 287 & 343 & \infty & 457 & 511\\
\ldots 0010111001011101010010011001010000101000011010000000000000000000000000000000000000000000000001000011 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 316 & 355 & \infty & 486 & 584\\
\ldots 1101100110111000101010011111101000110001101011010001100110101000011111000110011100000000000001000011 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 281 & 346 & \infty & 480 & 545\\
\ldots 1100111110101100010011101101111010011111001110001000011101100001111111000100100111011110000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 155 & 199 & 248 & 295 & 343 & \infty & 439 & 491\\
\ldots 0011100110110111111000000011101001001101010111000010010011101100011100000100000000000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 335 & \infty & 470 & 539\\
\ldots 1110011001111100000101110000000100101111100001100010000110011101111000001110001001100000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 159 & 208 & 256 & 303 & 351 & \infty & 449 & 495\\
\ldots 0001100100001010010111000110100110001000101111010010010111111000111101011001010010101100000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 192 & 242 & 294 & 348 & \infty & 450 & 502\\
\ldots 0110000010001110110101110110100010001111111100100100110010110011010011110000010110100000000000101101 & 4 & 15 & 27 & 40 & 61 & 86 & 114 & 159 & 203 & 246 & 290 & 336 & \infty & 422 & 483\\
\ldots 0111100001001000011101110100011000101101111000000000000000000000000000000000000000000000000001001011 & 5 & 16 & 25 & 41 & 62 & 86 & 115 & 147 & 185 & 227 & 269 & 315 & \infty & 464 & 565\\
\ldots 1010011111100001001110000110101000110100110100101010011111110100011100010100000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 336 & \infty & 481 & 552\\
\ldots 1011100111101001000111110100110100110100000000000000000000000000000000000000000000000000000001001111 & 6 & 12 & 28 & 40 & 63 & 86 & 115 & 147 & 185 & 223 & 270 & 315 & \infty & 471 & 582\\
\ldots 0101111010011000001100101000101000011101001001111000001111111100011100111111011000000000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 237 & 294 & 350 & \infty & 463 & 518\\
\ldots 1011111111111000101111111100001001110100111101110011101100011000000000000000000000000000000000110011 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 215 & 248 & 315 & 347 & \infty & 448 & 514\\
\ldots 0011111111000100100001111011011011011001100100011001000011101011000000111001100100000000000001000011 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 281 & 346 & \infty & 480 & 545\\
\ldots 0111100101010100011001000100010001001101110000000100000101000111010001000000000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 339 & \infty & 485 & 555\\
\ldots 1101101110111001100100110001001010011011001010100100000111110010010010010100011011000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 280 & 342 & \infty & 472 & 534\\
\ldots 1000011010100000101111011000100000010011111011110111111101001011011010011111001100000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 328 & \infty & 464 & 532\\
\ldots 1010011000111111110010101001000001011110100011100101011000111011010010110111110111101000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 193 & 244 & 296 & 350 & \infty & 452 & 504\\
131119 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 159 & 210 & 251 & 300 & 343 & 394 & 435 & 483\\
16777287 & 9 & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & 332 & 408 & 472 & 546\\
2097217 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 283 & 347 & 413 & 476 & 541\\
131135 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 279 & 338 & 407 & 462 & 528\\
59 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 261 & 298 & 415 & 415 & 494 & 531\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
59 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 261 & 298 & 415 & 415 & 494 & 531\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
61 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 240 & 300 & 360 & 421 & 481 & 541\\
51 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 215 & 248 & 315 & 347 & 417 & 448 & 514\\
\ldots 0111111001011010110011111000000101101011001000000000000000000000000000000000000000000000000001001010 & 3 & 15 & 21 & 37 & 56 & 82 & 106 & 138 & 174 & 217 & 256 & 302 & \infty & 449 & 548\\
\ldots 1000111000101100000100110110000110111000000011011110110010111000000000000000000000000000000000110010 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 206 & 239 & 304 & 336 & \infty & 435 & 499\\
\ldots 0000001101111000011000000000000000000000000000000000000000000000000000000000000000000000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 294 & 334 & \infty & 457 & 539\\
54 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 245 & 281 & 351 & 386 & 459 & 493\\
262206 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 270 & 330 & 395 & 452 & 515\\
46 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 171 & 199 & 261 & 288 & 353 & 379 & 440 & 467\\
1048642 & 3 & 12 & 21 & 38 & 55 & 82 & 109 & 142 & 175 & 214 & 253 & 318 & 385 & 450 & 513\\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
70 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & 354 & 394 & 490 & 531\\
310 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 216 & 262 & 313 & 370 & 419 & 474\\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
8242 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 182 & 231 & 281 & 330 & 379 & 427 & 476\\
\ldots 0011011101101101001000110101000101100100110001000011101101000101011001101110000010010000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 266 & 327 & \infty & 443 & 502\\
\ldots 1111100110010101110001111110101010101100101011001100000100000011000010001111001000000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 189 & 241 & 292 & 344 & \infty & 445 & 496\\
\ldots 1111011000011100001010000100110110011110101111101010001010010100001100111001110000000000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 270 & 333 & \infty & 448 & 507\\
\ldots 0001010010100010101111001010110010000110111000110100111010010011101011011111011100010100000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 183 & 231 & 282 & 335 & \infty & 435 & 486\\
\ldots 0011000110001110001100101100001000101111110001010111000101011110101111011100011111111001000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 262 & 317 & \infty & 435 & 494\\
\ldots 0110010011111100100111101100001001100111000000100101010100010000111110100000000000000000000001001100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 139 & 174 & 214 & 257 & 303 & \infty & 453 & 528\\
\ldots 1111000100111110000110110011000100111100101010010110011010001110001111001100101111010000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 185 & 235 & 286 & 339 & \infty & 439 & 490\\
\ldots 1011110101000010001101101000000010010111111010011010011001101001110100000110010100010000000000101100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 151 & 194 & 236 & 279 & 324 & \infty & 408 & 468\\
\ldots 1001111011011001101000000101101100010111001101010001100001010001110010001001010100011100010011110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 175 & 215 & 259 & 311 & \infty & 412 & 470\\
\ldots 1001100010001101100000110001001001010000000111110001100001010101110001011110010000000000000001000100 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 321 & \infty & 454 & 522\\
\ldots 1111101010000001001110001101001101100111000001110011100001110010001010101101011100000000000001000100 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 318 & \infty & 452 & 519\\
\ldots 0010011100111011011001111101111000011111100000000001110111101000011110010111110100111000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 223 & 277 & 332 & \infty & 444 & 497\\
\ldots 1010000000111100110110101000001110000111000011110100011100101111101100101011100011011110101000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 217 & 265 & 316 & \infty & 427 & 481\\
\ldots 0010110001011011110110000100110110111100001101000101110100100111011010011100000000000000000001001000 & 3 & 10 & 22 & 37 & 56 & 79 & 107 & 140 & 176 & 215 & 257 & 302 & \infty & 445 & 515\\
\ldots 0100000001000011100000010111011001001011110010011001110001001001010101110001100100010100000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 222 & 275 & 330 & \infty & 442 & 495\\
\ldots 0110101110011001110110001011000101101001010011011010101110010010000100000000111000000000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 228 & 284 & 339 & \infty & 450 & 504\\
\ldots 1101001000110101111101111100011111001110111100101101111000000001111100110011100101001010000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 181 & 229 & 275 & 322 & \infty & 416 & 467\\
\ldots 0010110100000100000000000011001011000001101111010010100110010000001011010110100110100000000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 186 & 233 & 279 & 326 & \infty & 422 & 467\\
\ldots 0110111110000110010100100101110110010001001011101011010000001111001100101111100101000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 269 & 330 & \infty & 458 & 519\\
2097216 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 272 & 335 & 400 & 462 & 531\\
\hline
\ldots 1101110000111000001101100110110001011100011110000000000000000000000000000000000000000000000001000111 & 9 & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & 363 & 407 & \infty & 546\\
\ldots 0100011110001010011011010010001111010001101001110101010011101010100111010000101010100110000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 191 & 240 & 293 & 344 & 396 & \infty & 500\\
\ldots 1011111000010010100101001110111111110100001100010110111101000101101001101000111101110001101000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 228 & 276 & 328 & 385 & \infty & 501\\
\ldots 1101010111110110100100111011101100000111001001011110011100100010010110010101010000000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 242 & 301 & 360 & 421 & \infty & 542\\
\ldots 1101001010011010100011110101110010110010110101101001011001000111110010011010110100101011001000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 226 & 275 & 328 & 385 & \infty & 496\\
\ldots 0101101110101110110001111100111110010101101001110011011011000000000000000000000000000000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 262 & 298 & 379 & 415 & \infty & 531\\
\ldots 0010110000101000100101100011011000110001100111111010001010011000010111000011110001100100011000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 228 & 276 & 328 & 385 & \infty & 501\\
\ldots 0000111111000001010011000000010110111011111101100000111000000001001111100010000000000000000001001101 & 4 & 21 & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 386 & \infty & 539\\
\ldots 0110100111111011011000111001111010101001000110101011010001000100100011000000000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 339 & 413 & \infty & 555\\
\ldots 0001010101100011000010101100011001100000011101001101111110010001000000110011000000000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 332 & 400 & \infty & 538\\
\ldots 1111100111011101001101000110100100010001110100011111000011000111011010010100001000100000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 236 & 292 & 352 & 408 & \infty & 524\\
\ldots 0101010110101100010011111110010010000011001100111100100100001101100011000000101000000000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 237 & 294 & 350 & 407 & \infty & 518\\
\ldots 0000110110001000110111111001100011100110000110100100001100111110100000111100000000000000000001001011 & 5 & 16 & 25 & 41 & 62 & 86 & 115 & 147 & 185 & 227 & 269 & 315 & 388 & \infty & 536\\
\ldots 0111110111011000100000011001111100111011011000001111001001000011001011100001101000000110000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 231 & 284 & 339 & 399 & \infty & 521\\
\ldots 0000011101110111110111111100101100101111100100011100110011010010001110111011110001100000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 235 & 292 & 351 & 411 & \infty & 533\\
\ldots 1101100000011111000011010101010100011111110010000111001000001100011010101011110111100000000000111011 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 236 & 292 & 352 & 408 & \infty & 524\\
\ldots 0110100010110011011010001101110101110001001010000001110000100110111111110000010000000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 330 & 398 & \infty & 539\\
\ldots 0011010101111010011000101100001000010110111000011000100100000001111011111011001010001000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 232 & 287 & 343 & 401 & \infty & 511\\
\ldots 0011101111100011011000011000001100101111010101001011000011110110011001100000000000000000000001010001 & 4 & 12 & 29 & 46 & 60 & 85 & 114 & 147 & 183 & 223 & 270 & 318 & 367 & \infty & 527\\
\ldots 1110110010011101010010110110110000111100011100100001000110011101011110000110000011011011000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 274 & 330 & 388 & \infty & 516\\
\ldots 0110010000110000111010100100101010011110101110110010110001100011000000000000000000000000000000101111 & 6 & 12 & 27 & 40 & 63 & 86 & 115 & 178 & 209 & 270 & 300 & 362 & 393 & \infty & 483\\
\ldots 0100011000001110100110001111001111101111101001010000001101001110111000111110100101110000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 324 & 388 & \infty & 526\\
\ldots 1101100010011000001010111000011111011100001101110111001111111110010110010000111100000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 330 & 396 & \infty & 540\\
\ldots 0111000011100111001000100111110101111010110100000001100111111001100001001010001111100000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 159 & 208 & 256 & 303 & 351 & 401 & \infty & 495\\
\ldots 0110111010101000001110111011000100111111100010011100100110111011101101111010010000000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 162 & 213 & 261 & 307 & 355 & 406 & \infty & 498\\
\ldots 0001000111101001001001000010001001010110111111110100010011100000111011010000101111000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 280 & 342 & 408 & \infty & 534\\
\ldots 0111011000011101000001011001100000001100011100111101000010111111110110101100000001010000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 194 & 247 & 299 & 350 & 402 & \infty & 508\\
\ldots 0100111101001101110001100110111100110111111001001100100101011000110001000111001000000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 239 & 299 & 361 & 420 & \infty & 541\\
\ldots 0111010001110100010111101100101001111111100101110000110010010001100101000000000000000000000001001101 & 4 & 21 & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 390 & \infty & 544\\
\ldots 1100001000000001111110100111101111010000101111000111110011000001011111000100000000000000000001001011 & 5 & 16 & 25 & 41 & 62 & 86 & 115 & 147 & 185 & 227 & 269 & 315 & 388 & \infty & 536\\
\ldots 0011111111111100001000000000000111001011001111001101100011100000100011101101001111010001000100111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 226 & 274 & 324 & 380 & \infty & 501\\
\ldots 1100110100000100101100001111110001010000000000000000000000000000000000000000000000000000000001010011 & 5 & 13 & 28 & 47 & 64 & 85 & 114 & 146 & 183 & 223 & 268 & 318 & 368 & \infty & 532\\
\ldots 1001011101111110011101011010100100000011111001010001100000101000111100110110011111111010000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 230 & 283 & 339 & 397 & \infty & 507\\
\ldots 1001011100001111101110101100011000101100110010010011110111000101111100110111010000000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 198 & 253 & 305 & 355 & 407 & \infty & 514\\
\ldots 1111001010110111110010010100101101000011111111100100001011110111110110011100000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 336 & 409 & \infty & 552\\
\ldots 0111110101011001100000110110110110001011001110010011101010101010011000000000000000000000000001010101 & 4 & 13 & 25 & 43 & 63 & 85 & 114 & 146 & 183 & 224 & 268 & 316 & 368 & \infty & 539\\
8388675 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 284 & 352 & 416 & 488 & 549\\
536870991 & 6 & 12 & 28 & 40 & 63 & 86 & 115 & 147 & 185 & 223 & 270 & 315 & 393 & 472 & 550\\
51 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 215 & 248 & 315 & 347 & 417 & 448 & 514\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
1048647 & 9 & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & 328 & 399 & 469 & 541\\
65 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 284 & 348 & 412 & 477 & 541\\
262211 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 279 & 342 & 407 & 477 & 539\\
4159 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 274 & 328 & 390 & 453 & 515\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
63 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 308 & 344 & 469 & 469 & 557\\
\ldots 0000110101011100010100110111110100011011011010000000000000000000000000000000000000000000000001000110 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & 352 & 394 & \infty & 531\\
\ldots 1111000111110010110101011101000000110100000000000000000000000000000000000000000000000000000001010010 & 3 & 12 & 21 & 40 & 55 & 81 & 107 & 139 & 174 & 215 & 256 & 306 & 354 & \infty & 516\\
\ldots 1101100000000010100101010010000011011010101100000100000001001111000000000000000000000000000000101110 & 3 & 11 & 24 & 37 & 56 & 80 & 107 & 170 & 199 & 260 & 288 & 350 & 379 & \infty & 467\\
\ldots 0100001010011110010101001101100001001111011001000011100111100011010111110011100100000000000001000110 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & 317 & 385 & \infty & 525\\
\ldots 1011000010100010001111010001101001001110001000010101001110100000000000000000000000000000000000111010 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 252 & 286 & 367 & 401 & \infty & 515\\
\ldots 1010010000011100101011101111001001111001111000000000000000000000000000000000000000000000000001001110 & 3 & 11 & 25 & 37 & 56 & 80 & 107 & 139 & 174 & 215 & 260 & 305 & 354 & \infty & 509\\
\ldots 1101011011011001000000000000000000000000000000000000000000000000000000000000000000000000000001000010 & 3 & 12 & 21 & 38 & 55 & 82 & 109 & 142 & 175 & 214 & 253 & 344 & 383 & \infty & 514\\
\ldots 1110100010100001101000001101000000001101110110100000000100011000000000000000000000000000000000110110 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 245 & 281 & 351 & 386 & \infty & 493\\
\ldots 0010100100001110101010010100001001000111011100000100000000010000001000001100011100000000000001000110 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & 317 & 385 & \infty & 525\\
131138 & 3 & 12 & 21 & 38 & 55 & 82 & 109 & 142 & 175 & 214 & 253 & 315 & 377 & 449 & 507\\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
54 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 245 & 281 & 351 & 386 & 459 & 493\\
62 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 294 & 334 & 457 & 457 & 539\\
62 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 294 & 334 & 457 & 457 & 539\\
131122 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 186 & 240 & 284 & 336 & 382 & 436 & 480\\
16777290 & 3 & 15 & 21 & 37 & 56 & 82 & 106 & 138 & 174 & 217 & 256 & 302 & 371 & 450 & 517\\
\ldots 0110011010111110110111111111001010010111110011010000000000011000011001000000000000000000000001001100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 139 & 174 & 214 & 257 & 303 & 378 & \infty & 530\\
\ldots 1110110100001111011001111010101010101001011010010000111110100101111101011011010000000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 189 & 243 & 294 & 343 & 394 & \infty & 499\\
\ldots 0001010111010100000011110100011000100010100000000000010101111000110011101001001111000000000001000100 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 316 & 381 & \infty & 517\\
\ldots 0100111010001010010000110100011110101011000101011110000010000110111010110100011100011010011000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 259 & 311 & 367 & \infty & 486\\
\ldots 0100101101100001011100110100010011001101010010101010011111110100100000110001011011100000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 186 & 238 & 289 & 339 & 390 & \infty & 494\\
\ldots 0100010111010001001111010010111000110101111011011000000001001011110001111001011000000000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 270 & 330 & 389 & \infty & 508\\
\ldots 1001110011111111100111010101011011001000000101101111011100010010000010000101110010101110000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 182 & 229 & 281 & 331 & 382 & \infty & 484\\
\ldots 0111101101110000111001111011010011010100010000100000001001101011110001100001101010110110000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 263 & 319 & 378 & \infty & 498\\
\ldots 1010010110110010011000101111001000100011110010000011001111110101001010100100000000000000000001001100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 139 & 174 & 214 & 257 & 303 & 375 & \infty & 526\\
\ldots 0001101101010100100100000101000010110010000010010110000101001001101100010100000000011000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 265 & 323 & 382 & \infty & 502\\
2097220 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 319 & 386 & 455 & 521\\
\ldots 1111001111001101000100011001100111010101111010110100111001100111111011111111001000000000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 228 & 284 & 339 & 395 & \infty & 504\\
\ldots 1010010000011011000101110100101001110010100010011000000000110111000101111001111011101100000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 222 & 275 & 330 & 387 & \infty & 495\\
\ldots 0001101110001011010111010001101001100011010101101101011100011111110111101110001011001000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 223 & 277 & 332 & 389 & \infty & 497\\
\ldots 1110001010011010100100011011110111111111011000000110010101000000010001001010001100000000000001001000 & 3 & 10 & 22 & 37 & 56 & 79 & 107 & 140 & 176 & 215 & 257 & 302 & 367 & \infty & 509\\
\ldots 1000111011101110001111111111010010100101011100111001111000101100111110111011110010011011011000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 217 & 265 & 316 & 372 & \infty & 481\\
\ldots 1001110100011000100001001101100001000110111010011000111000101101000111110100000000000000000001001000 & 3 & 10 & 22 & 37 & 56 & 79 & 107 & 140 & 176 & 215 & 257 & 302 & 374 & \infty & 515\\
\ldots 0011110011001111100100101001110001011001000100110010100011001110010000100000000000000000000001010000 & 3 & 10 & 27 & 41 & 55 & 79 & 107 & 138 & 173 & 212 & 258 & 305 & 353 & \infty & 511\\
\ldots 1010110101101010000101011001110101100011000110100000010101001101000000110010000000100000000000110000 & 3 & 10 & 24 & 39 & 55 & 79 & 107 & 138 & 186 & 233 & 279 & 326 & 375 & \infty & 467\\
\ldots 1001111010010001111000111001110111100000101000010011001100010101011010000101011110110101000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 263 & 318 & 375 & \infty & 501\\
\ldots 1011100000010000011000101111010100101011010001001101010010011111000110111011010001000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 269 & 330 & 395 & \infty & 519\\
64 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 273 & 336 & 399 & 463 & 526\\
\hline
\ldots 0001101010100000001010010011101011011100001011100010100111011001001101101101000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 334 & 404 & 476 & \infty \\
\ldots 0110010101000100100111010010001110100000001000001110010110101011110001100100001110100000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 235 & 292 & 351 & 411 & 473 & \infty \\
\ldots 1110000011110010110011001110011000010101000000100011001011000010110100010000111100000000000001001101 & 4 & 21 & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 381 & 452 & \infty \\
\ldots 0001010011110011111111101010011001011011001111011110110111001100100011101110111000000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 283 & 347 & 413 & 476 & \infty \\
\ldots 1101001110100111100001010110010111110100111101001000110100110100010110100110000001101010000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 275 & 332 & 391 & 455 & \infty \\
\ldots 0011101011101111010001101101100111000010101010110111010111011000111011011010010000000000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 198 & 253 & 305 & 355 & 407 & 462 & \infty \\
\ldots 1001100010101001110001101111010100100101101001011011000100101000000000000000000000000000000000110111 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 219 & 253 & 329 & 362 & 436 & 470 & \infty \\
\ldots 0001111100101010000111001001101111101100100101001000100000011010100100110111111100010000000000110101 & 4 & 13 & 25 & 42 & 62 & 85 & 114 & 146 & 194 & 247 & 299 & 350 & 402 & 456 & \infty \\
\ldots 1110101111011010011011101011111000110100011101111111101000111101000011110001110000000000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 286 & 349 & 412 & 477 & \infty \\
\ldots 1011000111100011111000010111110000000110000001111110001010111111000111000000000000000000000001010001 & 4 & 12 & 29 & 46 & 60 & 85 & 114 & 147 & 183 & 223 & 270 & 318 & 367 & 447 & \infty \\
\ldots 1001000001000000010101001001010000100000000000000000000000000000000000000000000000000000000001010111 & 7 & 12 & 25 & 43 & 68 & 87 & 113 & 145 & 185 & 223 & 268 & 316 & 372 & 424 & \infty \\
\ldots 1110001010001000001001110101000111000001110101100110100101011000011111000000000000000000000001001101 & 4 & 21 & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 390 & 468 & \infty \\
\ldots 0111110100110111101000010001110100000100111001011111111011100111101011100000000000000000000001010101 & 4 & 13 & 25 & 43 & 63 & 85 & 114 & 146 & 183 & 224 & 268 & 316 & 368 & 448 & \infty \\
\ldots 1001111001101001011100110001011100110101110000010111110110110001001111110000011111111010000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 231 & 284 & 339 & 399 & 461 & \infty \\
\ldots 0101101011011010100011110001100001011110001111110111011101001100010001100111000001111011101101000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 270 & 322 & 376 & 436 & \infty \\
\ldots 1100110110000011001100011111100001101010000000000000000000000000000000000000000000000000000001001111 & 6 & 12 & 28 & 40 & 63 & 86 & 115 & 147 & 185 & 223 & 270 & 315 & 425 & 471 & \infty \\
\ldots 0100101011100001110110111000110110001100101011001000000110110110101011110110101110010111000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 320 & 380 & 444 & \infty \\
\ldots 0001001000001010110111101011000011101101010010000000000000000000000000000000000000000000000001001011 & 5 & 16 & 25 & 41 & 62 & 86 & 115 & 147 & 185 & 227 & 269 & 315 & 417 & 464 & \infty \\
\ldots 1100010010010010000000011000011111010101011011001100011110000110010000100000000000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 341 & 411 & 483 & \infty \\
\ldots 1010001000110110000100110010110000111010110010100110101110100101101001101010110000000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 241 & 302 & 360 & 421 & 482 & \infty \\
\ldots 0010000101110000011101010011111101100111001101011110111010111100100010001111010000000000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 332 & 400 & 472 & \infty \\
\ldots 0000110110011010101110001101011101001001011000111100010000000000000000000000000000000000000000111111 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 309 & 344 & 434 & 469 & \infty \\
\ldots 0010000000010000001101010100000110010010110110111101001011010001101000000000000000000000000001011001 & 4 & 12 & 25 & 44 & 66 & 90 & 116 & 145 & 181 & 222 & 267 & 316 & 368 & 424 & \infty \\
\ldots 1011001001000011001001001011011010010110110010100010010110010101010100100010010000000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 330 & 398 & 471 & \infty \\
\ldots 0011100000011100011101100111101011110011000010001111101100011111000000000000000000000000000000110011 & 5 & 13 & 27 & 45 & 63 & 85 & 114 & 146 & 214 & 248 & 314 & 347 & 414 & 448 & \infty \\
\ldots 1100010101000011101000001110010011110011010011100100110110111101010011001010010000000000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 237 & 296 & 352 & 406 & 462 & \infty \\
\ldots 1101011111000000011001111010010000000000000000000000000000000000000000000000000000000000000001011011 & 5 & 14 & 25 & 41 & 64 & 90 & 116 & 145 & 182 & 224 & 268 & 316 & 369 & 425 & \infty \\
\ldots 1010110011011000000110100101100100001101001010011001101011010110110001010010010000010000000001001001 & 4 & 12 & 25 & 42 & 62 & 86 & 115 & 147 & 184 & 224 & 267 & 326 & 388 & 456 & \infty \\
\ldots 1010100010101010011001000110010100100000110101011010010110100010011101000011011000110000000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 233 & 290 & 346 & 401 & 457 & \infty \\
\ldots 1001101101101010110010011101010010110001010110000000100111011100101000010010000000000000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 333 & 401 & 470 & \infty \\
\ldots 1001111011010111011101001110101100010110000100001010100001010000100001111111011100000000000000110001 & 4 & 12 & 27 & 43 & 60 & 85 & 114 & 163 & 210 & 258 & 306 & 354 & 402 & 450 & \infty \\
\ldots 0000011000101010000100111111001110101110110111000011111001110001001110111000111000000000000000111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 239 & 299 & 361 & 420 & 481 & \infty \\
\ldots 1101100000110100100110010001111100000011011001000100011110101010010001010110000000000000000001001101 & 4 & 21 & 29 & 40 & 61 & 86 & 114 & 146 & 182 & 225 & 269 & 314 & 386 & 463 & \infty \\
\ldots 0000010000100111100110010011110011101000100111011010111111010101011000000000000000000000000001010101 & 4 & 13 & 25 & 43 & 63 & 85 & 114 & 146 & 183 & 224 & 268 & 316 & 368 & 455 & \infty \\
\ldots 1110010000000101001001111110011101000111110110011001001110010001101110100110000000000000000001010001 & 4 & 12 & 29 & 46 & 60 & 85 & 114 & 147 & 183 & 223 & 270 & 318 & 367 & 443 & \infty \\
\ldots 0101000100010101010011010100100100101110110000101110101011011110010000101010000000100000000001000001 & 4 & 12 & 26 & 42 & 60 & 86 & 116 & 148 & 182 & 220 & 279 & 340 & 403 & 467 & \infty \\
\ldots 0011011100010111011101000100110101010000001111100000110100101010110001111100001000000011011100111101 & 4 & 14 & 26 & 40 & 62 & 88 & 116 & 146 & 180 & 226 & 274 & 324 & 380 & 441 & \infty \\
\ldots 0101100001101100101100111010000101101011110000101100101101110001000000100010001010110000000001000101 & 4 & 13 & 25 & 41 & 61 & 86 & 116 & 149 & 185 & 224 & 266 & 324 & 388 & 458 & \infty \\
\ldots 0100100010111001110110101011001110111100101010000000000000000000000000000000000000000000000001000011 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 316 & 355 & 451 & 486 & \infty \\
\ldots 1000001000100110001101111000001110000000001101011111001001011110011000100110011001011111000000111001 & 4 & 12 & 25 & 43 & 64 & 88 & 115 & 145 & 181 & 229 & 281 & 338 & 393 & 449 & \infty \\
71 & 9 & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & 365 & 407 & 503 & 546\\
63 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 308 & 344 & 469 & 469 & 557\\
65599 & 6 & 12 & 26 & 40 & 64 & 88 & 118 & 148 & 184 & 220 & 278 & 336 & 402 & 460 & 528\\
55 & 7 & 12 & 25 & 42 & 66 & 86 & 113 & 145 & 221 & 253 & 362 & 362 & 438 & 470 & 545\\
59 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 261 & 298 & 415 & 415 & 494 & 531\\
71 & 9 & 12 & 25 & 41 & 64 & 85 & 114 & 147 & 187 & 223 & 266 & 365 & 407 & 503 & 546\\
2097227 & 5 & 16 & 25 & 41 & 62 & 86 & 115 & 147 & 185 & 227 & 269 & 315 & 383 & 454 & 532\\
59 & 5 & 14 & 25 & 41 & 63 & 88 & 115 & 145 & 182 & 261 & 298 & 415 & 415 & 494 & 531\\
67 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 318 & 355 & 448 & 486 & 581\\
83 & 5 & 13 & 28 & 47 & 64 & 85 & 114 & 146 & 183 & 223 & 268 & 318 & 368 & 482 & 532\\
67 & 5 & 13 & 26 & 43 & 62 & 86 & 116 & 149 & 184 & 222 & 318 & 355 & 448 & 486 & 581\\
79 & 6 & 12 & 28 & 40 & 63 & 86 & 115 & 147 & 185 & 223 & 270 & 315 & 426 & 471 & 582\\
\ldots 0101110010001100110000011000000000000011001001001000110101100011000000000000000000000000000000110010 & 3 & 12 & 21 & 39 & 55 & 81 & 107 & 139 & 205 & 239 & 303 & 336 & 401 & 435 & \infty \\
\ldots 0011110011111011111110011111001111011101001000001111111100000101110011111010001100100000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 269 & 328 & 391 & 450 & \infty \\
\ldots 0000001110001000001110001100111001111000100111001011101011000000000000000000000000000000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 295 & 334 & 418 & 457 & \infty \\
\ldots 1011011000100011000110011100011111100100101100011101111111111111010001000101110011100000000000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 269 & 328 & 391 & 450 & \infty \\
\ldots 0101100000111010111100001011011000001000010110010011001100000011111110000011101001010000101000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 261 & 312 & 367 & 427 & \infty \\
\ldots 0111100101001101001100011100001101010000000000000000000000000000000000000000000000000000000001010110 & 3 & 11 & 22 & 40 & 62 & 82 & 106 & 138 & 173 & 213 & 256 & 304 & 357 & 410 & \infty \\
\ldots 1001111011011111101010111101001000011001000111010010111100011010001110001010011000100101011000111110 & 3 & 11 & 23 & 37 & 56 & 81 & 109 & 139 & 172 & 212 & 261 & 312 & 367 & 427 & \infty \\
\ldots 0010110010001101100111110010000000110110011110000000000000000000000000000000000000000000000001001010 & 3 & 15 & 21 & 37 & 56 & 82 & 106 & 138 & 174 & 217 & 256 & 302 & 402 & 449 & \infty \\
\ldots 0111010011010101000110001011000110001010111100000010011111101111010111011100000000000000000001001110 & 3 & 11 & 25 & 37 & 56 & 80 & 107 & 139 & 174 & 215 & 260 & 305 & 354 & 430 & \infty \\
\ldots 0011110110101011100101001001001000000011110011101001100000010000101000100100000000000000000001001110 & 3 & 11 & 25 & 37 & 56 & 80 & 107 & 139 & 174 & 215 & 260 & 305 & 354 & 430 & \infty \\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
66 & 3 & 12 & 21 & 38 & 55 & 82 & 109 & 142 & 175 & 214 & 253 & 344 & 383 & 514 & 514\\
262214 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & 315 & 381 & 449 & 522\\
1048650 & 3 & 15 & 21 & 37 & 56 & 82 & 106 & 138 & 174 & 217 & 256 & 302 & 367 & 441 & 514\\
54 & 3 & 11 & 22 & 39 & 60 & 81 & 106 & 138 & 173 & 245 & 281 & 351 & 386 & 459 & 493\\
8388678 & 3 & 11 & 22 & 38 & 58 & 80 & 107 & 140 & 176 & 214 & 255 & 320 & 391 & 458 & 533\\
536870994 & 3 & 12 & 21 & 40 & 55 & 81 & 107 & 139 & 174 & 215 & 256 & 306 & 354 & 435 & 517\\
58 & 3 & 13 & 21 & 37 & 57 & 84 & 107 & 137 & 172 & 251 & 286 & 401 & 401 & 480 & 515\\
4162 & 3 & 12 & 21 & 38 & 55 & 82 & 109 & 142 & 175 & 214 & 253 & 310 & 367 & 432 & 498\\
\ldots 1101100111000101100110100010100110110111000001000110101110101001111010101110010000000000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 189 & 243 & 294 & 343 & 394 & 448 & \infty \\
\ldots 0010001111100100100110100011011001100101101011100001001101000100101111001100000000000000000001001100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 139 & 174 & 214 & 257 & 303 & 375 & 451 & \infty \\
\ldots 0100100100111111010100100011001010010001011100001100110000010011011110001101101001100011000001000100 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 310 & 369 & 430 & \infty \\
\ldots 0110011101101101001111010111111010100001111110001110001101011100010001001010010011000000000001000100 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 316 & 381 & 450 & \infty \\
\ldots 0000011001011010000010100011001111010001101010011111111010010101111011000000000000000000000001001100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 139 & 174 & 214 & 257 & 303 & 378 & 455 & \infty \\
\ldots 0001111011100011011101000010110000011100001010100101100111001100001011001001111100000000000001001100 & 3 & 10 & 21 & 37 & 57 & 80 & 107 & 139 & 174 & 214 & 257 & 303 & 369 & 438 & \infty \\
\ldots 0001010110110010011101111000100000100010100000100001101111111110001110000110101000000000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 270 & 330 & 389 & 449 & \infty \\
\ldots 1011000111000000011111010110101011101100111100111100010010001001101001011011001001100000000000110100 & 3 & 10 & 21 & 39 & 58 & 78 & 106 & 138 & 186 & 238 & 289 & 339 & 390 & 443 & \infty \\
\ldots 1111101100011000011011010100101110100000010000111100000011010100001010001101011101001010000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 263 & 319 & 378 & 439 & \infty \\
\ldots 0011010001111000111101011010001111101000110110101100001111111001000101100000000000000000000001010100 & 3 & 10 & 21 & 41 & 62 & 78 & 106 & 138 & 174 & 213 & 256 & 306 & 357 & 409 & \infty \\
\ldots 0100100000000010101100100111001000110110111101001110110000010110100001011000100100111111101000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 259 & 311 & 367 & 427 & \infty \\
\ldots 0110010001000110000011011010100101011111011101011100110100000111010101000001111111101000000000111100 & 3 & 10 & 21 & 37 & 58 & 82 & 109 & 139 & 172 & 211 & 265 & 323 & 382 & 443 & \infty \\
68 & 3 & 10 & 21 & 38 & 57 & 78 & 107 & 140 & 175 & 212 & 253 & 320 & 387 & 454 & 522\\
\ldots 0101010010011110000010011101101001011110101111101000110110111111111000000000000000000000000001011000 & 3 & 10 & 22 & 37 & 58 & 81 & 106 & 138 & 173 & 213 & 257 & 304 & 355 & 410 & \infty \\
\ldots 0110000100001011000110011000001111010100011101100100100110010100010001010111000000000000000001001000 & 3 & 10 & 22 & 37 & 56 & 79 & 107 & 140 & 176 & 215 & 257 & 302 & 371 & 442 & \infty \\
\ldots 0011010110111000000011001011001011011011010110100000101101000001010110001011010000000000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 228 & 286 & 341 & 394 & 449 & \infty \\
\ldots 0011100111100110101110101111100011111110110110100100111000001011011110100000010000000000000001001000 & 3 & 10 & 22 & 37 & 56 & 79 & 107 & 140 & 176 & 215 & 257 & 302 & 369 & 440 & \infty \\
\ldots 0001010110001000001011000010110110111111011101100010011110011000110000010101011111010110000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 221 & 273 & 329 & 383 & 438 & \infty \\
\ldots 1110001010100010100100010110100000001101010110010111000001011010010000001111111010010000000000111000 & 3 & 10 & 22 & 37 & 57 & 80 & 106 & 138 & 173 & 224 & 280 & 335 & 389 & 444 & \infty \\
\ldots 1100000001111110001001111010100101101100010000100001100011111001010110100101010000110000000001001000 & 3 & 10 & 22 & 37 & 56 & 79 & 107 & 140 & 176 & 215 & 257 & 302 & 363 & 430 & \infty \\
\ldots 1101100111000100001000101110110010011000111010100110011110111000111101000000000000000000000001010000 & 3 & 10 & 27 & 41 & 55 & 79 & 107 & 138 & 173 & 212 & 258 & 305 & 353 & 432 & \infty \\
\ldots 1101011111110001111010111000010110111011011001000100011101101101111101111010000000000000000001010000 & 3 & 10 & 27 & 41 & 55 & 79 & 107 & 138 & 173 & 212 & 258 & 305 & 353 & 428 & \infty \\
\ldots 0111110011111100010110001101000101000110010111101011011010101100010101011111111111100000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 268 & 328 & 390 & 453 & \infty \\
\ldots 0010011000100111001000100100100000001000011001101011010110010111001011111111000101110110000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 264 & 320 & 378 & 441 & \infty \\
\ldots 1100001111000100100011001001110011000011110000011101000110101110011001100010010000000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 275 & 337 & 399 & 463 & \infty \\
\ldots 0000100010011001011101101101110110101101011110001001110000000100100100001000001000000000000001000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 272 & 335 & 400 & 462 & \infty \\
\ldots 1010001000100000111110111101101101101011101011111010110001100010100111101101100110111110110101000000 & 3 & 10 & 23 & 38 & 55 & 80 & 109 & 140 & 173 & 210 & 259 & 310 & 363 & 422 & \infty \\
\end{array}