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Abstract

The notion of a Leonard pair was introduced by Terwilliger in 2001 [48]

to simplify Leonard’s theorem, which classifies the orthogonal polynomials

in the terminating branch of the Askey-Wilson scheme. In the same year,

Kresch and Tamvakis [32] made a conjecture about a certain 4F3 hyper-

geometric series while studying the arithmetic analogues of the standard

conjectures for the Grassmanian G(2, n). The 4F3 series appearing in their

conjecture is closely related to a family of orthogonal polynomials in the

Askey-Wilson scheme. Consequently, the theory of Leonard pairs provides

a useful framework for understanding their conjecture.

In this dissertation, we present our proof of the Kresch-Tamvakis con-

jecture (a result we first published in [6]). To do so, we construct a specific

Leonard pair A,A∗ and a related sequence of matrices Bi. We identify the

hypergeometric series in question with the eigenvalues of these matrices.

We then use a result from mathematical physics known as the Biedenharn-

Elliot identity to prove that the entries of the Bi are nonnegative, and,

from this, we obtain the conjectured bound from the Perron-Frobenius

theorem.

The Leonard pair studied here has many special properties related to

spin models and strongly regular graphs. We formulate a number of results

exploring these connections, and we prove a generalization that holds for

a larger family of Leonard pairs.
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1 Introduction

The notion of a Leonard pair in its modern form was introduced by Terwilliger in

2001 [48] (although Leonard pairs over R appeared implicitly in his work dating back

to 1987 [47]). These algebraic objects were used to simplify the framework and results

of Leonard [33], and Bannai and Ito [1] on the classification of the terminating branch

of the Askey scheme of orthogonal polynomials. The theory of Leonard pairs is an

active area of research in algebraic combinatorics, with applications to the study

of association schemes, distance regular graphs, combinatorial designs, orthogonal

polynomials, special function theory, hypergeometric functions, representation theory,

knot theory, and quantum mechanics [1, 14, 43, 38, 37, 21, 52, 41].

In this dissertation, we use the theory of Leonard pairs to prove some results

about hypergeometric series. To describe our results, we need to introduce some

terminology. Formal definitions will be given in the next section (see Definition

2.1.1), but loosely, a Leonard pair is a pair of diagonalizable linear transformations

A,A∗ over a finite vector space, with the property that each transformation acts on

an eigenbasis of the other one in an irreducible tridiagonal fashion.

Let z denote an indeterminate and let p, q be positive integers. Let us briefly

recall the notion of the hypergeometric series pFq(z). For any real number a and

nonnegative integer n, define

(a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1). (1.1)

Given real numbers {ai}pi=1 and {bi}qi=1, the corresponding pFq hypergeometric series
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is defined by

pFq

[
a1, a2, . . . ap

b1, b2, . . . bq

; z

]
=

∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq)n

zn

n!
. (1.2)

One of our two main results (Theorem 4.57) resolves a 22-year old open conjec-

ture that was well-known in the special functions community [32, 26, 36, 46], [50,

Problem 11.5]. That conjecture, first put forth in 2001 by Kresch and Tamvakis [32]

in their study of intersection theory in algebraic geometry, can be stated as follows.

Conjecture 1.0.1. [32, Conjecture 2] For any positive integer D and any integers

i, j (0 ≤ i, j ≤ D), the absolute value of the following hypergeometric series is at

most 1:

4F3

[
−i, i+ 1, −j, j + 1

1, D + 2, −D
; 1

]
. (1.3)

Note 1.0.2. Conjecture 1.0.1 appears in [32, Conjecture 2] with

n = i, s = j, T = D + 1.

The proof of this result was found in 2023 (by Caughman and the present author),

and was recently published in [6]. A complete presentation of the proof also appears

in Chapter 4 of this dissertation.

The other main result of this dissertation regards a formula related to so-called

Boltzmann pairs for certain Leonard pairs. These Boltzmann pairs can be use-

ful in finding spin models [40, 41] which, in turn, can be used to construct link

2



invariants, including the well-known Jones polynomial and Kauffman polynomial

[29, 30, 27, 28, 13]. We will show that, under certain circumstances, these Boltz-

mann pairs satisfy formulas that give an expression for a specific sum of products of

hypergeometric series. Indeed, for the same Leonard pair we explored in our work

on the Kresch-Tamvakis conjecture, this formula implies a connection to a family

of feasible parameters of strongly regular graphs. The corresponding graphs have

been conjectured to always exist [22]. We hope this algebraic connection may lead to

further results in this direction.

The dissertation is organized as follows. In Chapter 2, we recall the definition of

a Leonard pair and discuss some of the basic related terminology and properties. We

introduce an example that we will use throughout the thesis. We further discuss some

basics of Leonard pairs, related orthogonal polynomials and discuss the intersection

matrices. In Chapter 3, we discuss association schemes and distance regular graphs

and how their so called intersection and Krein parameters relate to Leonard pairs. In

Chapter 4, we present the proof of the Kresch-Tamvakis conjecture. In Chapter 5, we

recall the definition of a modular Leonard triple and a spin-Leonard pair, and discuss

how they correspond. We prove a formula that certain Racah type spin-Leonard

pairs satisfy. This result implies an algebraic connection between a family of strongly

regular graphs and the Leonard pair in our running example. Using the work of

Curtin [10, 11] we show a similar formula for the Racah case holds for some other

families of spin-Leonard pairs. We state some hypergeometric formulas implied by

these formulas. Finally, in Chapter 6, we state some further directions of research.

Throughout this dissertation, the square root of a nonnegative real number is

understood to be nonnegative.
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2 Leonard Pairs

In this chapter, we define Leonard pairs and review some of their basic properties,

which will be used throughout the dissertation.

2.1 Definition

Let K be an algebraically closed field with characteristic 0. A matrix B ∈ Matd+1(K)

is called tridiagonal whenever each nonzero entry lies on the diagonal, the subdiago-

nal, or the superdiagonal. Assume that B is tridiagonal. Then B is called irreducible

whenever each entry on the subdiagonal is nonzero, and each entry on the superdiag-

onal is nonzero. (See Lemma A.1.3 in Appendix A.1 for more details.)

We now recall the definition of a Leonard pair.

Definition 2.1.1. Let V be a finite dimensional vector space over K. Two transfor-

mations A : V → V and A∗ : V → V are called a Leonard pair on V if both of the

following (i),(ii) hold:

(i) there is a basis for V such that the matrix representing A is irreducible tridiag-

onal and the matrix representing A∗ is diagonal, and

(ii) there is a basis for V such that the matrix representing A∗ is irreducible tridi-

agonal and the matrix representing A is diagonal.

The above Leonard pair A,A∗ is said to be over K.

Note 2.1.2. According to a common notational convention, the symbol A∗ denotes

the conjugate-transpose of A. We are not using this convention. In a Leonard pair

A,A∗ the linear transformations A and A∗ are arbitrary subject to (i), (ii) above.
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Let d denote a non-negative integer. Let V be a vector space of dimension d+ 1

over K and let Matd+1(K) denote the algebra of all (d+ 1)× (d+ 1) matrices over K.

Let End(V ) denote the K-algebra of all linear operators on V . For this dissertation,

we will work exclusively in finite dimension, where these two spaces are known to be

isomorphic [15].

Let A, A∗ be a Leonard pair on V . We will use B to refer to a fixed basis of

V , with respect to which the matrix representing A is irreducible tridiagonal and the

matrix representing A∗ is diagonal. We will sometimes refer to this as the standard

basis of the Leonard pair A,A∗. Expressing A,A∗ in this basis, we use the parameter

conventions:

A =



a0 b0 0

c1 a1 b1
. . .

. . .
. . .

cd−1 ad−1 bd−1

0 cd ad


, A∗ =



θ∗0 0

θ∗1
. . .

θ∗d−1

0 θ∗d


. (2.4)

Because of the isomorphism between Matd+1(K) and End(V ), we often equate A

and A∗ with their matrices represented in the basis B (unless specified otherwise).

We will use B∗ to refer to a fixed basis of V , with respect to which the matrix

representing A∗ is irreducible tridiagonal and the matrix representing A is diagonal.
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Expressing A,A∗ in this basis we use the parameter conventions:

A =



θ0 0

θ1
. . .

θd−1

0 θd


, A∗ =



a∗0 b∗0 0

c∗1 a∗1 b∗1
. . .

. . .
. . .

c∗d−1 a∗d−1 b∗d−1

0 c∗d a∗d


. (2.5)

By assumption bi, ci+1 ̸= 0, for 0 ≤ i < d. Typically c0, c
∗
0, bd, and b∗d are not

defined, but we will use the convention that c0 = c∗0 = bd = b∗d = 0. We will also refer

to d as the diameter of A,A∗.

We will need to discuss the bases B and B∗ of V often enough that it will be conve-

nient to define the maps from End(V ) → Matd+1(K) that take linear transformations

of V to their corresponding matrix in a desired basis.

Definition 2.1.3. [50, Def. 3.2] Let (A,A∗) be a Leonard pair over V and let B

be the basis of V where A is irreducible tridiagonal and A∗ diagonal. The map

♭ : End(V ) → Matd+1(K) takes each linear transformation X of V to its associated

matrix, as represented in basis B. We note that ♭ is a K-algebra isomorphism.

Note that, to get the map that represents a transformation as a matrix in basis

B∗, we can apply Definition 2.1.3 to the Leonard pair (A∗, A).

For convenience, we define a few more parameters. Define ki =
∏i

j=1
bj−1

cj
, and let

K be the diagonal matrix

K = diag(k0, k1, . . . , kd). (2.6)
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The parameter ν is defined by

ν =
d∑

i=0

ki. (2.7)

The values k∗
i are defined similarly in terms of the b∗i and c∗i . By [50, Def. 2.6, Lem. 3.8]

we have ν∗ = ν.

2.2 An example of a Leonard pair

A graph G is a pair of sets (V , E), where V is a nonempty set, and E is a (possibly

empty) set of two element subsets of V . An element of V is called a vertex and

an element of E is called an edge. This is sometimes referred to as a simple graph,

which means that E is not a multi-set (there are no multi-edges), its members are not

ordered pairs (edges are undirected), and no edge is allowed from a vertex to itself (no

loops). We will assume all graphs are simple unless specified otherwise. A graph can

be depicted visually as a set of points representing the vertices connected by curves

or lines representing the edges. An example is shown in Figure 2.1.

As we will see in Chapter 3, Leonard pairs can sometimes be associated with

certain graphs. Here is an example that happens to be associated with the 4-cube

(or tesseract) graph, depicted in Figure 2.1. With d = 4, K = R, V = R5, let

A =



0 4 0 0 0

1 0 3 0 0

0 2 0 2 0

0 0 3 0 1

0 0 0 4 0


, A∗ =



4 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 −2 0

0 0 0 0 4


. (2.8)
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We can see in Figure 2.1, that if we take the partition of the vertex set

{X0(u), X1(u), X2(u), X3(u), X4(u)} as shown by the dashed ellipses, then the (i, i−

1), (i, i), and (i, i+1) entries of A, correspond to the number of neighbors any vertex

in the set Xi(u) has in Xi−1(u), Xi(u), and Xi+1(u), respectively.

u

X0(u)

X1(u)
X2(u) X3(u)

X4(u)

Figure 2.1: Tesseract. The dashed ellipses show the partite sets Xi(u). These contain
the vertices at distance i from the vertex u shown on the far left.

If we consider the following matrix,

P =



1 4 6 4 1

1 2 0 −2 −1

1 0 −2 0 1

1 −2 0 2 −1

1 −4 6 −4 1


, (2.9)

then, by matrix multiplication, we find that P 2 = (24)I, AP = PA∗, and PA = A∗P .

These facts easily imply that A,A∗ is a Leonard pair.

The combinatorial connection this Leonard pair enjoys with the graph above

offers many advantages to aid in its study. For one, many parameters of interest
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must be nonnegative integers, because they count some combinatorial property of the

structure. However, not all Leonard pairs arise from graphs in this way. Indeed, the

next example, which will be very important in our subsequent work, does not have

such an immediate connection to graphs. Nevertheless we will eventually show that

some parameters of interest can still be shown to be nonnegative. As we will see,

this nonnegativity can have important implications, including the Kresch-Tamvakis

Conjecture [6].

2.3 Another example of a Leonard pair

In order to present our next example of a Leonard pair we need a few definitions.

Definition 2.3.1. Fix any integer d ≥ 0. For each integer i (0 ≤ i ≤ d), define

ci =
3(d− i+ 1)i(d+ i+ 1)

d(d+ 2)(2i+ 1)
, ai =

3i(i+ 1)

d(d+ 2)
, bi =

3(d− i)(i+ 1)(d+ i+ 2)

d(d+ 2)(2i+ 1)
,

(2.10)

and let θ∗i = 3− 2ai. Define A and A∗ as the following matrices in Matd+1(R):

A =



a0 b0 0

c1 a1 b1
. . .

. . .
. . .

cd−1 ad−1 bd−1

0 cd ad


, A∗ =



θ∗0 0

θ∗1
. . .

θ∗d−1

0 θ∗d


. (2.11)
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Definition 2.3.2. We define a matrix P ∈ Matd+1(R) with the following entries:

Pi,j = (2j + 1) 4F3

[
−i, i+ 1, −j, j + 1

1, d+ 2, −d
; 1

]
(0 ≤ i, j ≤ d). (2.12)

As in our previous example, the matrix P is useful to verify that the given matrices

A, A∗ form a Leonard pair.

Lemma 2.3.3. ([49, Ex. 5.10] and [50, Thm. 4.9]) The following hold:

(i) P 2 = (d+ 1)2I;

(ii) PA = A∗P ;

(iii) PA∗ = AP ;

(iv) the pair A,A∗ is a Leonard pair over R.

Proof. The calculations establishing (i)–(iii) are the following special case of [49,

Ex. 5.10] and [50, Thm. 4.9]:

d = d, θ0 = θ∗0 = 3, s = s∗ = r1 = 0, r2 = d+ 1, h = h∗ =
−6

d(d+ 2)
.

Item (iv) follows from items (i)–(iii). □

The Leonard pairs from [49, Ex. 5.10] are said to have Racah type. So the Leonard

pair A,A∗ in Lemma 2.3.3 has Racah type. This Leonard pair is self-dual in the sense

of [40, p. 5]. In particular, we see from Lemma 2.3.3 that for all i, ci = c∗i , ai = a∗i ,

bi = b∗i , and θi = θ∗i . Hence when discussing the Leonard pair in Def. 2.3.1 (and

self-dual Leonard pairs in general) we will omit the ∗ notation on these parameters.
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We note that, for the Leonard pair in Def. 2.3.1, it is straightforward to show

that

ki = 2i+ 1 (0 ≤ i ≤ d), (2.13)

which means that

ν =
d∑

i=0

(2i+ 1) = (d+ 1)2. (2.14)

2.4 Leonard systems

A useful structure related to a Leonard pair is an object known as a Leonard system.

We will define them briefly, but we refer the interested reader to the work of Terwilliger

([48, 49, 50]) for more detailed information.

Before we give the definition of a Leonard system we note a few observations.

Definition 2.4.1. A matrix A ∈ Matd+1(K) is called multiplicity-free if it has d+ 1

distinct eigenvalues.

Lemma 2.4.2. Let A,A∗ be a Leonard pair on vector space V of dimension d + 1

over K. The eigenvalues of A are mutually distinct elements of K, and the eigenvalues

of A∗ are mutually distinct elements of K.

Proof. We prove the result for A, and the proof for A∗ is essentially the same.

By the definition of a Leonard pair (Def. 2.1.1), there is basis of V composed of

eigenvectors of A. First, this means the eigenvalues of A are in K. And, in this basis,

the matrix representing A is diagonal. Hence, for any repeated eigenvalue, λ, on the

diagonal, only one factor of x− λI is needed in the minimal polynomial µ(x) to zero
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all of them. Hence the minimal polynomial has no repeated roots.

We now show that the degree of µ( is the dimension of V . Again by Definition

2.1.1, there is a basis of V where A is irreducible tridiagonal. Let B be the matrix

representing A in this basis. Since B is irreducible tridiagonal, we will show that

Bi has a nonzero ith upper diagonal and all jth upper diagonals for j > i are zero.

Hence the set {I = B0, B,B1, . . . , Bd} is linearly independent, which will mean the

degree of µ(x) is d+ 1, which will complete our proof.

To prove our claim about the form of Bi, recall that

B =



a0 b0 0

c1 a1 b1
. . .

. . .
. . .

cd−1 ad−1 bd−1

0 cd ad


.

We proceed by induction. Clearly the condition on the diagonals holds for i = 0

and i = 1. Now fix any i ≥ 1 and suppose Bi satisfies the condition on the diagonals.

Let the ith upper diagonal be (x0, x1, . . . , xd−i). By assumption xk ̸= 0 for (0 ≤

k ≤ d − i). Let (y0, y1, . . . , yd−i−1) be the (i + 1)th upper diagonal of Bi+1. Since

Bi+1 = BiB, we have that yk = bi+kxk ̸= 0. And similarly, the jth upper diagonals

of Bi+1, for j > i + 1, are zero, since they are given all in terms of entries in the lth

upper diagonals of Bi for l > i. □

Given any matrix A ∈ A = Matd+1(K) with distinct eigenvalues {θi}di=0, let I be

12



the identity element of A, and let

Ei =
∏
j ̸=i

A− θjI

θi − θj
. (2.15)

Then, as shown in [49], the following properties hold:

(i) AEi = θiEi (0 ≤ i ≤ d).

This can be seen by the fact that AEi − θiEi is a multiple of the minimum

polynomial µ(A) = 0.

(ii) EiEj = δi,jEi (0 ≤ i, j ≤ d).

If i ̸= j, then EiEj is again a multiple of the minimum polynomial. If i = j,

express each vector v ∈ V in the basis of eigenvectors of A as v =
∑d

i=0 sivi.

We can see from (2.15) that for k ̸= i, Eivk has a scalar factor of θk − θk = 0,

and so we get Eiv =
(∏

j ̸=i
θi−θj
θi−θj

)
sivi = sivi, hence EiEiv = sivi = Eiv.

(iii)
∑d

i=0Ei = I.

Given v ∈ V we have
∑d

i=0 Eiv =
∑d

i=0Ei

(∑d
j=0 sjvj

)
=
∑d

i=0 Eisivi =∑d
i=0 sivi = v = Iv.

(iv) A =
∑d

i=0 θiEi.

As above, we have Av = A
∑d

i=0 sivi =
∑d

i=0 θisivi =
∑d

i=0Eisivi =
∑d

i=0 Eiv =(∑d
i=0Ei

)
v.

The matrix Ei is called the primitive idempotent of A associated with θi. From

now on, we will use A to refer to a K-algebra that is isomorphic to Matd+1(K). Now

suppose A,A∗ ∈ A form a Leonard pair. Then A is usually referred to as the ambient

algebra of the pair (A,A∗). Let ⟨A⟩ and ⟨A∗⟩ be the subalgebras of A generated by

A and A∗ respectively. Then (i)-(iv) implies that the Ei form a basis of ⟨A⟩ as a
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K-vector space [49].

We now give the definition of a Leonard system.

Definition 2.4.3. [[48], Definition 1.4] By a Leonard system in A we mean a sequence

Φ := (A;A∗;Ei
d
i=0;E

∗
i
d
i=0) that satisfies (i)–(v) below.

(i) Each of A,A∗ is a multiplicity-free element in A.

(ii) E0, E1, . . . , Ed is an ordering of the primitive idempotents of A.

(iii) E∗
0 , E

∗
1 , . . . , E

∗
d is an ordering of the primitive idempotents of A∗.

(iv) EiA
∗Ej =

 0, if |i− j| > 1,

̸= 0 if |i− j| = 1,
for (0 ≤ i, j ≤ d).

(v) E∗
i AE

∗
j =

 0, if |i− j| > 1,

̸= 0 if |i− j| = 1,
for (0 ≤ i, j ≤ d).

We refer to d as the diameter of Φ and say Φ is over K. We call A the ambient

algebra of Φ.

The next lemma tells us the connection between Leonard pairs and Leonard

systems.

Lemma 2.4.4. [50, Lem. 1.2] Let A,A∗ ∈ A. Then the pair A,A∗ is a Leonard pair

in A if and only if the following hold.

(i) Both A and A∗ are multiplicity-free.

(ii) There exists an ordering of the primitive idempotents of A, E0, E1, . . . , Ed, and

the primitive idempotents of A∗, E∗
0 , E

∗
1 , . . . , E

∗
d , such that
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(A;A∗; {Ei}di=0; {E∗
i }di=0) is a Leonard system in A.

Proof. The necessity of (i) was proven in Lemma 2.4.2. For (ii), let v0, v1, . . . , vd be a

basis satisfying Definition 2.1.1(ii). Hence for each i, the vector vi is an eigenvector of

A for eigenvalue θi. Let Ei be the corresponding primitive idempotent of A. Similarly,

let v∗0, v
∗
1, . . . , v

∗
d be a basis satisfying Definition 2.1.1(i), and let E∗

0 , E
∗
1 , . . . , E

∗
d be the

corresponding primitive idempotents of A∗. Conditions (i)-(iii) of Definition 2.4.3 are

satisfied.

The v∗i are eigenvectors of A∗. Working in this basis {v∗0, v∗1, . . . , v∗d} gives us that

A is irreducible tridiagonal. We know from (2.15) that E∗
j v

∗
i = δi,jv

∗
i , and hence

(E∗
i )j,k =

1, if j = k = i,

0, otherwise.

Hence the tridiagonal shape of A gives us (v). Working in the basis of {v0, v1, . . . , vd},

the same argument gives us (iv).

For the other direction, let (A;A∗;Ei
d
i=0;E

∗
i
d
i=0) denote a Leonard system in A.

For 0 ≤ i ≤ d let vi denote a nonzero vector in EiV . Then the {v0, v1, . . . , vd} is a

basis for V that satisfies Definition 2.1.1(ii). Similarly, for 0 ≤ i ≤ d, let v∗i denote

a nonzero vector in E∗
i V . Then the sequence {v∗0, v∗1, . . . , v∗d} is a basis for V that

satisfies Definition 2.1.1(i). Hence A,A∗ is a Leonard pair in A. □

The following lemma is implied by the proof above.

Lemma 2.4.5. Let A,A∗ be a Leonard pair on vector space V . Take a basis of V

such that A is irreducible tridiagonal and A∗ is diagonal. Let {θi}di=0 and {θ∗i }di=0 be

the eigenvalues of A and A∗ respectively. Then the idempotents of A∗
i are given by
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the matrices E∗
i , where the entries satisfy

(E∗
i )j,k =

1, if j = k = i,

0, otherwise.

Definition 2.4.6. Let A,A∗ and B,B∗ denote Leonard pairs on V and V ′ respec-

tively. We say the pair A,A∗ is isomorphic (as a Leonard pair) to the pair B,B∗ if

there exists a K-algebra isomorphism σ : End(V ) → End(V ′) such that σ(A) = B,

σ(A∗) = B∗.

Proofs of the following can be found in [50].

Theorem 2.4.7. [50, Thm. 2.1] Let Φ be a Leonard system as in Definition 2.4.3.

Then the elements

ArE∗
0A

s (0 ≤ r, s ≤ d) (2.16)

form a basis for the K-vector space A

Corollary 2.4.8. [50, cor. 2.1] Let A,A∗ denote a Leonard pair on V . Then the set

{A,A∗} generates End(V ).

This last corollary states that the ambient algebra of a Leonard pair on V is all

of End(V ).

2.5 Automorphisms and anti-automorphisms

Let V be a vector space over K. We say σ : End(V ) → End(V ) is an automorphism

on the transformations of V if it is K-linear and, for any two linear transformations

X, Y on V , we have σ(XY ) = σ(X)σ(Y ).
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Lemma 2.5.1. [42, Noether-Skolem, Cor. 9.122], A map σ : End(V ) → End(V ) is

a K-algebra automorphism if and only if there exists an invertible S ∈ End(V ) such

that σ(X) = SXS−1 for all X ∈ End(V ). We say that S represents σ.

Also note that for any a ∈ K, aS represents the same automorphism σ as S.

Furthermore, given any P that represents the same σ as S, we must have that for all

X ∈ End(V ), S−1PX = XS−1P , which implies that S−1P is in the center of End(V ).

But this center is {αI : α ∈ K}, so, by uniqueness of inverses in End(V ), P = aS for

some a ∈ K. This proves the following lemma.

Lemma 2.5.2. Let σ be an automorphism on End(V ). Assume that S ∈ End(V )

represents σ. Then S ′ ∈ End(V ) represents σ if and only if there is a nonzero a ∈ K,

such that S ′ = aS.

We say τ : End(V ) → End(V ) is an antiautomorphism on the transformations

of V if it is K-linear, and, for any two linear transformations X, Y on V , we have

τ(XY ) = τ(Y )τ(X).

Theorem 2.5.3. [50, Thm. 2.2] Let A,A∗ denote a Leonard pair in A. Then there

exists a unique antiautomorphism † of A such that A† = A and A∗† = A∗. Moreover,

X†† = X for all X ∈ A.

In the proof of [50, Thm. 2.2] it is shown that the matrix K = diag(k0, k1, . . . , kd)

defined in (2.6), represents the antiautomorphism † given in Theorem 2.5.3. In other

words, X† = K−1X⊤K.

The following lemma also follows from the Noether-Skolem theorem.

Lemma 2.5.4. [Noether-Skolem, [42], Cor. 9.122] A map τ : End(V ) → End(V ) is
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a K-algebra antiautomorphism if and only if there exists an invertible R ∈ End(V )

such that τ(X) = RX⊤R−1 for all X ∈ End(V ). We say that R represents τ .

2.6 Orthogonal polynomials

Using a Leonard pair (A,A∗) of diameter d, with A in tridiagonal form and A∗

diagonal, we can define a sequence of polynomials from a three-term recurrence.

Definition 2.6.1. With reference to Definition 2.1.1 and (2.4,2.5), let

u−1(λ), u0(λ), u1(λ), . . . , ud(λ)

be the unique sequence of polynomials in K[λ] satisfying:

u−1(λ) = 0, u0(λ) = 1,

λui(λ) = biui+1(λ) + aiui(λ) + ciui−1(λ) (0 ≤ i ≤ d− 1). (2.17)

This recurrence can be associated with the sequence of coefficients found in the

rows of A. In a similar way, we can also define a sequence of polynomials from a three-

term recurrence using the columns of A as coefficients. This amounts to a change in

normalization of the ui, following [50, Lem. 3.13].

Definition 2.6.2. With reference to Definition 2.1.1, and (2.4,2.5). let

v−1(λ), v0(λ), v1(λ), . . . , vd(λ)
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be the unique sequence of polynomials in K[λ] satisfying:

v−1(λ) = 0, v0(λ) = 1,

λvi(λ) = ci+1vi+1(λ) + aivi(λ) + bi−1vi−1(λ) (0 ≤ i ≤ d− 1). (2.18)

For each i (0 ≤ i ≤ d), the polynomials ui(λ) and vi(λ) have degree i. By [50,

Lem. 3.13], we can relate the two sequences of polynomials to each other as follows:

vi(λ) = kiui(λ) (0 ≤ i ≤ d). (2.19)

These polynomials also satisfy the following orthogonality relations, as shown in

[50, Thms. 4.6, 4.7]:

d∑
j=0

k∗
jun(θj)um(θj) =

ν

kn
δnm, (2.20)

d∑
j=0

kjuj(θn)uj(θm) =
ν

k∗
n

δnm, (2.21)

d∑
j=0

k∗
j vn(θj)vm(θj) = knνδnm, (2.22)

d∑
j=0

vj(θn)vj(θm)

kj
=

ν

k∗
n

δnm. (2.23)

Definition 2.6.3. With reference to Definition 2.1.1, 2.6.1, and 2.6.2 suppose we
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are given a Leonard pair A,A∗ of diameter d, and the corresponding polynomials uj

and vj. Let P be the matrix with entries Pi,j, where

Pi,j = vj(θi) = kjuj(θi) (2.24)

The matrix P is called the character table of the Leonard pair (A,A∗).

Note that P ∗, u∗
i , v

∗
i can be found using the definitions above by starting with

the Leonard pair (A∗, A). By [50, Thm. 4.1, 4.2]) we also have, for 0 ≤ i, j ≤ d,

ui(θj) = u∗
j(θ

∗
i ),

vi(θj)

ki
=

v∗j (θ
∗
i )

k∗
j

. (2.25)

From these equations and the orthogonality relations, we see that

P ∗P = νI =

(
d∑

i=0

ki

)
I. (2.26)

Hence P−1 = 1
ν
P ∗. This and (2.17), (2.18), and (2.19), imply that the columns

of P ∗ = νP−1 form a basis of right eigenvectors of A and the rows of P form left

eigenvectors of A, hence P diagonalizes A and the columns of P∗ form the basis where

A∗ is irreducible tridiagonal. Hence we have the following theorem.

Theorem 2.6.4. [48, Thm. 4.10] Let (A,A∗) be a Leonard pair, let P and P ∗ be

as in Def. 2.6.3, and let ♯ be the map from Def. 2.1.3 applied to the Leonard pair

(A∗, A). Then
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PA = A♯P,

P ∗(A∗)♯ = A∗P ∗.

(2.27)

Recall from Definition 2.1.3 that this means A♯ = diag(θ0, . . . , θd), and similarly

(A∗)♯ is irreducible tridiagonal. Note that this theorem tells us that the ith row of P is

the eigenvector of A with eigenvalue θi. Similarly the ith row of P∗ is an eigenvector

of (A∗)♯ with eigenvalue θ∗i .

2.7 P for the Leonard pair in Def. 2.3.1 and self-duality

Recall the Leonard pair in Definition 2.3.1. By [49, Ex. 5.10], we have that

ui(θj) = 4F3

[
−i, i+ 1, −j, j + 1

1, d+ 2, −d
; 1

]
(0 ≤ i, j ≤ d). (2.28)

By this and 2.13, the matrix P in 2.3.2 is indeed the character table from Definition

2.6.3 for this Leonard pair. And from

Lemma 2.3.3 implies that A = 1
ν
PA∗P = P−1A∗P and A∗ = 1

ν
PAP = P−1AP .

Hence the map σ(X) = P−1XP is an automorphism of End(V ) that swaps A and

A∗. By Lemma 2.4.8, σ is the unique automorphism that performs this swap.

Recalling Definition 2.4.6, the Leonard pair (A,A∗) is isomorphic to (A∗, A).

Definition 2.7.1. [40, p.5] A Leonard pair (A,A∗) is self-dual if it is isomorphic to

(A∗, A).
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Hence the Leonard pair in Definition 2.3.1 is self-dual with duality map σ.

2.8 Two commutative subalgebras of Matd+1(K)

In this section, we discuss the algebras generated by the matrices A,A∗ of a Leonard

pair. Let ♯ be the map defined in 2.1.3 for the Leonard pair (A∗, A).

Definition 2.8.1. Let M denote the subalgebra of Matd+1(K) generated by A. Let

M∗ denote the subalgebra of Matd+1(K) generated by A∗.

We describe a basis for M and a basis for M∗.

Definition 2.8.2. For 0 ≤ i ≤ d define

Bi = vi(A), B∗
i = v∗i (A

∗),

where vi(λ) and v∗i (λ) is from (2.6.2).

These matrices are called the intersection matrices of (A,A∗).

Lemma 2.8.3. For 0 ≤ i ≤ d we have

PBi = B♯
iP, P ∗(B∗

i )
♯ = B∗

i P
∗.

Proof. These follow immediately by Lemma 2.6.4, Definition 2.8.2, and linear

algebra. □

Lemma 2.8.3 tells us that, for integers 0 ≤ i, j ≤ d, column j of P ∗ = νP−1 is an

eigenvector of Bi with eigenvalue vi(θj). A similar statement can be said about (B∗
i )

♯

and the columns of P = ν−1(P ∗)−1 and v∗i (θ
∗
j ). We emphasize one special case. Let
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1 denote the vector in KD+1 that has all entries 1.

Lemma 2.8.4. For each integer 0 ≤ i ≤ d, the vector 1 is an eigenvector for Bi

with eigenvalue ki.

Proof. Immediate from Definitions 2.6.2, 2.6.3 applied to Leonard pair (A∗, A) and

Lemma 2.8.3. □

Lemma 2.8.5. The matrices {Bi}di=0 form a basis for M. The matrices {B∗
i }di=0

form a basis for M∗.

Proof. By Lemma 2.4.2, the matrices A and A∗ have d+1 distinct eigenvalues. Hence

M∗ has dimension d + 1. By Definition 2.8.2, the matrices {B∗
i }di=0 belong to M∗.

By these comments, the matrices {B∗
i }di=0 form a basis for M∗. We have now verified

the second assertion. For the first, note that the matrix B♯
i = diag(vi(θ0), . . . , vi(θd)).

By the same argument for M∗, the B♯
i generate the algebra generated by A♯. Since ♯

is a K- algebra isomorphism between End(V ) and Matd+1(K) with basis B∗ the result

follows. □

We will refer to the algebra M as the intersection algebra of (A,A∗). Next we

discuss the entries of the matrices {Bi}di=0. The following definition will be convenient.

Definition 2.8.6. For 0 ≤ h, i, j ≤ d let phi,j denote the (h, j)-entry of Bi. In other

words,

phi,j = (Bi)h,j. (2.29)

The phi,j are called the intersection parameters of Leonard pair (A,A∗).
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Definition 2.8.7. For 0 ≤ h, i, j ≤ d, let qhi,j denote the (h, j)-entry of (B∗
i )

♯. In

other words,

qhi,j = ((B∗
i )

♯)h,j. (2.30)

The qhi,j are called the Krein parameters of Leonard pair (A,A∗).

We have a comment about the scalars phi,j and qhi,j.

Lemma 2.8.8. [40, Lem. 4.19] For 0 ≤ i, j ≤ d we have

BiBj =
D∑

h=0

phi,jBh, B∗
iB

∗
j =

D∑
h=0

qhi,jB
∗
h. (2.31)

The scalars phi,j can be computed using the following result. This result is from [39];

we include a proof for the sake of completeness.

Proposition 2.8.9. [39, Lem. 12.12] For 0 ≤ h, i, j ≤ d we have

phi,j =
kikj
ν

D∑
t=0

k∗
t u

∗
t (θ

∗
h)ui(θt)uj(θt). (2.32)

Proof. We invoke Equation (2.29). By (2.26) and Lemma 2.8.3 we have that Bi =

ν−1P ∗B♯
iP . Recall that the matrix P has entries Pi,j = kjuj(θi) and P ∗ has entries

P ∗
i,j = k∗

ju
∗
j(θ

∗
i ). We also have B♯

i = vi(A
♯) = kiui(A

♯) and A♯ = diag(θ0, θ1, . . . , θd).

Evaluating (2.29) using these comments, we obtain the result. □

The corresponding result for the qhi,j is similar, and can be seen by considering the

Leonard pair (A∗, A).

We end this section with a comment about Proposition 2.8.9.
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Lemma 2.8.10. For 0 ≤ h, i, j ≤ d we have

phi,j = phj,i, khp
h
i,j = kjp

j
h,i = kip

i
j,h. (2.33)

Proof. Immediate from (2.32). □
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3 Association Schemes and Leonard Pairs

3.1 Association schemes

A closely related structure to Leonard pairs and an important structure of algebraic

combinatorics and coding theory is the concept of an association scheme.

Definition 3.1.1. Let d denote a positive integer. A d-class association scheme X

is a pair (X, {Ri}di=0), where X is a finite set and Ri is a relation on X for each i,

with the following properties.

(i) R0 = {(x, x) | x ∈ X}.

(ii)
d⋃

i=0

Ri = X ×X and Ri ∩Rj = ∅ for i ̸= j.

(iii) For all i ∈ {0, 1, . . . , d}, tRi = {(y, x) | (x, y) ∈ Ri} = Rj for some j ∈

{0, 1, . . . , d}.

(iv) For any i, j, k ∈ {0, 1, . . . , d} and (x, y) ∈ Rk, the number of z ∈ X such that

(x, z) ∈ Ri and (z, y) ∈ Rj is a constant pki,j independent of which (x, y) ∈ Rk

was chosen.

If tRi = Ri for all i ∈ {0, 1, . . . , d}, then X is said to be symmetric. If pki,j = pkj,i for

all i, j, k ∈ {0, 1, . . . , d}, then X is said to be commutative.

We may sometimes call an association scheme simply a scheme for brevity. Some

sources use the term association scheme to mean a symmetric association scheme,

and unless stated otherwise, our schemes will be assumed to be symmetric schemes.

We also note that symmetric schemes are commutative.

Proposition 3.1.2. A symmetric scheme is commutative
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Proof. In a symmetric scheme, for any h, (x, y) ∈ Rh if and only if (y, x) ∈ Rh.

In particular, for any fixed i, j, h and (x, y) ∈ Rh, we have that z is such that

(x, z) ∈ Ri and (z, y) ∈ Rj if and only if (z, x) ∈ Ri and (y, z) ∈ Rj. Since (y, x) ∈ Rh

we have phi,j = phj,i. □

If we associate an adjacency matrix Ai with each of the relations Ri, so that

(Ai)uv =


1 if (u, v) ∈ Ri,

0 otherwise,

(3.34)

then we can equivalently define an association scheme by the following.

Definition 3.1.3. Let d denote a positive integer. A d-class association scheme X

is a pair (X, {Ai}di=0), with X a finite set, |X| = n, and for each i, Ai is an n × n

adjacency matrix on X with the following properties.

A0 = I (3.35)

d∑
i=0

Ai = Jn (3.36)

A⊤
i = Aj for some j ∈ {0, 1, . . . , d} (3.37)

AiAj =
d∑

h=0

phi,jAh for all i, j. (3.38)

In the commutative case we have, for all i,j, the extra condition,

AiAj = AjAi,
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hence phi,j = phj,i. In the symmetric case we have, for all i, the extra condition,

A⊤
i = Ai.

Definition 3.1.4. With reference to Definition 3.1.3. The subalgebra A of Matn(K),

which is generated by ⟨A0, A1, . . . , Ad⟩ for a commutative association scheme X =

(X, {Ai}di=0), is called the Bose-Mesner algebra of X . The algebra A is d+1 dimen-

sional. The phi,j are called the structure constants of A.

We now define an important family of association schemes.

Definition 3.1.5. Let X = (X, {Ri}di=0) be a symmetric association scheme. Then

X is called a P-polynomial association scheme, if for some ordering of the R0, . . . , Rd

and for each i(0 ≤ i ≤ d) there is a polynomial vi(x) of degree i, in indeterminate x,

such that the adjacency matrix Ai = vi(A1).

In particular, this means that the Bose-Mesner algebra, and hence the Ai, are

generated by A1.

3.2 Distance-regular graphs, P -polynomial association schemes

An association scheme is P -polynomial exactly when the graph with adjacency matrix

A1 has a property known as distance-regularity (see [1, Prop. 1.1]), which we now

define.

Definition 3.2.1. A graphX of diameter d is called distance regular if it is connected

and given any integers 0 ≤ h, i, j ≤ d, there are constant values phi,j, such that for

any vertices of u, v of distance d(u, v) = h, there are exactly phi,j vertices w with
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d(u,w) = i and d(w, v) = j.

In this case, we can define an association scheme X = (X, {Ai}di=0), where Ai is

the distance-i matrix, and this scheme will have the P -polynomial property.

Given any vertex u and integer i, we will denote by Xi(u) the set of vertices at

distance i from u. Hence for any vertex u, we can see that the collection {Xi(u) : 0 ≤

i ≤ d} partitions the vertices of X. We call this the distance partition from vertex

u. This notation allows us to formulate the following alternative to Definition (3.2.1)

[1, p. 192].

Definition 3.2.2. A connected graph X of diameter d is distance regular if there

are parameters 
− c1 · · · cd−1 cd

a0 a1 · · · ad−1 ad

b0 b1 · · · bd−1 −

 , (3.39)

with ci+1, bi ̸= 0 for (0 ≤ i ≤ d− 1), such that, given any vertex u, the corresponding

distance partition {Xi(u) : 0 ≤ i ≤ d} satisfies the following property. For any i

(0 ≤ i ≤ d), any vertex x in Xi(u) has exactly ci neighbors in Xi−1(u), ai neighbors

in Xi(u), and bi neighbors in Xi+1(u). The parameters (3.39) are called the distance

parameters.

Figure 3.2 depicts the distance partition with the Xi(u) circled by solid lines. The

dashed bubbles comprise the neighborhood of a vertex v in Xi(u). The cardinalities

of each dashed bubble in Xi−1(u), Xi(u), and Xi+1(u) are shown as ci, ai, and bi

respectively.
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X1(u) Xi−1(u) Xi(u) Xi+1(u) Xd(u)

Figure 3.2: The distance partition of a distance-regular graph.

We saw an example of a distance regular graph in Fig. 2.1, along with its associ-

ated distance partition from a vertex u.

Because we have limited our discussion to simple graphs (hence no loops), it

follows that

a0 = 0, and c1 = 1. (3.40)

The regularity around every vertex implies that the graph is regular with valency b0,

and hence we have

b0 = ci + ai + bi, for 0 ≤ i ≤ d. (3.41)

This also means that only two rows of the distance parameters are needed, so the

distance parameters are sometimes given as

(b0, b1, · · · , bd−1; c1, · · · , cd−1, cd). (3.42)

We often list the parameters in a tridiagonal matrix, called the intersection ma-

trix, which is the following:
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B1 =



a0 b0 0

c1 a1 b1
. . .

. . .
. . .

cd−1 ad−1 bd−1

0 cd ad


. (3.43)

Despite its tridiagonal appearance, the B1 from a distance regular graph does

not always come from a Leonard pair (A,A∗), with B1 being the matrix for A in the

basis where it is irreducible tridiagonal. For example, the graph of the vertices of

a dodecahedron is distance-regular, but the tridiagonal matrix does not come from

any Leonard pair [34]. In essence, we can define a polynomial using the ai, bi, ci in a

manner analogous to Definition 2.6.2, but that does not guarantee us a way to define

the dual-polynomials v∗i , and hence the θ∗i . For the intersection matrix of a distance

regular graph to form part of a Leonard pair, we need our graph to have another

property, called the Q-polynomial property, that we will discuss in the next section.

3.3 Primitive idempotents and Q-polynomial association schemes

Recall that the Bose-Mesner algebra A of commutative association scheme X =

(X, {Ai}di=0) is generated by ⟨A0, A1, . . . , Ad⟩. Because this algebra is commutative

and closed under transposes, the Ai are normal matrices. Therefore, by the spectral

theorem, the Ai are unitarily diagonalizable. Since they commute, each Ai preserves

the eigenspaces of all other Aj. So it follows that these matrices are all simultaneously

diagonalizable by a unitary matrix U [25, Thm. 1.3.21]. As a result, we can decompose
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V = Kn, where n = |X|, into the direct sum of common eigenspaces

V = V0 + · · ·+ Vr.

By (3.36) we have that the all ones matrix J corresponds to the common eigenspace

spanned by (1, 1, . . . , 1)⊤ = 1. We relabel to let V0 correspond to this eigenspace.

Let Ei be the projection matrices from V → Vi. As a consequence r = d and the

{E0, . . . , Ed} form another basis of A with the following properties:

nE0 = Jn, (3.44)

E0 + E1 + · · ·+ Ed = In, (3.45)

EiEj = δi,jEi. (3.46)

If the association scheme is symmetric, so that A⊤
i = Ai (0 ≤ i ≤ d), then we

have the additional condition:

E⊤
i = Ei. (3.47)

The {E0, E1, . . . , Ed} are called the primitive idempotents of X , and E0 is the

trivial idempotent of X .

The binary operation ◦, the entry-wise product for matrices M , N of the same

dimension (also known as the Hadamard or Schur product), produces the matrix

M ◦N having entries:

(M ◦N)i,j = Mi,jNi,j. (3.48)

From the definition of association scheme, we have that Ai ◦ Aj = δi,jAi, hence
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A is closed under ◦. Since {Ei}di=0 is another basis of A, there are also parameters

qhi,j ∈ K such that:

Ei ◦ Ej = |X|−1

d∑
h=0

qhi,jEh for all i, j. (3.49)

The qhi,j are known as the Krein parameters of X . For commutative associa-

tion schemes, the Krein parameters are known to be non-negative real numbers [1,

Thm. 3.8].

Definition 3.3.1. Let X = (X, {Ri}di=0) be a symmetric association scheme. Then

X is calledQ-polynomial if, for some ordering of the primitive idempotents E0, . . . , Ed

and for each i(0 ≤ i ≤ d) there is a polynomial v∗i (x) of degree i, in indeterminate x,

such that the adjacency matrix Ei = v∗i (E1) under the Hadamard product.

Or equivalently, we can define the Q-polynomial property as in [1, p. 193].

Definition 3.3.2. A symmetric association scheme is Q-polynomial if for some

ordering of the primitive idempotents, the matrix B∗
1 with entries (B∗

1)h,j = qh1,j,

where qhi,j are the Krein parameters, is irreducible tridiagonal. In particular, the

matrix (B1)
∗ has the form

B∗
1 =



a∗0 b∗0 0

c∗1 a∗1 b∗1
. . .

. . .
. . .

c∗d−1 a∗d−1 b∗d−1

0 c∗d a∗d


, (3.50)

with nonzero super- and sub-diagonals (see Lemma A.1.3).
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From (3.38) we see that, for a distance regular graph, the distance matrices

{Ai}di=0 satisfy the same recurrence that the intersection matrices {Bi}di=0 satisfy

from a Leonard pair, as given in Definitions 2.8.2, 2.6.2. In other words, the poly-

nomials in Definition 3.1.5 are defined by taking the ai, bi, ci from the intersection

matrix (3.43), and defining vi(λ) in an identical way to Definition 2.6.2:

v−1(λ) = 0, v0(λ) = 1,

λvi(λ) = ci+1vi+1(λ) + aivi(λ) + bi−1vi−1(λ) (0 ≤ i ≤ d− 1). (3.51)

And similar to what we saw with Leonard pairs, the matrices (Bi)h,j = phi,j,

whose entries are given by the intersection numbers phi,j of a P -polynomial association

scheme also satisfy the same recurrence as the Ai. This follows from the equivalence

of Def. 3.1.5 and Def. 3.2.2 ([1, Prop. 1.1]) and linear algebra. In particular, the

matrices Bi can be expressed as Bi = vi(B1), where the vi are the same polynomials

that generate Ai in terms of A1, but here they are evaluated at B1. Hence the

algebra generated by {Ai}di=0 and the algebra generated by {Bi}di=0 are isomorphic as

K-algebras.

In a similar manner, when an association scheme is Q-polynomial, then, under

some ordering of the idempotents, the entries of matrix B∗
1 can be used to define the

polynomials v∗i such that v∗i (E1) = Ei under the Hadamard product. Furthermore, a

basis of Matd+1(K) exists where B1 is irreducible tridiagonal and B∗
1 is diagonal, and

another basis where B∗
1 is irreducible tridiagonal and B1 is diagonal [51, Lem. 16.1].

Hence (B1, B
∗
1) is a Leonard pair. So under this ordering of the idempotents, we can

similarly define matrices (B∗
i )h,j = qhi,j whose entries are the Krein parameters of a P -

and Q-polynomial association scheme, and these matrices will satisfy B∗
i = v∗(B∗

1)
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under normal matrix multiplication.

When the matrices A,A∗ of a Leonard pair come from a symmetric association

scheme in this way, then the phi,j and qhi,j are nonnegative. However, this is not

necessarily the case for Leonard pairs in general. Nonetheless nonnegativity is a very

useful property, with applications to open problems [50, prob. 11.3, 11.5] and [1,

p. 205], and we will use one such example to prove the conjecture in [32, Conj. 2] in

Chapter 4.

3.4 Intersection matrices of a Leonard pair

Since the intersection matrices {Bi}di=0 of a Q-polynomial distance regular graph act

(multiplicatively) like the distance matrices {Ai}di=0, we can think of the {Bi}di=0

as algebraic proxies for the distance matrices. Not all Leonard pairs come from

an association scheme; nonetheless, the {Bi}di=0 from a Leonard pair A,A∗ can be

thought of as a generalization of the distance matrices of a Q- polynomial distance

regular graph. In this spirit, we occasionally refer to the {Bi}di=0 as pseudo-distance

matrices, and we refer to the algebra generated by B1, which by Lemma 2.8.5 has

basis {Bi}di=0, as the pseudo-distance algebra of the Leonard pair A,A∗.

For a given Leonard pair, it may be unknown whether there is a combinatorial

interpretation that shows the intersection or Krein parameters are nonnegative. We

would like to study this nonnegativity regardless. One method will be discussed in a

later section where we prove the Kresch-Tamvakis conjecture.

Another more speculative method of doing this could be to look for other com-

binatorial connections. If an association scheme cannot be found, perhaps a weaker

connection to a combinatorial structure would still allow us to prove nonnegativity.
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Though we have yet to find such an example, we show an algebraic connection be-

tween a certain family of Leonard pairs with rational intersection numbers and Krein

parameters and a family of strongly regular graphs. We hope that our results may

perhaps give clues on a possible direction to search for other combinatorial connec-

tions. In any case, we are of the opinion that this connection is of interest in its own

right.

Regardless of their ability to prove the nonnegativity of these parameters, both

methods allow us to prove some hypergeometric identities related to these parameters,

at least one of which (4.5) appears to have been unknown prior to our recent paper

[6]. Next we show an example to illustrate this second idea.

3.5 Subalgebra example from Def. 2.3.1

In this section, we return to our consideration of the Leonard pair of diameter d = 3

that was given in Definition 2.3.1.

We will define a subalgebra B of the algebra M. Recall that M is generated by

the pseudo-distance matrices {Bi}3i=0 for this Leonard pair. So in the case of this

specific Leonard pair, M is generated by the following matrices:

B0 = I, B1 =



0 3 0 0

1 2
5

8
5

0

0 24
25

6
5

21
25

0 0 3
5

12
5


, B2 =



0 0 5 0

0 8
5

2 7
5

1 6
5

0 14
5

0 3
5

2 12
5


, B3 =



0 0 0 7

0 0 7
5

28
5

0 21
25

14
5

84
25

1 12
5

12
5

6
5


.

(3.52)

Note that, in general, the character table matrix P enjoys the property of being a

(d+1)× (d+1) matrix, whose entries in the ith column are the the right eigenvalues
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of matrix Bi. For our specific Leonard pair, the matrix P is given as follows:

P =



1 3 5 7

1 11
5

1 −21
5

1 3
5

−3 7
5

1 −9
5

1 −1
5


. (3.53)

Let us define a subalgebra B of the algebra M to be the subalgebra generated by

Ã0 = I, Ã1 = B2, Ã2 = B1 +B3.

We will call a subalgebra of this type, where the basis consists of sums of disjoint

sets of basis elements of the parent algebra a fusion algebra or simply a fusion. (We

note that, in this case, we could just as easily have chosen to study the fusion algebra

generated by Ã1 = B1 + B3 and Ã2 = B2. But, as we will see later, this alternate

choice would simply yield the complement structure.)

When defining a fusion algebra, we can, for each i, let Si denote the set of indices

such that Ãi =
∑

j∈Si
Bj. Since the Bi are mutually diagonalizable, we can keep the

eigenvectors in the same order and list the eigenvalues of Ãi in column i of a matrix

by summing the corresponding columns of P for all indices in Si. Viewing a character

table as a matrix whose ith column contains the eigenvalues of the ith basis matrix,

this gives us something resembling a character table for the fusion subalgebra. For
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our example, this matrix (which we denote P̂ ) is given as follows:

P̂ =



1 5 10

1 1 −2

1 −3 2

1 1 −2


. (3.54)

Note the repeated row formed in P̂ . From direct computation, one can check that

B has structure constants, p̃ki,j, such that ÃiÃj =
2∑

h=0

p̃hi,jÃh. These values p̃hi,j can be

given as the entries in the following matrices (B̃i)h,j = p̃hi,j, where:

B̃0 = I, B̃1 =


0 5 0

1 0 4

0 2 3

 , B̃2 =


0 0 10

0 4 6

1 3 6

 . (3.55)

These matrices generate a matrix algebra that has the same structure constants as B

and has the matrix of eigenvectors:

P̃ =


1 5 10

1 1 −2

1 −3 2

 . (3.56)

In other words, the columns (rows) are the right (left) eigenvectors of the B̃i. Also

the (i, j) entry is the eigenvalue of Bj (Bi) of the ith column (jth row) vector, of P̃ .

We can see P̃ matches the matrix P̂ , but with the redundant row removed.

An interesting observation here is that these are exactly the intersection matrices

and character table of a certain distance regular graph of diameter 2 (also called
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a connected strongly regular graph). Strongly regular graphs are accompanied by

parameters (v, k, λ, µ) where:

• v denotes the number of vertices,

• k is the valency,

• every pair of adjacent vertices has λ common neighbors,

• every pair of nonadjacent vertices has µ common neighbors.

The matrices in (3.55), (3.56) are the intersection matrices and character table of

a strongly regular graph with parameters (v, k, λ, µ) = (16, 5, 0, 2). It is known that

there is only one strongly regular graph with these parameters; this graph is called

the Clebsch graph [4, 19]. The graph is shown in Figure 3.3

One way to define the Clebsch graph is as the graph whose vertices are the even

size subsets of [5], and where two vertices are adjacent whenever their symmetric

difference has cardinality 4.
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∅

{1, 2, 3, 4}

{1, 2, 3, 5}

{1, 2, 4, 5}{1, 3, 4, 5}

{2, 3, 4, 5}

{1, 3}

{2, 5}

{1, 4}

{3, 5}

{2, 4}

{4, 5}

{3, 4}

{2, 3}

{1, 2}

{1, 5}

Figure 3.3: Clebsch graph

The unique strongly regular graph with parameters (v, k, λ, µ) = (16, 5, 0, 2).

Deleting any vertex and its neighborhood results in a Petersen graph.

If we instead consider the fusion algebra in M with basis Ã1 = B1 + B3 and

Ã2 = B2, we get intersection matrices and character table that correspond to the

complement of the Clebsch graph. This graph is also strongly regular, with parame-

ters (16,10,6,6).

Later in Section 5.6, we will consider a more general version of this construction.
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4 Proof of the Kresch-Tamvakis Conjecture

In this chapter, we present an application of the Leonard pairs and pseudo-distance

matrices introduced above. In particular, we present the proof of a conjecture from

special functions theory that has been open for 22 years. The matter was recently

settled by Caughman and the present author in [6] and we include the details of our

proof here.

Before we do so, we mention some background about the problem. This conjecture

has its origins in algebraic geometry. To prove the so-called arithmetic standard

conjectures for the Grassmanian G(2, N), Kresch and Tamvakis (in [32]) proved a

bound on certain 4F3 hypergeometric series. Along the way, they conjectured that a

stronger bound than the one they needed appeared to hold. Their conjecture can be

stated as the following theorem.

Theorem 4.0.1. [32, Conjecture 2] For any positive integer D and any integers i, j

(0 ≤ i, j ≤ D), the absolute value of the following hypergeometric series is at most 1:

4F3

[
−i, i+ 1, −j, j + 1

1, D + 2, −D
; 1

]
. (4.57)

Note 4.0.2. Theorem 4.0.1 is taken from [32, Conjecture 2] with

n = i, s = j, T = D + 1.

Notice that (4.57) is the same expression as (2.28) (and hence the 4F3 component

in (2.12)), with d relabeled by D. For this chapter, we will use variables a-g often, so
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for convenience, we will relabel the diameter of a Leonard pair from d to D.

Next we discuss some of the evidence for Conjecture 4.0.1 that had previously

been offered by Kresch, Tamvakis, and others. In [32, Proposition 2], Kresch and

Tamvakis proved that the absolute value of (4.57) is at most 1, provided that i ≤ 3 or

i = D. In [26, p. 863], Ismail and Simeonov proved that the absolute value of (4.57) is

at most 1, provided that i = D− 1 and D ≥ 6. They also gave asymptotic estimates

to further support the conjecture. In [36], Mishev obtained several relations satisfied

by the 4F3 hypergeometric series in question.

Our proof of Theorem 4.0.1 will not rely on any of the partial results mentioned

above.

In this chapter, we will consider all of our vector spaces to be over R

4.1 Outline of proof

To prove Theorem 4.0.1 we use the following approach. For 0 ≤ i ≤ D we take

the matrices Bi ∈ MatD+1(R) from Definition 2.8.2 applied to the Leonard pair from

Def. 2.3.1. Using the Biedenharn-Elliott identity [2, p. 356], we show that the entries

of Bi are nonnegative. Using the theory of Leonard pairs [39, 40, 48, 49, 50], we saw

by Thm. 2.6.4 and 2.28 that the eigenvalues of Bi are 2i+ 1 times

4F3

[
−i, i+ 1, −j, j + 1

1, D + 2, −D
; 1

]
(0 ≤ j ≤ D).

We also showed in Lem. 2.8.4 that 1, the all 1’s vector in RD+1, is an eigenvector

for Bi with eigenvalue 2i + 1. Applying the Perron-Frobenius theorem [25, p. 529],

we show that the eigenvalues of Bi have absolute value at most 2i + 1. Using these
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results, we obtain the proof of Theorem 4.0.1.

4.2 The phi,j in the self-dual case

As mentioned in Section 2.7 the Leonard pairs in Def. 2.3.1 are self-dual.

In the self-dual case (2.32) becomes

phi,j =
kikj
ν

D∑
t=0

ktut(θh)ut(θi)ut(θj). (4.58)

We will take advantage of this formula when proving that, for the Leonard pairs

in Def. 2.3.1, the phi,j are nonnegative.

4.3 The nonnegativity of the phi,j

Our goal for this section is to show that phi,j ≥ 0 for 0 ≤ h, i, j ≤ D. To obtain this

inequality, we use the Biedenharn-Elliott identity [2, p. 356].

Recall the natural numbers N = {0, 1, 2, 3, . . .}. Define 1
2
N = {0, 1

2
, 1, 3

2
, 2, 5

2
, . . .}.

Definition 4.3.1. Given a, b, c ∈ 1
2
N, we say that the triple (a, b, c) is admissible

whenever a+ b+ c ∈ N and

a ≤ b+ c, b ≤ c+ a, c ≤ a+ b. (4.59)

Definition 4.3.2. Referring to Definition 4.3.1, assume that (a, b, c) is admissible.

Define

∆(a, b, c) =

(
(a+ b− c)!(b+ c− a)!(c+ a− b)!

(a+ b+ c+ 1)!

) 1
2

. (4.60)
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Next, we recall the Racah coefficients.

Definition 4.3.3. ([2, Eq. 5.11.4] and [35, p. 1063]) For a, b, c, d, e, f ∈ 1
2
N, we

define a real number W (a, b, c, d; e, f) as follows.

First assume that each of (a, b, e), (c, d, e), (a, c, f), (b, d, f) is admissible. Then

W (a, b, c, d; e, f) =
∆(a, b, e)∆(c, d, e)∆(a, c, f)∆(b, d, f)(β1 + 1)!(−1)β1−(a+b+c+d)

(β2 − β1)!(β3 − β1)!(β1 − α1)!(β1 − α2)!(β1 − α3)!(β1 − α4)!

× 4F3

[
α1 − β1, α2 − β1, α3 − β1, α4 − β1

−β1 − 1, β2 − β1 + 1, β3 − β1 + 1
; 1

]
,

(4.61)

where

(α1, α2, α3, α4) = any permutation of (a+ b+ e, c+ d+ e, a+ c+ f, b+ d+ f),

and where

β1 = min(a+ b+ c+ d, a+ d+ e+ f, b+ c+ e+ f),

and β2, β3 are the other two values in the triple (a+b+c+d, a+d+e+f, b+c+e+f)

in either order.

Next assume that (a, b, e), (c, d, e), (a, c, f), (b, d, f), are not all admissible. Then

W (a, b, c, d; e, f) = 0. (4.62)

We call W (a, b, c, d; e, f) the Racah coefficient associated with a, b, c, d, e, f .

44



Let 0 ≤ h, i, j ≤ D. In order to show that phi,j ≥ 0, we will show that

phi,j = (2i+ 1)(2j + 1)(D + 1)
(
W
(
D
2
, D
2
, i, h; j, D

2

))2
.

We will use the Biedenharn-Elliott identity.

Proposition 4.3.4. (Biedenharn-Elliott [2, p. 356]) Let a, a′, b, b′, c, c′, e, f, g ∈ 1
2
N.

Then

∑
d∈ 1

2
N

(−1)c+c′−d(2d+ 1)W (b, b′, c, c′; d, e)W (a, a′, c, c′; d, f)W (a, a′, b, b′; d, g)

= (−1)e+f−gW (a, b, f, e; g, c)W (a′, b′, f, e; g, c′).

(4.63)

In order to evaluate the Racah coefficients in the Biedenharn-Elliott identity, we will

use the following transformation formula of Whipple.

Proposition 4.3.5. (Whipple [18, p. 49]) For integers p, q, a1, a2, r, b1, b2 we have

4F3

[
−p, q, a1, a2

r, b1, b2

; 1

]
=
(b1 − q)p(b2 − q)p

(b1)p(b2)p

× 4F3

[
−p, q, r − a1, r − a2

r, 1 + q − b1 − p, 1 + q − b2 − p
; 1

]
,

(4.64)

provided that p ≥ 0 and q + a1 + a2 + 1 = r + b1 + b2 + p.

We are interested in the following Racah coefficient. For 0 ≤ i, j ≤ D consider

W
(
D
2
, D
2
, D
2
, D
2
; i, j

)
.
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Evaluating this Racah coefficient using Definition 4.3.3 we get a scalar multiple of a

certain 4F3 hypergeometric series. Applying several Whipple transformations to this

hypergeometric series, we get the following result as we will see.

Proposition 4.3.6. For integers 0 ≤ i, j ≤ D we have

W
(
D
2
, D
2
, D
2
, D
2
; i, j

)
=

(−1)i+j−D

D + 1
4F3

[
−i, i+ 1, −j, j + 1

1, D + 2, −D
; 1

]
. (4.65)

Proof. To evaluate W
(
D
2
, D
2
, D
2
, D
2
; i, j

)
, we will consider two cases: i + j ≤ D and

i+ j > D.

Case i + j ≤ D. In this case, from (4.61) we get β1 = D + i + j, β2 = 2D,

β3 = D + i + j, α1 = α2 = D + i, α3 = α4 = D + j. The hypergeometric term in

(4.61), after rearranging the upper indices, becomes

4F3

[
−i, −i, −j, −j

−D − i− j − 1, D − i− j + 1, 1
; 1

]
. (4.66)

The coefficient in (4.61) is

(
∆
(
D
2
, D
2
, i
))2(

∆
(
D
2
, D
2
, j
))2

(D + i+ j + 1)!(−1)i+j−D

(D − i− j)!(j!)2(i!)2

=
(D − i)!(i!)2(D − j)!(j!)2(D + i+ j + 1)!(−1)i+j−D

(D + i+ 1)!(D + j + 1)!(D − i− j)!(j!)2(i!)2
. (4.67)

The expression (4.67) is equal to

(D − i)!(D − j)!(D + i+ j + 1)!(−1)i+j−D

(D + i+ 1)!(D + j + 1)!(D − i− j)!
. (4.68)
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Performing a Whipple transformation (4.64) with the substitutions −p = −i, q = −j,

a1 = −i, a2 = −j, r = 1, b1 = −D− i− j− 1, b2 = D− i− j+1, the hypergeometric

component in (4.66), after rearranging lower indices, becomes

4F3

[
−i, i+ 1, −j, j + 1

1, D + 2, −D
; 1

]
. (4.69)

The coefficient contribution from the Whipple transformation is

(−D − i− 1)i(D − i+ 1)i
(−D − i− j − 1)i(D − i− j + 1)i

=
(−1)i(D + i+ 1)!

(D + 1)!

D!

(D − i)!

(D + j + 1)!

(−1)i(D + i+ j + 1)!

(D − i− j)!

(D − j)!
.

(4.70)

We see that coefficients (4.68) and (4.70) multiply to (−1)i+j−D

D+1
, as desired.

Case i+j > D. In this case, from (4.61) we get β1 = 2D, β2 = D+i+j, β3 = D+i+j,

α1 = α2 = D + i, α3 = α4 = D + j. The hypergeometric term in (4.61) becomes

4F3

[
i−D, i−D, j −D, j −D

−2D − 1, i+ j −D + 1, i+ j −D + 1
; 1

]
. (4.71)

The coefficient in (4.61) is

(
∆
(
D
2
, D
2
, i
))2(

∆
(
D
2
, D
2
, j
))2

(2D + 1)!(
(i+ j −D)!

)2(
(D − i)!

)2(
(D − j)!

)2
=

(D − i)!(i!)2(D − j)!(j!)2(2D + 1)!

(D + i+ 1)!(D + j + 1)!
(
(i+ j −D)!(D − i)!(D − j)!

)2 .
(4.72)
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The expression (4.72) is equal to

C0 =
(i!)2(j!)2(2D + 1)!

(D + i+ 1)!(D + j + 1)!
(
(i+ j −D)!

)2
(D − i)!(D − j)!

. (4.73)

Now we will perform three Whipple transformations. For each one we list the indices

chosen −p, q, a1, a2, r, b1, b2, the resulting hypergeometric term (with possible

rearranging of some upper indices), and the coefficient contribution, Ci, from the

corresponding Whipple transformation.

1. Using −p = i − D, q = j − D, a1 = i − D, a2 = j − D, r = i + j − D + 1,

b1 = −2D − 1, b2 = i+ j −D + 1:

4F3

[
i−D, i+ 1, j −D, j + 1

i+ j + 2, −D, i+ j −D + 1
; 1

]
, (4.74)

C1 =
(−D − j − 1)D−i(i+ 1)D−i

(−2D − 1)D−i(i+ j −D + 1)D−i

=
(−1)D−i(D + j + 1)!

(i+ j + 1)!

D!

i!

(D + i+ 1)!

(−1)D−i(2D + 1)!

(i+ j −D)!

j!
. (4.75)

2. Using −p = i − D, q = j + 1, a1 = i + 1, a2 = j − D, r = −D, b1 = i + j + 2,

b2 = i+ j −D + 1:

4F3

[
i−D, −D − i− 1, −j, j + 1

−D, −D, 1
; 1

]
, (4.76)
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C2 =
(i+ 1)D−i(i−D)D−i

(i+ j + 2)D−i(i+ j −D + 1)D−i

=
D!

i!
(−1)D−i(D − i)!

(i+ j + 1)!

(D + j + 1)!

(i+ j −D)!

j!
. (4.77)

3. Using −p = −j, q = j+1, a1 = i−D, a2 = −D− i−1, r = −D, b1 = −D, b2 = 1:

4F3

[
−i, i+ 1, −j, j + 1

−D, D + 2, 1
; 1

]
= 4F3

[
−i, i+ 1, −j, j + 1

1, D + 2, −D
; 1

]
, (4.78)

C3 =
(−D − j − 1)j(−j)j

(−D)j(1)j

=
(−1)j(D + j + 1)!

(D + 1)!
(−1)jj!

(D − j)!

(−1)jD!

1

j!
. (4.79)

Combining coefficients we see that C0C1C2C3 =
(−1)D−i+j

D+1
= (−1)i+j−D

D+1
, since i, j,D are

integers. □

We now evaluate the Biedenharn-Elliott identity using Proposition 4.3.6.

Proposition 4.3.7. For integers 0 ≤ h, i, j ≤ D we have

D∑
t=0

(2t+ 1)ut(θh)ut(θi)ut(θj) = (D + 1)3
(
W
(
D
2
, D
2
, i, h; j, D

2

))2
. (4.80)

Proof. First we apply Proposition 4.3.4 with a = a′ = b = b′ = c = c′ = D
2
, e = h,
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f = i, g = j, and d = t to obtain

∑
t∈ 1

2
N

(−1)D−t(2t+ 1)W (D
2
, D
2
, D
2
, D
2
; t, h)W (D

2
, D
2
, D
2
, D
2
; t, i)W (D

2
, D
2
, D
2
, D
2
; t, j)

= (−1)h+i−jW
(
D
2
, D
2
, i, h; j, D

2

)
W
(
D
2
, D
2
, i, h; j, D

2

)
. (4.81)

Note that D
2
+ D

2
+ t is an integer if and only if t is an integer. So by (4.62), the terms

of the sum vanish in which t is not an integer or t > D. By Proposition 4.3.6 and

(2.28), the left hand side of (4.81) becomes

D∑
t=0

(−1)D−t(2t+ 1)
(−1)t+h−Dut(θh)

D + 1

(−1)t+i−Dut(θi)

D + 1

(−1)t+j−Dut(θj)

D + 1
,

which simplifies to

(−1)i+j+h

(D + 1)3

D∑
t=0

(2t+ 1)ut(θh)ut(θi)ut(θj). (4.82)

Setting (4.82) equal to the right hand side of (4.81) and dividing by the coefficients

completes the proof. □

Corollary 4.3.8. For 0 ≤ h, i, j ≤ D we have

phi,j = (2i+ 1)(2j + 1)(D + 1)
(
W
(
D
2
, D
2
, i, h; j, D

2

))2
. (4.83)

Proof. Using Propositions 2.8.9, 4.3.7 and substituting (2.13),(2.14) we have
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phi,j =
kikj
ν

D∑
t=0

ktut(θi)ut(θj)ut(θh)

=
(2i+ 1)(2j + 1)

(D + 1)2

(
(D + 1)3

(
W
(
D
2
, D
2
, i, h; j, D

2

))2)
= (2i+ 1)(2j + 1)(D + 1)

(
W
(
D
2
, D
2
, i, h; j, D

2

))2
.

□

Corollary 4.3.9. For 0 ≤ h, i, j ≤ D we have

phi,j ≥ 0.

Proof. Immediate from Corollary 4.3.8. □

4.4 Proof of the Kresch-Tamvakis conjecture

We are now ready to prove our main result of this chapter. We will use the Perron-

Frobenius theorem [25, p. 529].

Proposition 4.4.1. For 0 ≤ i, j ≤ D we have

|ui(θj)| ≤ 1.

Proof. By Lemma 2.8.4, the vector 1 is an eigenvector for Bi with eigenvalue ki.

By Corollary 4.3.9, the entries of Bi are all nonnegative. By Lemma 2.8.3 the scalar

vi(θj) is an eigenvalue of Bi. By the Perron-Frobenius theorem [25, p. 529], we have

|vi(θj)| ≤ ki. The result follows from this and (2.19). □

Equation (2.28) and Proposition 4.4.1 imply Theorem 4.0.1.
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4.5 New phi,j formula for Def. 2.3.1

We finish this chapter with some more details about the formula for phi,j in Corol-

lary 4.3.8. By Lemma 2.8.10, without loss of generality we assume i ≤ j ≤ h. Also,

in order to avoid trivialities, we assume that h, i, j satisfy the triangle inequalities,

which in this case become h ≤ i + j. As we evaluate phi,j in line (4.83), we consider

the last factor. We evaluate that factor using Definition 4.3.3 with

a =
D

2
, b =

D

2
, c = i, d = h, e = j, f =

D

2
.

For these values, we have:

α1 = D + i, α2 = D + j, α3 = D + h, α4 = h+ i+ j,

β1 = D + i+ j, β2 = D + h+ i, β3 = D + h+ j.

Note that we then have:

α1 − β1 = −j, α2 − β1 = −i, α3 − β1 = h− i− j, α4 − β1 = h−D

−β1 − 1 = −D − i− j − 1, β2 − β1 + 1 = h− j + 1, β3 − β1 + 1 = h− i+ 1.

For the above data, (4.83) becomes

phi,j = Ch
i,j(2i+1)(2j+1)(D+1)

(
4F3

[
−j, −i, h− i− j, h−D

−D − i− j − 1, h− j + 1, h− i+ 1
; 1

])2

,

52



where

Ch
i,j =

(
∆(D

2
, D
2
, i)∆(D

2
, D
2
, j)∆(D

2
, D
2
, h)∆(i, j, h))(D + i+ j + 1)!

(h− i)!(h− j)!i!j!(i+ j − h)!(D − h)!

)2

=
(D − i)!(D − j)!(D − h)!(j + h− i)!(h+ i− j)!

(D + i+ 1)!(D + j + 1)!(D + h+ 1)!(i+ j + h+ 1)!(i+ j − h)!

×
(

h!(D + i+ j + 1)!

(h− i)!(h− j)!(D − h)!

)2

.
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5 Spin Leonard pairs and fusion algebras

A spin model is a type of statistical mechanical model that was used by Vaughan

Jones to construct topological link invariants in his 1989 paper On Knot Invariants

Related to Some Statistical Mechanical Models [30]. Every spin model produces a link

invariant, although in some circumstances the invariant produced may be trivial. The

Jones polynomial is an example of a nontrivial knot invariant that is constructed using

a spin model called the Potts model [29]. Spin models have connections to association

schemes and Leonard pairs. In particular, Jaeger used topology to prove that every

spin model is contained in the Bose-Mesner algebra of an association scheme [28],

and, shortly after, Nomura proved the same result using linear algebraic techniques

[38].

Curtin in [11] defined the notion of so called spin Leonard pairs. By the work of

Caughman and Wolff in [7], and Curtin [9], if a Bose-Mesner algebra supports a spin

model, then the intersection matrix B1 and Krein parameter matrix B∗
1 , as mentioned

in Sec. 3.3, form a spin Leonard pair. Nomura and Terwilliger showed that, in certain

instances, it may be possible to construct a spin model given a spin Leonard pair and

a distance regular graph of a certain form [40, 41].

In reference to the subalgebras given in Sections 3.5 and 5.6, there are some cases

when the corresponding strongly regular graphs exist, and there is an associated spin

model [27], [13]. These, in turn, give rise to a link invariant which is an evaluation of

the well-known Kauffman polynomials. However, by the work of De La Harpe [13], it

appears that the specific evaluations that appear in these cases result only in trivial

link invariants. In the example of the Clebsch graph, which we saw in (3.55) and

Figure 3.3, the Bose-Mesner algebra is known to afford a spin model (see [12]). As
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mentioned by De La Harpe, despite the triviality of the link invariant in some of these

cases, such spin models may still be of interest to combinatorialists [13].

In this section, we will use the theory of spin Leonard pairs to prove a general-

ization of the correspondence in Section 3.5, specifically Thm. 5.6.1 and Cor. 5.6.2.

In fact, we will prove a more general result that applies to all spin Leonard pairs of

Racah type. By work of Curtin ([11] and [10]), the same result holds for the spin

Leonard pairs of the following types:

(1) Racah type (with h∗ = h, s∗ = s, r1 = s/2, r2 = 3s/2 + d + 1 in the notation of

[49, Ex. 5.10])

(2) Krawtchouk type with v = −1 (or r = 3ss∗

4
and s = s∗ in the notation of [49,

Ex. 5.13])

(3) Bannai-Ito type (with h∗ = h, s∗ = s, r1 = −3s/2 + d + 1, r2 = −s/2 in the

notation of [49, Ex. 5.14])

We are primarily interested in the Lenoard pairs from Def. 2.3.1 and so we will

only consider the Racah type spin-Leonard pair case, of which the Leonard pairs in

Def. 2.3.1 are a special case.

5.1 Spin model definition

We now review the definition of a spin model.

Definition 5.1.1. Let n be a positive integer. A spin model is a triple S =

(X,W+,W−) where X = [n] and W+, W− are symmetric n × n complex matrices
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satisfying the following properties.

W+
a,bW

−
a,b = 1 for all a, b ∈ X, (5.84)

∑
x∈X

W−
a,xW

+
x,c = nδa,c for all a, b, c ∈ X, (5.85)

∑
x∈X

W+
a,xW

+
b,xW

−
c,x =

√
nW+

a,bW
−
b,cW

−
c,a for all a, b, c ∈ X. (5.86)

The elements of X are called the spins of S. Matrices that satisfy 5.85 are called

type II, and matrices that satisfy 5.86 are called type III.

Jaeger and Nomura showed that a symmetric spin model is contained in a Bose-

Mesner algebra of some symmetric association scheme [28], [38]. Hence, if a spin

matrix W+ exists in the Bose-Mesner algebra generated by {Ai}di=0, then there exist

scalars {t0, t1, . . . , td} in K, such that

W+ =
d∑

i=0

tiAi. (5.87)

The coefficients t0, t1, . . . , td, are called the Boltzmann coefficients of the spin model.

From Definition 5.1.1 we have that

W− =
d∑

i=0

t−1
i Ai. (5.88)

5.2 Spin Leonard pairs

In this section we recall the definition of a spin Leonard pair.
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Definition 5.2.1. A Leonard pair A, A∗ on the vector space V is called a spin

Leonard pair when there exist invertible linear transformations W , W ∗ on V that

satisfy the following:

WA = AW, (5.89)

W ∗A∗ = A∗W ∗, (5.90)

WA∗W−1 = W ∗−1AW ∗. (5.91)

The matrices W , W ∗ are called a Boltzmann pair for (A,A∗).

Since the A and A∗ of a Leonard pair are multiplicity free, Lem. 2.4.2 and condi-

tions (5.89) and (5.90) are equivalent to W being in ⟨A⟩, and W ∗ being in ⟨A∗⟩, the

algebras generated by A and A∗ respectively (see [11, Lem. 3.2]).

Definition 5.2.2. Let A,A∗, A⋄ be linear transformations on a finite-dimensional

vector space V . We say A,A∗, A⋄ is a Leonard triple on V if, for any B ∈ {A,A∗, A⋄},

there is a basis for V such that the matrix representing B is diagonal and the matrices

representing the other two transformations are irreducible tridiagonal.

Recall τ is an antiautomorphism on the transformations of V if it is K-linear and

τ(XY ) = τ(Y )τ(X) for any two linear transformations X, Y on V .

Definition 5.2.3. Let A,A∗, A⋄ be a Leonard triple on V . We say A,A∗, A⋄ is a

modular Leonard triple if, for any B ∈ {A,A∗, A⋄}, there exists an antiautomorphism

that fixes B, and swaps the other two transformations in the Leonard triple.

Curtin [11] classified all spin Leonard pairs and showed that if A,A∗, A⋄ is a

modular Leonard triple, then A,A∗ is a spin Leonard pair. Conversely, Curtin also

showed that if A,A∗ is a spin Leonard pair, with Boltzmann pair W , W ∗, then
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(A,A∗, A⋄) is a modular Leonard triple, where A⋄ = WA∗W−1 = W ∗−1AW ∗. For

completeness, we present the proof of the direction that modular Leonard triples can

be used to form spin Leonard pairs. This direction will suffice for our needs. For

more details on the other direction, and for the classification, we point the reader to

[10] and [11].

Definition 5.2.4. Let A,A∗, A⋄ and B,B∗, B⋄ denote Leonard triples on V and V ′

respectively. We say A,A∗, A⋄ is isomorphic (as Leonard triples) to B,B∗, B⋄ if there

is a K-algebra isomorphism σ : End(V ) → End(V ′) such that σ(A) = B, σ(A∗) = B∗,

and σ(A⋄) = B⋄.

Definition 5.2.5. A canonical modular Leonard triple of diameter d, is an ordered

triple of matrices (A,A∗, A⋄) in Matd+1(K) which form a modular Leonard triple on

Kd+1, where A, A⋄ are irreducible tridiagonal, and A∗ is diagonal, and where the row

sums of A are equal to (A∗)0,0.

Curtin in [10] proved the following theorem and lemma.

Theorem 5.2.6. [1.6, [10]] Let A,A∗, A⋄ be a modular Leonard triple, and let

θ0, . . . , θd be an eigenvalue sequence of A,A∗, A⋄. Then A,A∗, A⋄ is isomorphic to a

unique canonical modular Leonard triple B,B∗, B⋄ such that B∗ = diag(θ0, . . . , θd).

Lemma 5.2.7. [10, Lem. 1.7] Let A,A∗, A⋄ be a canonical modular Leonard triple

of diameter d. Then

A = tridiag


b0 b1 . . . bd−1 ∗

a0 a1 . . . ad−1 ad

∗ c1 . . . cd−1 cd

 (5.92)
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A∗ = diag(θ0, . . . , θd, ) (5.93)

A⋄ = tridiag


b0ν1 b1ν2 . . . bd−1νd ∗

a0 a1 . . . ad−1 ad

∗ c1/ν1 . . . cd−1/νd−1 cd/νd

 (5.94)

with c0 = bd = 0, where bi−1, ci, νi ̸= 0 for 1 ≤ i ≤ d, where the eigenvalues θi, . . . , θd

are distinct, and where ci + ai + di = θ0 (0 ≤ i ≤ d).

The full theorem and lemma stated above are not needed for our goals, but we

direct the reader to [10] and [11] for more details. In particular, the uniqueness of

the canonical form is not necessary for us. The Leonard pairs in Def. 2.3.1 belong to

the family of Leonard pairs of Racah type. We will identify a particular subfamily

of Racah type Leonard pairs that contain these examples and that always form spin

Leonard pairs. This is stated in the next lemma and will be proved over the next two

sections.

It is worth noting that Curtin showed that the family mentioned in the next lemma

in fact constitues all of the spin Leonard pairs of Racah type [11, Theorem 1.13]. As

a result, we will refer to them as the spin Leonard pairs of Racah type. We will

not present the necessary condition of this classification, but only the sufficiency

condition, and we again direct the interested reader to the work of Curtin.

Lemma 5.2.8. (Lemma 1.8 [11]) Fix a nonnegative integer d, a field K, and assume

char(K) = 0 or char(K) is an odd prime greater than d. Take θ0, h, s in K such that

h ̸= 0, s ̸= −i (2 ≤ i ≤ 2d), and 3s ̸= −2i (d+ 2 ≤ i ≤ 2d+ 1). Define the following
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matrices

A = tridiag


b0 b1 . . . bd−1 ∗

a0 a1 . . . ad−1 ad

∗ c1 . . . cd−1 cd

 (5.95)

and

A∗ = diag(θ0, . . . , θd, ), (5.96)

where

θi = θ0 + hi(i+ s+ 1) (0 ≤ i ≤ d), (5.97)

b0 = −hd(3s+ 2d+ 4)

4
, (5.98)

bi =
h(i+ s+ 1)(i− d)(2i+ 3s+ 2d+ 4)

4(2i+ s+ 1)
(1 ≤ i ≤ d− 1), (5.99)

ci =
hi(i+ s+ d+ 1)(2i− s− 2d− 2)

4(2i+ s+ 1)
(1 ≤ i ≤ d− 1), (5.100)

cd = −hd(s+ 2)

4
, (5.101)

ai = θ0 − bi − ci (0 ≤ i ≤ d)(c0 = 0, bd = 0). (5.102)

Then (A,A∗) form a spin Leonard pair.

The fact that the matrices A,A∗ given above define a Leonard pair on V is by the

work of Terwilliger (see [48, Ex. 5.10], and also [11, Lem. 1.8], and [10, Lem. 1.10]).

We also note that, in these works, it is shown that the A, A∗, have the same spectrum,

and hence these Leonard pairs are all self-dual. We will show these are spin Leonard

pairs in Section 5.4. We will do this by first showing that a modular Leonard triple

is a spin Leonard pair in Theorem 5.3.4, and then we show the Leonard pairs in

Lemma 5.2.8 are modular Leonard triples in Theorem 5.4.3.
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5.3 Modular Leonard triples are spin Leonard pairs

Lemma 5.3.1. Let A,A∗, A⋄ be a modular Leonard triple on V . For each B ∈

{A,A∗, A⋄}, the antiautomorphism that fixes B and swaps the other two is unique

and an involution.

Proof. Removing B from the set {A,A∗, A⋄}, the remaining two elements form

a Leonard pair. Call the two elements A′ and A′′. By Lemma 2.4.8, the A′, A′′

generate End(V ). Hence an antiautomorphism is uniquely determined by what its

action this generating set. Also, this antiautomorphism swaps A′ and A′′; hence, it is

an involution. □

Lemma 5.3.2. [2.5, [11],10.1, [10]] Let A,A∗, A⋄ be a modular Leonard triple on V .

Then there exist automorphisms ν, ν∗ of End(V ) such that

ν(A) = A, ν(A∗) = A⋄,

ν∗(A∗) = A∗, ν∗(A⋄) = A,

ν⋄(A⋄) = A⋄, ν⋄(A) = A∗. (5.103)

Proof. Given distinct X, Y, Z ∈ {A,A∗, A⋄}, let αX,Y be the antiautomorphism in

Theorem 2.5.3 that fixes X and Y . Let µX,Y be the antiautomorphism as in Definition

5.2.3 that swaps X and Y and fixes Z. Then let ν = αA⋄,AµA∗,A⋄ , let ν∗ = αA∗,AµA⋄,A,

and let ν⋄ = αA⋄,A∗µA,A∗ . The result follows. □

Corollary 5.3.3. [[11, Cor. 2.6] [10, Lem. 10.2]] Let A,A∗, A⋄ be a modular Leonard
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triple on V . Then there exist U and U∗ such that:

UA = AU

UA∗ = A⋄U

AU∗ = U∗A⋄

A∗U∗ = U∗A∗. (5.104)

Proof. We have ν and ν∗ as given in Lemma 5.3.2. By Lemma 2.5.1 there exist

invertible U and U∗ in End(V ) that represent ν and ν∗ respectively. Then, by Lemma

5.3.2, we have:

A = ν(A) = UAU−1

A⋄ = ν(A∗) = UA∗U−1

A∗ = ν∗(A∗) = U∗A∗(U∗)−1

A = ν(A⋄) = U∗A⋄(U∗)−1.

The result follows. □

Theorem 5.3.4. [11, Thm. 1.5] Let A,A∗, A⋄ be a modular Leonard triple on V .

Then A,A∗ is a spin Leonard pair.

Proof. Take U and U∗ from Corollary 5.3.3. We have that

UA = AU,

U∗A∗ = A∗U∗, and
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UA∗U−1 = A⋄ = (U∗)−1AU∗.

The result follows. □

5.4 Racah type spin Leonard pairs

Our next task is to prove that the Leonard pairs given by the matrices defined in

(5.95, 5.96, 5.97-5.102) in Lemma 5.2.8 are spin Leonard pairs. We do this by taking

such a Leonard pair, A,A∗, and showing that there is a transformation ⋄ such that

A,A∗, A⋄ is a modular Leonard triple. The result then follows from Theorem 5.3.4.

We will be able to use this result to explicitly construct the matrices U and U∗.

Throughout, we will work in a basis where A is irreducible tridiagonal, and A∗ is

diagonal, hence we can assume they are in the form as given in (5.95, 5.96).

Recall the antiautomorphism † given in Theorem 2.5.3. Note that composing an

automorphism σ with an antiautomorphism τ yields σ ◦ τ , which is another antiau-

tomorphism.

Definition 5.4.1. Let A,A∗ be a Leonard pair of diameter d on vector space V .

Suppose A,A∗ is of the type given in Lemma 5.2.8, represented in the basis where

A is irreducible tridiagonal and A∗ is diagonal. Let P be the corresponding matrix

from Definition 2.6.3. Let † be the antiautomorphism given in 2.5.3.

Define the following matrix N ∈ Kd+1:

N = diag(1,−1, 1, . . . , (−1)d)). (5.105)

Define the following automorphisms:
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σ : End(V ) → End(V )

σ(X) = P−1XP = PXP−1, (5.106)

δ : End(V ) → End(V )

δ(X) = N−1XN = NXN−1. (5.107)

Define the following antiautomorphisms,

µ : End(V ) → End(V )

µ(X) = δ(σ(δ(X†))) = (NPN)−1X†NPN = (NP−1N)−1X†NP−1N, (5.108)

µ∗ : End(V ) → End(V )

µ∗(X) = δ(X†) = N−1X†N = NX†N−1, (5.109)

µ⋄ : End(V ) → End(V )

µ⋄(X) = σ(X†) = P−1X†P = PX†P−1. (5.110)

Note that, since the inverses of N and P (by self-duality) in the previous definition

differ from the original matrix by a constant, i.e. N−1 = N and P−1 = ν−1P , where

ν =
∑d

i=0 ki, all the automorphisms and antiautomorphisms of Definition 5.4.1 are

involutions. Also recall that self-duality implies ui(θj) = u∗
j(θ

∗
i ) = uj(θi). We also

need one more basic result.

Proposition 5.4.2. Fix a Leonard pair A,A∗ on a vector space V of the type given
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in Lemma 5.2.8. Then

θi − 2aj = θj − 2ai. (5.111)

Proof. Expanding both sides individually, we find that they both equal −d2h +

hi2 + hj2 − 3
2
dhs+ his+ hjs− 2dh+ hi+ hj − θ0. □

We are now ready to prove that the Leonard pairs in Lemma 5.2.8 are modular

Leonard triples, and hence spin Leonard pairs.

Theorem 5.4.3. With reference to Definition 5.4.1, let A,A∗ be a Leonard pair

of diameter d on vector space V . Suppose A,A∗ is of the type given in Lemma

5.2.8, represented in the standard basis, where A is irreducible tridiagonal and A∗ is

diagonal. Define A⋄ = δ(A) = N−1AN . Then A,A∗, A⋄ is a modular Leonard triple.

Proof. Recall from Theorem 2.5.3 that † fixes A and A∗, and X† = KXK−1, where

K = diag(k0, k1, . . . , kd). Since N and K are diagonal, they commute, hence (A⋄)† =

K−1(N−1AN)⊤K = K−1N⊤A⊤(N−1)⊤K = N⊤(K−1A⊤K)(N−1)⊤ = NA†N−1 =

NAN−1 = A⋄.

Recall that σ(A) = A∗ and σ(A∗) = A by Lem. 2.8.3. Also note that A,A∗, A⋄

have the form given in (5.92), (5.93), and (5.94) with νi = −1 for (1 ≤ i ≤ d).

Our proof will be completed by the following two steps, each with three sub-steps.

(1) We show that µ, µ∗, µ⋄ are antiautomorphisms satisfying the definitions for mod-

ular Leonard triples:

(i) µ fixes A and swaps A∗, A⋄.

Proof of (i). To see that µ fixes A, we must show ANPNK−1 equals
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(NP−1N)−1K−1A⊤ = NPNK−1A⊤.

First note that NPNK−1 = NPK−1N , and the i, j entry of PK−1 is

vj(θi)/kj = uj(θi) = ui(θj).

By matrix multiplication, the i, j entry of NPNK−1A⊤ is:

(−1)i+j+1(cjuj−1(θi)− ajuj(θi) + bjuj+1(θi))

= (−1)i+j+1(cjuj−1(θi) + ajuj(θi) + bjuj+1(θi)− 2ajuj(θi))

= (−1)i+j+1(θiuj(θi)− 2ajuj(θi)) (by Def. 2.6.1)

= (−1)i+j+1uj(θi)(θi − 2aj)

By matrix multiplication, the i, j entry of ANPNK−1 is:

(−1)i+j+1(ciuj(θi−1)− aiuj(θi) + biuj(θi+1))

= (−1)i+j+1(ciuj(θi−1) + aiuj(θi) + biuj(θi+1)− 2aiuj(θi))

= (−1)i+j+1(ciui−1(θj) + aiui(θj) + biui+1(θj)− 2aiui(θj))

(since ui(θj) = uj(θi))

= (−1)i+j+1(θjui(θj)− 2aiui(θj)) (by Def. 2.6.1)

= (−1)i+j+1ui(θj)(θj − 2ai).

And, by Propoisition 5.4.2, we know that θi − 2aj = θj − 2ai. Hence

ANPNK−1 = (NP−1N)−1K−1A⊤.
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To see µ swaps A∗ and A⋄, we have:

µ(A⋄) = δ(σ(δ((A⋄)†)))

= δ(σ(δ(A⋄)))

= δ(σ(δ(N−1AN)))

= δ(σ(A))

= δ(A∗)

= A∗. (A∗ and N are diagonal)

(ii) µ∗ fixes A∗ and swaps A,A⋄.

Proof of (ii). Since µ∗(X) = N−1X†N , and N and A∗ are diagonal, we see

that µ∗ fixes A∗. We also have µ∗(A) = N−1A†N = N−1AN = A⋄, and µ∗

is an involution. Hence µ∗(A⋄) = A.

(iii) µ⋄ fixes A⋄ and swaps A,A∗.

Proof of (iii). Recall † fixes A and A∗. By Lemma 2.8.3 and self-duality,

we see that µ⋄ swaps A and A∗. Also † fixes A⋄ and µ⋄(A⋄) = σ((A⋄)†) =

σ(A⋄) = σ(δ(A)) = σ(δ(A†)), and recall δ(σ(δ(A))) = µ(A) = A. It follows

that δ(µ⋄(A⋄)) = A. Since δ is an involution and δ(A) = A⋄, we have

µ⋄(A⋄) = A⋄.

(2) We show that A,A∗, A⋄ is a Leonard triple.

(i) There is a basis of V where A is diagonal and A∗, A⋄ are irreducible tridi-

agonal.

Proof of (i). We see that µ⋄µ is the composistion of two antiautomorphisms
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and is therefore an automorphism. And µ⋄µ maps A,A∗, A⋄ to A∗, A⋄, A,

respectively. Now by the Noether-Skolem Lemma 2.5.1, There is a invertible

Q such that µ⋄(µ(X)) = QXQ−1. Hence, in the basis with the columns ofQ,

the matrices representing A,A∗, A⋄ are the same as the matrices A∗, A⋄, A

represented in the standard basis, as desired.

(ii) There is a basis of V where A∗ is diagonal and A,A⋄ are irreducible tridi-

agonal.

Proof of (ii). This is satisfied by the standard basis in the assumption of

the problem.

(iii) There is a basis of V where A⋄ is diagonal and A,A∗ are irreducible tridi-

agonal.

Proof of (iii). Similar to (i), we can take the basis consisting of the columns

of matrix Q representing the automorphism µ(µ⋄(X)) = QXQ−1. Hence,

the matrices representing A,A∗, A⋄ in this basis are the same as the matrices

A⋄, A,A∗ in the standard basis.

The proof is now complete. □

By Theorems 5.3.4 and 5.4.3, we have the following corollary.

Corollary 5.4.4. With reference to Definition 5.4.1. Let A,A∗ be a Leonard pair of

type as given in Definition 2.3.1. Then A,A∗ is a spin Leonard pair, with Boltzmann

pair U∗ = N , U = NPN .

Proof. The only thing left to show is that U = NPN and U∗ = N . By the con-

struction of U ,U∗ from ν,ν∗ given in Lemma 5.3.2, and by the proof of Theorem 5.4.3,
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we have that U = K−1NP⊤NK = NK−1P⊤KN , and U∗ = K−1NK = N .

And finally, we know that K−1P⊤K = P , since Pi,j = vj(θi) = kjuj(θi) =

kjui(θj) =
kj
ki
vi(θj) =

kj
ki
Pj,i. □

Lemma 5.4.5. [11, Lem. 5.1] Let A,A∗ be a spin Leonard pair on vector space V ,

with Boltzmann pair U,U∗. Then UU∗U and U∗UU∗ are nonzero scalar multiples of

each other.

Proof. Define automorphisms on End(V ) by letting ν(X) = UXU−1, and ν∗(X) =

U∗X(U∗)−1. We see from Definition 5.2.1 and (5.91) that we have UA∗U−1 =

U∗−1AU∗. By (5.89), U ∈ ⟨A⟩, the algebra generated by A, and by (5.90), U∗ ∈ ⟨A∗⟩,

the algebra generated by A∗. Hence by Theorem 2.5.3, the map † fixes U and

U∗. Applying the antiautomorphism † to (5.91) we get U−1A∗U = U∗AU∗−1. Let

T = UA∗U−1 = U∗−1AU∗, and let T ∗ = U−1A∗U = U∗AU∗−1. We see that ν(A) = A,

ν∗(A) = T ∗, ν∗(A∗) = A∗, ν(A∗) = T , and we see that both νν∗ν and ν∗νν∗ fix both

A and A∗. By Cor. 2.4.8, A and A∗ generate End(V ), hence we have that νν∗ν and

ν∗νν∗ agree on End(V ) and are hence equal. The result follows from Lem. 2.5.2. □

An implication of this lemma for the Leonard pairs from Definition 2.3.1 is that

PNP and NPN are scalar multiples of each other. In this case, comparing the (0,0)

entry of NPN and PNP , we find that they differ by the constant ν̃ =
∑d

i=0(−1)iki =

(−1)d(d+ 1). Therefore, we have the following result.

Corollary 5.4.6. With reference to Definition 5.4.1, let A,A∗ be the Leonard pair

given in Definition 2.3.1. Let N = diag(1,−1, . . . , (−1)d), let P be as in Definition
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2.6.3, and let ν̃ =
∑d

i=0(−1)iki = (−1)d(d+ 1). Then

PNP = ν̃NPN = (−1)d(d+ 1)NPN. (5.112)

We will see in the next section (Section 5.5) that this result can be used to

prove Corollary 5.5.2, which will imply a generalization of the construction made in

Section 3.5.

5.5 Alternating sum of products formula for Def. 2.3.1

Note that Corollary 5.4.6 also tells us that the columns of P are eigenvectors of

U = U∗PU∗. Specifically themth column of P , which we denote by v⃗m, has eigenvalue

ν̃(−1)m:

Uv⃗m = NPNv⃗m = ν̃(−1)mv⃗m = (−1)d+m(d+ 1)v⃗m. (5.113)

Dividing (5.113) by km, and finding the nth entry in the vector on both sides, we

have the following corollary.

Corollary 5.5.1. For any n,m (0 ≤ n,m ≤ d),

(−1)d+n+m(d+ 1)um(θn) =
d∑

j=0

(−1)j(2j + 1)un(θj)um(θj).
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Equivalently,

(−1)d+n+m(d+ 1)4F3

[
−n, n+ 1, −m, m+ 1

1, d+ 2, −d
; 1

]

=
d∑

j=0

(−1)j(2j + 1)4F3

[
−n, n+ 1, −j, j + 1

1, d+ 2, −d
; 1

]

×4F3

[
−m, m+ 1, −j, j + 1

1, d+ 2, −d
; 1

]
.

By taking m = 0 in the previous corollary we get the next corollary, which we

will use in Section 5.6 to prove a generalization of the correspondence observed in

Section 3.5. Specifically, we will show an algebraic connection between the feasible

strongly regular graph parameters

(4n2, 2n2 − n− 1, , n2 − n− 2, n2 − n)

and the Racah-type orthogonal polynomials (and Leonard pairs) given in Defini-

tion 2.3.1.

Corollary 5.5.2. For all k (0 ≤ k ≤ d)

d∑
n=0

(−1)n(2n+ 1)4F3

[
−n, n+ 1, −k, k + 1

1, d+ 2, −d
; 1

]
= (−1)d+k(d+ 1). (5.114)

Proof. If we take A,A∗ to be the Racah type spin Leonard pair with s = 0 and

h = − 6
d(d+2)

, then ki =
∏i

j=0
bj−1

cj
= 2i + 1, hence ν̃ =

∑d
i=0(−1)iki = (−1)d(d + 1).
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From Def. 2.6.3 and (2.28) the matrix P has entries:

Pi,j = kjui(θj) = (2j + 1)4F3

[
−i, i+ 1, −j, j + 1

1, d+ 2, −d
; 1

]
.

By evaluating the hypergeometric series with j = 0, we see that first column of P is

(1, 1, . . . , 1)⊤. Hence the first column of U∗P is (1,−1, . . . , (−1)d)⊤.

Therefore, we get that the (i, 0)-entry of PU∗P is:

d∑
n=0

(−1)n(2n+ 1)4F3

[
−n, n+ 1, −i, i+ 1

1, d+ 2, −d
; 1

]

By Corollaries 5.4.6 and 5.4.4 we have that PU∗P = ν̃U∗PU∗, and hence, this same

(i, 0)-entry is equal to ν̃(−1)i+0Pi,0 = (d+ 1)(−1)d+i. □

It is worth noting that Corollary 5.5.2 can actually be proved by expressing the

hypergeometric series as a sum, swapping the order of the summation, and then using

the following sum formulas:

d∑
n=0

(−1)n(2n+ 1)

(
n+ h

2h

)
= (−1)d(d− h+ 1)

(
d+ h+ 1

2h

)
, (5.115)

d∑
h=0

(−1)h
(
k

h

)(
k + h

h

)
= (−1)k. (5.116)

This alternate proof is given in Appendix B.
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5.6 Odd diameter fusion of Def. 2.3.1

In this section we show the following generalization from the example in Section 3.5

for all odd d (A similar formula follows for even values of d, but the p̃hi,j values are not

integers, and so they do not correspond to feasible parameters of a strongly regular

graph).

Theorem 5.6.1. Let d = 2n − 1, for some integer n > 1. Let B be the matrix

algebra generated by the {Bi}di=0 for the Leonard pair in Definition 2.3.1. Let B̃ be

the subalgebra generated by the matrices Ã0 = I, Ã1 =
n∑

m=1

B2m, Ã2 =
n∑

m=1

B2m−1.

Then the following hold.

(i) There are values p̃hi,j such that for all i, j, ÃiÃj =
2∑

h=0

p̃hi,jÃh.

(ii) The matrices (B̃i)h,j = p̃hi,j, are given by

B̃0 = I, B̃1 =


0 2n2 − n− 1 0

1 n2 − n− 2 n2

0 n2 − n n2 − 1

 , B̃2 =


0 0 2n2 + n

0 n2 n2 + n

1 n2 − 1 n2 + n

 .

(5.117)

(iii) These matrices have the matrix of eigenvectors (and eigenvalues),

P̃ =


1 2n2 − n− 1 2n2 + n

1 n− 1 −n

1 −(n+ 1) n

 . (5.118)

In particular the matrix in (5.118) has columns (rows) that are the right (left) eigen-

vectors of the B̃i. Also the (i, j) entry is the eigenvalue of Bj (Bi) of the ith column

(jth row) vector, of P̃ .
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Proof. Since the Leonard pairs in Def. 2.3.1 are self-dual and the Bi are simultane-

ously diagonalizable, we can work with the B∗
i . Let Ã

∗
0 = B∗

0 = I, Ã∗
1 =

n∑
m=1

B∗
2m, Ã

∗
2 =

n∑
m=1

B∗
2m−1, i.e. the corresponding duals of the Ãi. And since the diagonal of B∗

i is

the ith column of P , we can think of them as these columns if we like, and hence the

diagonal of Ã∗
i as the corresponding sums of these columns. By (2.14) and the or-

thogonality relation (2.20) the sum of the columns of P has the 0th entry ν = (d+1)2

and all other entries 0. Hence all for j > 0 we have (Ã∗
0)j,j + (Ã∗

2)j,j + (Ã∗
1)j,j = 0.

Cor. 5.5.2, Def. 2.3.2, and (2.28) tell us (Ã∗
0)j,j + (Ã∗

2)j,j − (Ã∗
1)j,j = (−1)d+j(d + 1).

The 0th entry of Ã∗
2 can be found by evaluating the sum of every other odd integer

starting with 3 to 2(d+ 1) + 1, and similarly for Ã∗
1 the odd integers starting with 5

to 2d+ 1.

Hence it is straightforward to check that for odd d the first diagonal entries of

Ã∗
1 and Ã∗

2 are the entries (0, 1) and (0, 2) of the matrix P̃ in (5.118), and the other

diagonal entries repeat with period 2, specifically with the entries in (1, 1), (2, 1), and

(2, 1), (2, 2) of P̃ respectively.

Note that the B∗
i are the images of the Bi under a K-algebra isomorphism, they

form a commutative K-algebra, and Ã0 = I. So, to work out the p̃hi,j, one only needs

to compute the products (Ã∗
1)

2, (Ã∗
2)

2, and Ã∗
1Ã

∗
2. Because of the repeated entries, it

suffices to look at the entry wise products of the columns of P̃ . It is a straightforward

calculation to see they come out to the entries in the matrices B̃0, B̃1, B̃2 from (5.117).

□

Note, this technique also allows one to compute the p̃hi,j, and the P̃ in the even

diameter case, and B̃1 will still be irreducible tridiagonal. However, some values will

be half integers, and so will not correspond to intersection matrices, eigenvectors, and
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eigenvalues of feasible strongly regular graphs.

The intersection parameters and eigenvalues of a strongly regular graph are de-

termined by their parameters (v, k, λ, µ) [5, 19]. It is straightforward to check that

if an SRG exists with parameters (4n2, 2n2 − n − 1, n2 − n − 2, n2 − n), then it will

have the the intersection matrices (5.117), and the distance matrices will have the

eigenvalues in (5.118). Hence as a consequence of the previous theorem, we have the

following corollary.

Corollary 5.6.2. Suppose d = 2n − 1, where n > 1 is an integer, and recall the

intersection matrices B0 = I, B1, . . . , Bd from the Leonard pair in Def. 2.3.1. Let M̃

be the subalgebra generated by the following matrices, Ã0 = I, Ã1 =
n∑

m=1

B2m, Ã2 =

n∑
m=1

B2m−1. Then the following hold.

(i). There are structure constants p̃hi,j such that for all i, j,

ÃiÃj =
2∑

h=0

p̃hi,jÃh,

(ii). The matrices {B̃i}di=0 with entries (B̃i)h,j = p̃hi,j, are the feasible intersection

matrices of the feasible strongly regular graph parameters (v, k, λ, µ) = (4n2, 2n2 −

n− 1, n2 − n− 2, n2 − n).

(iii). The matrix B̃1 is irreducible tridiagonal.

For odd diameters satisfying:

d ∈ {1, 3, 5, 7, 9, 11, 15, 17, 19, 23, 27, 31, 35}, (5.119)

75



the intersection matrices and P̃ in (5.117) and (5.118) correspond to known strongly

regular graphs [3],[8]. For a given d = 2n−1, if the Ã1 corresponds to an intersection

matrix of a distance regular graph, then any such graph is strongly regular with

parameters:

(4n2, 2n2 − n− 1, n2 − n− 2, n2 − n). (5.120)

Or, similarly, we could swap B1 and B2 and get the parameters of the complement:

(4n2, 2n2 + n, n2 + n, n2 + n). (5.121)

These graphs are also known as the maximal energy graphs, which means that

the sum of magnitudes of the eigenvalues equal the maximum value possible for a

given number of vertices [31]. Haemers [22] conjectured that these graphs exist for

all n. The existence of a strungly regular graph for a given n is also equivalent to the

existence of a regular graphical Hadamard matrix of negative type of order 4n2, and

in [23] Haemers proved they exist whenever n is a perfect square.

Other infinite families are known. Fickus et.al., in [16], show that for d = 2n− 1

and n = 2j−1 for some j ≥ 2, there exist strongly regular graphs with the parameters

given in equations (5.120) and (5.121). Odd values of n in general appear to be open.

In particular, it is unknown [3] whether or not such a graph exists when

2n− 1 = d ∈ {13, 21, 25, 29, 33}. (5.122)

As far as we know, this connection between the pseudo-distance matrices of this

set of Leonard pairs and this family of feasible strongly regular graph parameters was
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unobserved.

In the next section, we prove a generalization of Corollary 5.4.6 for other families

of spin Leonard pairs.

5.7 Signed sum of products for certain Boltzmann pairs

In Section 5.4 we proved that, for the spin Leonard pairs of Racah type (as given in

Lemma 5.2.8), we have PNP = ν̃NPN , where P is from Definition 2.6.3, N is from

(5.105), and ν̃ =
∑d

i=0(−1)iki. If we assume the work of Curtin [11], a similar formula

can be shown to hold for a larger class of Leonard pairs. We direct the interested

reader to [11] for details. In [11], Curtin gave formulas for the Boltzmann pairs of

all spin Leonard pairs. We will show that, under certain conditions, we can derive a

simplified formula for these Boltzmann pairs. The equivalence of these matrices (up

to a scalar) implies a formula for the eigenvectors of the matrix P from Def. 2.6.3.

It also gives us a proof of an identity involving a signed sum of products of certain

hypergeometric series given in Corollary 5.7.3.

The condition needed for this simplification is valid for all known spin Leonard

pairs that have Racah type, Krawtchouk type (when parameter v = −1), or Bannai-

Ito type [11, Lems. 1.8-1.11].

Theorem 5.7.1. Let A, A∗ be a spin Leonard pair, with character table P , and

with Boltzmann pair W,W ∗ as given in [11, Theorem 1.17]. If (W ∗)−1 = W ∗, then

the pair:

U∗ = W ∗, (5.123)

U = W ∗PW ∗ = U∗PU∗, (5.124)
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forms a Boltzmann pair for A, A∗. Note: Lemma [11, 1.17] tells us that W ∗ = U∗ is

diagonal.

Proof. We can take A,A∗, A⋄ to be a canonical modular Leonard triple as in Lemma

5.2.7 and [10, Lemmas 1.6, 1.7]. By [40, Theorem 5.10], spin Leonard pairs are self-

dual. Hence the matrix P with entries Pi,j = vj(θi) diagonalizes the matrix of A into

A∗. This is since vj(θi) = kjuj(θi), θjvi(θj) = ci+1vi+1(θj) + aivi(θj) + bi−1vi−1(θj),

and θjui(θj) = biui+1(θj) + aiui(θj) + ciui−1(θj). Hence, P is a matrix of left and

right eigenvectors of A. The orthogonality relations in this case give PP = νI, where

ν =
∑d

i=0 ki, hence P−1 = 1
ν
P .

So we have A∗ = 1
ν
PAP and A = 1

ν
PA∗P , and so the duality σ from ⟨A,A∗⟩ →

⟨A∗, A⟩ is defined by σ(X) = 1
ν
PXP .

(i) Since U∗ and A∗ are diagonal, we have U∗A∗ = A∗U∗.

(ii) If it is the case that (U∗)−1 = U∗, then

U−1(U∗)−1AU∗U = (U∗P−1U∗)U∗AU∗(U∗PU∗) = U∗P−1IAIPU∗

= U∗P−1APU∗ = U∗A∗U∗ = A∗,

since A∗ and U∗ are diagonal. Hence, we have that (U∗)−1AU∗ = UA∗U−1.

(iii) By [11, Lemma 1.6] A⋄ = (U∗)−1AU∗, and (A⋄)∗ = U∗A(U∗)−1.

Hence we have

U∗A(U∗)−1 = (A⋄)∗ = σ(A⋄) = σ((U∗)−1AU∗) =
1

ν
P (U∗)−1AU∗P.
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This means A = 1
ν
(U∗)−1P (U∗)−1AU∗PU∗, so finally

UA = U∗PU∗A = AU∗PU∗ = AU.

Therefore, U∗, U is a Boltzmann pair for A,A∗. □

The assumption of the theorem above holds in the case that we have a spin

Leonard pair of what Curtin refers to as Type II, IV, or V. Specifically, this result

applies to the spin Leonard pairs of

(1) Racah type (with h∗ = h, s∗ = s, r1 = s/2, r2 = 3s/2 + d + 1 in the notation of

[49, Ex. 5.10]),

(2) Krawtchouk type with v = −1 (or r = 3ss∗

4
and s = s∗ in the notation of [49,

Ex. 5.13]),

(3) Bannai-Ito type (with h∗ = h, s∗ = s, r1 = −3s/2 + d + 1, r2 = −s/2 in the

notation of [49, Ex. 5.14]).

In contrast, the formula given in [11, Theorem 1.17] gives the Boltzmann pair

W ∗ = U∗,W = PU∗P . However, as shown in [11, Theorem 1.18], for any other

Boltzmann pair U∗, U , there exist scalars a and b such that U∗ = aW ∗, and U = bW .

(There is an exception in the Bannai-Ito case of [11, Lemma 1.11], where there are

two choices for W and W ∗, as chosen in [11, Lemma 1.17]. However, they still satisfy

(W ∗)−1 = W ∗, and the previous theorem and the next argument still hold for finding

the coefficients a and b.) We defined U∗ to be W ∗, hence a = 1. The (0,0) entry of

U is 1, and the (0, 0) entry of W is ν̃ =
∑d

i=0(U
∗)iiki, as in [50, Lemma 3.10]. Hence,

we get PU∗P = ν̃U∗PU∗, so b = 1
ν̃
. Therefore, we have the following corollary.
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Corollary 5.7.2. Let A,A∗ be a spin Leonard pair with character table P . Suppose

P satisfies the condition to have Boltzmann pair U∗, U = U∗PU∗ as given in Theorem

(5.7.1). Let ν̃ =
∑d

i=0(U
∗)i,iki. Then

PU∗P = ν̃U∗PU∗. (5.125)

Furthermore, the eigenvectors of P are given by the columns of U∗P , and the ith

entry of the jth eigenvector vj under the ordering implied by U∗P is given by

(U∗P )i,j = U∗
i,iPi,j, (5.126)

which has eigenvalue λj = ν̃U∗
j,j. □

Proof. We already proved (5.125), and the eigenvector result is proven from noticing

that (5.125) gives the diagonalization of P = 1
ν̃
(U∗)−1PU∗P (U∗)−1. □

Note that the above corollary also tells us that the eigenvectors of U = U∗PU∗

are the columns of P , and for the jth column of P , which we denote by vj, we have

Uvj = ν̃U∗
j,jvj. (5.127)

We have the following immediate consequence, which is a generalization of Corol-

lary 5.5.1.

Corollary 5.7.3. Let ui be the orthogonal polynomials associated with spin Leonard

pairs of Racah type, Krawtchouk type with v = −1 ( r = 3 and s = s∗ = 2), or

Bannai-Ito type, [11, Lems. 1.8-1.11]. Let U∗ be defined as in Theorem 5.7.1 and let

ν̃ =
∑d

i=0 U
∗
i,iki. Then
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d∑
j=0

U∗
jjkjuj(θn)uj(θm) = ν̃U∗

n,nU
∗
m,mum(θn).
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6 Directions for further research

As we mentioned in Section 3.4, for a Leonard pair coming from the intersection

parameters of a distance regular graph, the intersection parameters are nonnega-

tive integers and the Krein parameters are nonnegative real numbers. Although we

were not able to find a direct combinatorial interpretation of the Leonard pairs in

Def. 2.3.1, we were able to prove nonnegativity of the intersection numbers. Since

these Leonard pairs are self-dual, the intersection numbers and Krein parameters are

the same. As mentioned, this was used to solve a previously unknown special case of

[50, Problems 11.3, 11.5]. We hope this might serve as a possible direction to follow

for further understanding of these two problems.

In the future, we also hope to further explore the general Racah-type Leonard

pairs and learn what can be said about the nonnegativity or factorization of the

intersection and Krein parameters. We would also like to explore the q-Racah type

Leonard pairs and see if some of the techniques we have presented can be used in

combination with some of the fundamental formulas associated with the q-Racah

coefficients and Uq(sl(2)).

We would also like to further understand the algebraic connection between the

fusion matrices and the strongly regular graphs mentioned in Section 5.6, and to

further explore the fusions in the general Racah, Krawtchouk, and Bannai-Ito type

spin-Leonard pairs. It would be interesting to learn if any algebras isomorphic to

adjacency algebras of other graphs arise.
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Appendix A Irreducible matrices

The following theorem is proved in [25], and the history and origins of the following
definition are discussed in [44]. The following references are also of interest: [[17],
[20], [24], [45]].

Theorem A.1.1. Let A be an n× n matrix. The following are equivalent:

(1) There exists a permutation of A to block lower-triangular form with more than
one block.

(2) There exists a permutation of A to block upper-triangular form with more than
one block.

(3) The digraph with adjacency matrix 1A (the nonzero indicator matrix of A, See
[25, Page 399]), is not strongly connected.

Definition A.1.2. An n×n matrix is called reducible if it satisfies any of the three
equivalent conditions in Theorem A.1.1.

A matrix is irreducible if it is not reducible.

Lemma A.1.3. A n × n tridiagonal matrix A is irreducible if and only if it has
nonzero super- and sub-diagonal.

Proof. If A has nonzero super- and sub-diagonal, the directed graph D with adja-
cency matrix 1A contains a two way directed path through all vertices, and hence D
is connected. Hence A is irreducible by Theorem A.1.1, which proves one direction.

Suppose some bi = 0 (the ci = 0 case is symmetrical). Then we have
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A =



a0 b0 0 · · · 0 0 · · · 0

c1 a1 b1
. . .

...

0
. . .

. . .
. . . 0

... . .
. ...

...
. . . ci−1 ai−1 bi−1

0 · · · 0 ci ai 0 · · · 0
0 · · · 0 ci+1 ai+1 bi+1 0 · · · 0

0 0 ci+2 ai+2 bi+2

. . .
...

... . .
. ... 0

. . .
. . .

. . . 0
...

. . . cd−1 ad−1 bd−1

0 · · · 0 0 · · · 0 cd ad



=

(
X 0
Z Y

)
.

Hence we have that A is reducible by Theorem A.1.1, which completes the other
direction. □

88



Appendix B Alternate proof of Cor. 5.5.1

First we evaluate two sums (5.115), (5.116) mentioned at the end of Sec. 5.5.

Proposition B.1.1.

d∑
n=0

(−1)n(2n+ 1)

(
n+ h

2h

)
= (−1)d(d− h+ 1)

(
d+ h+ 1

2h

)
(B.128)

Proof. Looking at a summand we have,

(−1)n(2n+ 1)

(
n+ h

2h

)
= (−1)n

(
n+ h

2h

)
(2n+ 1− h+ h)

= −(−1)n
(
n+ h

2h

)
(−h− n− 1 + h− n)

= −(−1)n
(
n+ h

2h

)(
−(h− n− 1)(h+ n+ 1)

(h− n− 1)
+ h− n

)
= −(−1)n

(
n+ h

2h

)(
(h− (n+ 1))

(n+ h+ 1)

(n+ h− 2h+ 1)
+ h− n

)
= −(−1)n

(
(h− (n+ 1))

(n+ h+ 1)

(n+ h− 2h+ 1)

(
n+ h

2h

)
+ (h− n)

(
n+ h

2h

))
= −(−1)n

(
(h− (n+ 1))

(
n+ h+ 1

2h

)
+ (h− n)

(
n+ h

2h

))
(since

(
n+1
k

)
= (n+1)

(n−k+1)

(
n
k

)
)

= (−1)n+1(h− (n+ 1))

(
(n+ 1) + h

2h

)
− (−1)n(h− n)

(
n+ h

2h

)
.

This expression telescopes in n, hence summing from n = 0 to d, evaluates to
(−1)d+1(h− (d+ 1))

(
(d+1)+h

2h

)
= (−1)d(d− h+ 1

(
d+h+1

2h

)
, as desired. □

Proposition B.1.2.
d∑

h=0

(−1)h
(
k

h

)(
k + h

h

)
= (−1)k (B.129)

Proof.

First note that
∑d

h=0(−1)h
(
k
h

)(
k+h
h

)
=
∑k

h=0(−1)h
(
k
h

)(
k+h
h

)
. For a base case k = 0
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we have
0∑

h=0

(−1)h
(
0

h

)(
0 + h

h

)
= 1 = (−1)0.

We will show that the sum of interest of value k and k+1 are negatives of each other.
We will do this by showing that the summand,

(−1)h
(
k + 1

h

)(
k + 1 + h

h

)
+ (−1)h

(
k

h

)(
k + h

h

)
(B.130)

is equivalent to the telescoping sum,

(−1)h+12(h+ 1)2

(k + 1)(h+ 1− k − 1)

(
k

h+ 1

)(
k + h+ 1

h+ 1

)
− (−1)h2h2

(k + 1)(h− k − 1)

(
k

h

)(
k + h

h

)
.

(B.131)

Hence summing (B.130) from h = 0 to d, will evaluate to 0, which implies the result.

Towards this we have,

(B.130) = (−1)h
((

k + 1

h

)(
k + 1 + h

h

)
+

(
k

h

)(
k + h

h

))
= (−1)h

(
k

h

)(
k + h

h

)(
(k + 1)

(k − h+ 1)

(k + h+ 1)

(k + 1)
+ 1

)
(by

(
n+1
k

)
= (n+1)

(n−k+1)

(
n
k

)
)

= (−1)h
(
k

h

)(
k + h

h

)(
(k + h+ 1)

(k − h+ 1)
+ 1

)
= (−1)h

(
k
h

)(
k+h
h

)
(k − h+ 1)

((k + h+ 1) + (k − h+ 1))

= −(−1)h
(
k
h

)(
k+h
h

)
(h− k − 1)

(2(k + 1))

= −(−1)h
2
(
k
h

)(
k+h
h

)
(h− k − 1)(k + 1)

(k + 1)2

= −(−1)h
2
(
k
h

)(
k+h
h

)
(h− k − 1)(k + 1)

(
− (h− k − 1)(k + 1 + h) + h2

)
= −(−1)h

2
(
k
h

)(
k+h
h

)
(k + 1)

(
− (k + h+ 1) +

h2

(h− k − 1)

)
= −(−1)h

2
(
k
h

)(
k+h
h

)
(k + 1)

(
(h+ 1)2

(h− k)

(k − h)

(h+ 1)

(k + h+ 1)

(h+ 1)
+

h2

(h− k − 1)

)
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=
(−1)h+12(h+ 1)2

(k + 1)(h+ 1− k − 1)

(
k

h+ 1

)(
k + h+ 1

h+ 1

)
− (−1)h2h2

(k + 1)(h− k − 1)

(
k

h

)(
k + h

h

)
(using

(
n

k+1

)
= (n−k)

(k+1)

(
n
k

)
, and

(
n+1
k+1

)
= (n+1)

(k+1)

(
n
k

)
)

= (B.131).

This completes the proof. □

We now give an alternate proof of Cor. 5.5.2, hence for d ≥ 1, 0 ≤ n, k,≤ d,

d∑
n=0

(−1)n(2n+ 1)4F3

[
−n, n+ 1, −k, k + 1

1, d+ 2, −d
; 1

]
= (−1)d+k(d+ 1). (5.114)

Proof.

d∑
n=0

(−1)n(2n+ 1)4F3

[
−n, n+ 1, −k, k + 1

1, d+ 2, −d
; 1

]

=
d∑

n=0

(−1)n(2n+ 1)
n∑

h=0

(−n)h(n+ 1)h(−k)h(k + 1)h
h!(1)h(d+ 2)h(−d)h

=
d∑

n=0

(−1)n(2n+ 1)
n∑

h=0

(−1)h
(
n
h

)(
n+h
h

)(
k
h

)(
k+h
h

)(
d
h

)(
d+1+h

h

)
=

n∑
h=0

(−1)h
(
k
h

)(
k+h
h

)(
d
h

)(
d+1+h

h

) d∑
n=0

(−1)n(2n+ 1)

(
n

h

)(
n+ h

h

)

=
n∑

h=0

(−1)h
(
k
h

)(
k+h
h

)(
d
h

)(
d+h
h

)
d+h+1
d+1

d∑
n=0

(−1)n(2n+ 1)

(
n

h

)(
n+ h

h

)
(
(
n+1
k

)
= n+1

n−k+1

(
n
k

)
)

=
n∑

h=0

(−1)h
(
k
h

)(
k+h
h

)(
2h
h

)(
d+h
2h

)
d+h+1
d+1

(
2h

h

) d∑
n=0

(−1)n(2n+ 1)

(
n+ h

2h

)
(
(
n
k

)(
n+k
k

)
=
(
2k
k

)(
n+k
2k

)
)

= (d+ 1)
n∑

h=0

(−1)h
(
k
h

)(
k+h
h

)(
d+h
2h

)
(d+ h+ 1)

d∑
n=0

(−1)n(2n+ 1)

(
n+ h

2h

)

= (d+ 1)
n∑

h=0

(−1)h
(
k
h

)(
k+h
h

)(
d+h
2h

)
(d+ h+ 1)

(
(−1)d(d− h+ 1)

(
d+ h+ 1

2h

))
(by Prop. B.1.1)
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= (−1)d(d+ 1)
n∑

h=0

(−1)h
(
k
h

)(
k+h
h

)(
d+h
2h

)
(d+ h+ 1)

(
(d− h+ 1)(d+ h+ 1)

(d− h+ 1)

(
d+ h

2h

))
(
(
n+1
k

)
= n+1

n−k+1

(
n
k

)
)

= (−1)d(d+ 1)
n∑

h=0

(−1)h
(
k

h

)(
k + h

h

)
= (−1)d+k(d+ 1) (by Prop. B.1.2)

□
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