Hypergraphs With a Unique Perfect Matching

Aaron Spindel
Under the direction of
Dr. John S. Caughman

February 26, 2012
This presentation discusses the paper “On the maximum number of edges in a hypergraph with a unique perfect matching” written by:

Deepak Bal
Andrzej Dudek
Zelealem B. Yilma
Intuitively, an example demonstrates the main concepts.
Intuitively, an example demonstrates the main concepts.
Intuitively, an example demonstrates the main concepts.
A **graph** \(G \) is a finite set of vertices \(\mathcal{V} \) along with a set of edges \(\mathcal{E} \) where every edge is a set containing exactly two vertices.
A **graph** G is a finite set of vertices \mathcal{V} along with a set of edges \mathcal{E} where every edge is a set containing exactly two vertices.

A **hypergraph** G is a finite set of vertices \mathcal{V} along with a set of edges $\mathcal{E} \subseteq \mathcal{P}\mathcal{V} \setminus \{\emptyset\}$ (where $\mathcal{P}\mathcal{V}$ denotes the power set of \mathcal{V}) such that no two edges in \mathcal{E} are equal as sets. A hypergraph is **k-uniform** if every $E \in \mathcal{E}$ has cardinality k.
A matching in a hypergraph $G = (\mathcal{V}, \mathcal{E})$ is a set of pairwise disjoint edges $\{M_1, \ldots, M_m\}$.
A **matching** in a hypergraph $G = (\mathbb{V}, \mathcal{E})$ is a set of pairwise disjoint edges $\{M_1, \ldots, M_m\}$.

A **perfect matching** is a matching $\{M_1, \ldots, M_m\}$ such that $\mathbb{V} = \bigcup_{i=1}^{m} M_i$. In other words, a perfect matching is a collection of edges that partition the vertex set.
For $k \geq 2$ and $m \geq 1$, let

$$b_{k,\ell} = \frac{\ell - 1}{\ell} \sum_{i=0}^{\ell-1} (-1)^i \binom{\ell}{i} \binom{k(\ell - i)}{k}.$$
For $k \geq 2$ and $m \geq 1$, let

$$b_{k,\ell} = \frac{\ell - 1}{\ell} \sum_{i=0}^{\ell-1} (-1)^i \binom{\ell}{i} \binom{k(\ell - i)}{k}.$$

Theorem

Let $\mathcal{H}_m = (\mathcal{V}_m, \mathcal{E}_m)$ be a k-uniform hypergraph with km vertices and unique perfect matching. Then

$$|\mathcal{E}_m| \leq f(k, m)$$

where

$$f(k, m) = m + b_{k,2} \binom{m}{2} + b_{k,3} \binom{m}{3} + \cdots + b_{k,k} \binom{m}{k}.$$

Moreover, this bound is tight.
Values of $f(k, m)$

<table>
<thead>
<tr>
<th>k</th>
<th>m</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1</td>
<td>11</td>
<td>48</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1</td>
<td>36</td>
<td>297</td>
<td>1168</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
<td>127</td>
<td>1878</td>
<td>10504</td>
</tr>
</tbody>
</table>
Outline

1 Construction

2 Proof of the Upper Bound

3 Application
We create a sequence of k-uniform hypergraphs attaining the claimed bound through an iterative construction.

First, define H^*_{1} as the hypergraph with k vertices and one edge containing all the vertices. To create H^*_{m}, start with H^*_{m-1} and...

- Add $k-1$ new vertices
- Add every edge that intersects at least one of these new vertices
- Add 1 new pendant vertex
- Add the edge that contains the k new vertices including the pendant.
We create a sequence of k-uniform hypergraphs attaining the claimed bound through an iterative construction. First, define \mathcal{H}_1^* as the hypergraph with k vertices and one edge containing all the vertices.
We create a sequence of k-uniform hypergraphs attaining the claimed bound through an iterative construction. First, define \mathcal{H}_1^* as the hypergraph with k vertices and one edge containing all the vertices. To create \mathcal{H}_m^*, start with \mathcal{H}_{m-1}^* and...
We create a sequence of k-uniform hypergraphs attaining the claimed bound through an iterative construction. First, define H_1^* as the hypergraph with k vertices and one edge containing all the vertices. To create H_m^*, start with H_{m-1}^* and...

- Add $k - 1$ new vertices
We create a sequence of k-uniform hypergraphs attaining the claimed bound through an iterative construction. First, define \mathcal{H}^*_1 as the hypergraph with k vertices and one edge containing all the vertices. To create \mathcal{H}^*_m, start with \mathcal{H}^*_{m-1} and...

- Add $k - 1$ new vertices
- Add every edge that intersects at least one of these new vertices
We create a sequence of k-uniform hypergraphs attaining the claimed bound through an iterative construction. First, define \mathcal{H}_1^* as the hypergraph with k vertices and one edge containing all the vertices. To create \mathcal{H}_m^*, start with \mathcal{H}_{m-1}^* and...

- Add $k - 1$ new vertices
- Add every edge that intersects at least one of these new vertices
- Add 1 new pendant vertex
We create a sequence of \(k \)-uniform hypergraphs attaining the claimed bound through an iterative construction.

First, define \(\mathcal{H}_1^* \) as the hypergraph with \(k \) vertices and one edge containing all the vertices.

To create \(\mathcal{H}_m^* \), start with \(\mathcal{H}_{m-1}^* \) and...

- Add \(k-1 \) new vertices
- Add every edge that intersects at least one of these new vertices
- Add 1 new pendant vertex
- Add the edge that contains the \(k \) new vertices including the pendant.
Example $k = 2$

Start with \mathcal{H}_1^*.
Example \(k = 2 \)

Add \(k - 1 = 1 \) new vertex and connect it to all previous vertices.
Example \(k = 2 \)

Add a pendant vertex and an edge containing "new" vertices. This is now \(\mathcal{H}_2^* \).
Repeat the process again to create the next hypergraph. Add \(k - 1 = 1 \) new vertex and connect it to all previous vertices.
Example $k = 2$

Add a pendant vertex and an edge containing “new” vertices. This is now \mathcal{H}_3^*.
Example $k = 3$

Start with \mathcal{H}_1^*.
Example $k = 3$

Add $k - 1 = 2$ new vertices.
Example $k = 3$

Add all edges that contain some “new” vertex. Add edge $\{2, 3, 4\}$.
Example $k = 3$

Add all edges that contain some “new” vertex.
Add edge $\{1, 3, 4\}$.
Add all edges that contain some “new” vertex.
Add edge \{1, 2, 4\}.

Example \(k = 3 \)
Add all edges that contain some “new” vertex.
Add edge \{1, 2, 5\}.
Example $k = 3$

Add all edges that contain some “new” vertex.
Add edge $\{1, 3, 5\}$.
Example $k = 3$

Add all edges that contain some “new” vertex. Add edge $\{2, 3, 5\}$.
Example $k = 3$

Add all edges that contain some “new” vertex.
Add edge $\{3, 4, 5\}$.
Add all edges that contain some “new” vertex.
Add edge \{2, 4, 5\}.
Add all edges that contain some “new” vertex. Add edge \{1, 4, 5\}.

Example $k = 3$
Example $k = 3$

Add a pendant vertex.
Example $k = 3$

Add edge \(\{4, 5, 6\} \) containing the “new” vertices. This is now \(\mathcal{H}_2^* \).
Theorem

There is a unique perfect matching in \mathcal{H}_m^*.
Theorem

There is a unique perfect matching in \mathcal{H}_m^*

[Pictures depict the proof in the 2-uniform case.]

- Proof by induction
Theorem

There is a unique perfect matching in H^*_m.

Proof by induction

Base Case: Trivial. This hypergraph only has one edge which contains every vertex.
Theorem

There is a unique perfect matching in \mathcal{H}_m^*

Proof by induction

Base Case: Trivial. This hypergraph only has one edge which contains every vertex.

Inductive Step: The edge E incident with the pendant vertex in \mathcal{H}_m^* must be included in any perfect matching.
Theorem

There is a unique perfect matching in \mathcal{H}_m^*

- **Proof by induction**
- **Base Case**: Trivial. This hypergraph only has one edge which contains every vertex.
- **Inductive Step**: The edge E incident with the pendant vertex in \mathcal{H}_m^* must be included in any perfect matching.
- No other edge in a perfect matching can intersect E. This excludes all edges incident with some “new” vertex.
Theorem

There is a unique perfect matching in \mathcal{H}_m^*.

Proof by induction

Base Case: Trivial. This hypergraph only has one edge which contains every vertex.

Inductive Step: The edge E incident with the pendant vertex in \mathcal{H}_m^* must be included in any perfect matching.

No other edge in a perfect matching can intersect E. This excludes all edges incident with some "new" vertex.

After eliminating such edges, we are left with a hypergraph isomorphic to \mathcal{H}_{m-1}^* which has a unique perfect matching by induction hypothesis.
Theorem

The \(k \)-uniform hypergraph \(\mathcal{H}^*_m \) attains the edge bound presented in the main corollary.
Theorem

The k-uniform hypergraph \mathcal{H}_m^* attains the edge bound presented in the main corollary.

- There are two methods to count the number of edges in \mathcal{H}_m^*.
Theorem

The k-uniform hypergraph \mathcal{H}_m^* attains the edge bound presented in the main corollary.

- There are two methods to count the number of edges in \mathcal{H}_m^*.
- Method 1: Directly track the number of edges in the hypergraphs based upon how they were constructed.
Theorem

The k-uniform hypergraph \mathcal{H}_m^* attains the edge bound presented in the main corollary.

- There are two methods to count the number of edges in \mathcal{H}_m^*.
- Method 1: Directly track the number of edges in the hypergraphs based upon how they were constructed.
- Set up a recurrence relation:

 $$ (\# \text{Edges in } \mathcal{H}_m^*) = (\# \text{New Edges}) + (\# \text{Edges in } \mathcal{H}_{m-1}^*) $$

 This is reminiscent of

 $$ a_n = \text{(stuff)} + a_{n-1} $$
Theorem

The k-uniform hypergraph \mathcal{H}^*_m attains the edge bound presented in the main corollary.

- There are two methods to count the number of edges in \mathcal{H}^*_m.
- Method 1: Directly track the number of edges in the hypergraphs based upon how they were constructed.
- Set up a recurrence relation:
 $$\text{(#Edges in } \mathcal{H}^*_m) = (\text{#New Edges}) + (\text{#Edges in } \mathcal{H}^*_{m-1})$$

 This is reminiscent of
 $$a_n = \text{(stuff)} + a_{n-1}$$

- This equation can be solved by induction or by using recurrence relation solving strategies.
The k-uniform hypergraph \mathcal{H}^*_m attains the edge bound presented in the main corollary.

Unfortunately, the most obvious way to solve this equation yields

$$f(k, m) = m + \sum_{i=1}^{m-1} \left[\binom{k(i + 1) - 1}{k} - \binom{ki}{k} \right]$$
Theorem

The k-uniform hypergraph H^*_m attains the edge bound presented in the main corollary.

- Unfortunately, the most obvious way to solve this equation yields

$$f(k, m) = m + \sum_{i=1}^{m-1} \left[\binom{k(i+1)-1}{k} - \binom{ki}{k} \right]$$

- This is a true but different formula. We need to show this is equivalent to the formula presented in the main theorem. Algebraically showing the equivalence of these two formulas is difficult because they use summations and include binomial coefficients.
Theorem

The k-uniform hypergraph \mathcal{H}_m^* attains the edge bound presented in the main corollary.

- Unfortunately, the most obvious way to solve this equation yields

$$f(k, m) = m + \sum_{i=1}^{m-1} \left[\binom{k(i+1)-1}{k} - \binom{ki}{k} \right]$$

- This is a true but different formula. We need to show this is equivalent to the formula presented in the main theorem. Algebraically showing the equivalence of these two formulas is difficult because they use summations and include binomial coefficients.

- Additionally, induction-based proofs are rarely enlightening as to the true meaning of formulas.
Theorem

The k-uniform hypergraph \mathcal{H}_m^* attains the edge bound presented in the main corollary.

- Method 2: Count edges in \mathcal{H}_m^* directly based upon the structure of the hypergraph without comparing it to \mathcal{H}_{m-1}^*.
Theorem

The k-uniform hypergraph \mathcal{H}_m^* attains the edge bound presented in the main corollary.

- Method 2: Count edges in \mathcal{H}_m^* directly based upon the structure of the hypergraph without comparing it to \mathcal{H}_{m-1}^*.
- This requires some clever counting techniques such as the inclusion-exclusion principle. However, it does properly establish the correct formula for the number of edges in this hypergraph.
Theorem (Lovász)

For $k = 2$ any graph with a unique perfect matching attaining the edge bound is isomorphic to H^*_m.
Uniqueness of Construction?

Theorem (Lovász)

For $k = 2$ any graph with a unique perfect matching attaining the edge bound is isomorphic to \mathcal{H}_m^*.

Theorem

For $k \geq 3$ and $m \geq 2$, there exist hypergraphs which have a unique perfect matching and attain the edge bound that are not isomorphic to \mathcal{H}_m^*.

Uniqueness of Construction?

Theorem (Lovász)

For $k = 2$ any graph with a unique perfect matching attaining the edge bound is isomorphic to H_m^*.

Theorem

For $k \geq 3$ and $m \geq 2$, there exist hypergraphs which have a unique perfect matching and attain the edge bound that are not isomorphic to H_m^*.
Outline

1 Construction

2 Proof of the Upper Bound

3 Application
Two-Switch Example:

Suppose the above depicts a portion of a graph that has a unique perfect matching. The solid edges represent matching edges.
Two-Switch Example:

- Suppose the above depicts a portion of a graph that has a unique perfect matching. The solid edges represent matching edges.
- We cannot include both of the dashed edges in the graph. Otherwise, the perfect matching would not be unique:
Two-Switch Example:

- Suppose the above depicts a portion of a graph that has a unique perfect matching. The solid edges represent matching edges.
- We cannot include both of the dashed edges in the graph. Otherwise, the perfect matching would not be unique:
- Start with the original perfect matching and discard the solid edges. Instead, trade them for the dashed edges to create a distinct perfect matching.
Two-Switch Example:

- Suppose the above depicts a portion of a graph that has a unique perfect matching. The solid edges represent matching edges.
- We cannot include both of the dashed edges in the graph. Otherwise, the perfect matching would not be unique:
- Start with the original perfect matching and discard the solid edges. Instead, trade them for the dashed edges to create a distinct perfect matching.
- Since we are not allowed to have both of the dashed edges in the graph, the total number of edges becomes constrained.
Hypergraph Generalization Example:

The top left image depicts part of a hypergraph with a perfect matching. The edges shown are part of the perfect matching. The top right image depicts the same vertices. Suppose the edges in this image were also present in the hypergraph. Start with the perfect matching. Remove the “matching edges” and include the “covering edges.” This creates a distinct perfect matching.

By uniqueness of the perfect matching, no such covering is allowed in the hypergraph, constraining the total number of possible edges.
Hypergraph Generalization Example:

- The top left image depicts part of a hypergraph with a perfect matching. The edges shown are part of the perfect matching.
- The top right image depicts the same vertices. Suppose the edges in this image were also present in the hypergraph.
Hypergraph Generalization Example:

The top left image depicts part of a hypergraph with a perfect matching. The edges shown are part of the perfect matching.

The top right image depicts the same vertices. Suppose the edges in this image were also present in the hypergraph.

Start with the perfect matching. Remove the “matching edges” and include the “covering edges.” This creates a distinct perfect matching.
Hypergraph Generalization Example:

The top left image depicts part of a hypergraph with a perfect matching. The edges shown are part of the perfect matching.

The top right image depicts the same vertices. Suppose the edges in this image were also present in the hypergraph.

Start with the perfect matching. Remove the “matching edges” and include the “covering edges.” This creates a distinct perfect matching.

By uniqueness of the perfect matching, no such covering is allowed in the hypergraph, constraining the total number of possible edges.
Suppose $\mathcal{L} = \{E_1, \ldots, E_\ell\}$ with $1 \leq \ell \leq k$ is a collection of disjoint edges. A collection of k-sets $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ is a covering of \mathcal{L} if
Coverings

Definition

Suppose $\mathcal{L} = \{E_1, \ldots, E_\ell\}$ with $1 \leq \ell \leq k$ is a collection of disjoint edges. A collection of k-sets $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ is a covering of \mathcal{L} if

- Every k-set in \mathcal{C} nontrivially intersects every edge in \mathcal{L} and
Definition

Suppose $\mathcal{L} = \{E_1, \ldots, E_\ell\}$ with $1 \leq \ell \leq k$ is a collection of disjoint edges. A collection of k-sets $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ is a covering of \mathcal{L} if

- Every k-set in \mathcal{C} nontrivially intersects every edge in \mathcal{L} and
- Both \mathcal{L} and \mathcal{C} partition the same set of vertices.
Definition

Suppose $\mathcal{L} = \{E_1, \ldots, E_\ell\}$ with $1 \leq \ell \leq k$ is a collection of disjoint edges. A collection of k-sets $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ is a **covering** of \mathcal{L} if

- Every k-set in \mathcal{C} nontrivially intersects every edge in \mathcal{L} and
- Both \mathcal{L} and \mathcal{C} partition the same set of vertices.

Definition

Define \mathcal{L} as above and let $F \subseteq \bigcup \mathcal{L}$ be a k-set that intersects every edge of \mathcal{L}. The **ordered type** of F is $\vec{b} = (b_1, \ldots, b_\ell)$ where $b_i = |F \cap E_i|$ for $1 \leq i \leq \ell$. The **unordered type** (abbreviated type) of F is the unique rearrangement of the ordered type (b_1, \ldots, b_ℓ) of F such that the entries appear in nonincreasing order.
Suppose $\mathcal{L} = \{E_1, \ldots, E_\ell\}$ with $1 \leq \ell \leq k$ is a collection of disjoint edges. A collection of k-sets $\mathcal{C} = \{C_1, \ldots, C_\ell\}$ is a covering of \mathcal{L} if

- Every k-set in \mathcal{C} nontrivially intersects every edge in \mathcal{L} and
- Both \mathcal{L} and \mathcal{C} partition the same set of vertices.

Define \mathcal{L} as above and let $F \subseteq \cup \mathcal{L}$ be a k-set that intersects every edge of \mathcal{L}. The ordered type of F is $\vec{b} = (b_1, \ldots, b_\ell)$ where $b_i = |F \cap E_i|$ for $1 \leq i \leq \ell$. The unordered type (abbreviated type) of F is the unique rearrangement of the ordered type (b_1, \ldots, b_ℓ) of F such that the entries appear in nonincreasing order.
Coverings Example

<table>
<thead>
<tr>
<th>k-set</th>
<th>Ordered Type</th>
<th>(Unordered) Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coverings Example

\[E_1 \quad E_2 \quad E_3 \quad E_4 \]

\[F_1 \quad F_2 \]

<table>
<thead>
<tr>
<th>(k)-set</th>
<th>Ordered Type</th>
<th>(Unordered) Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(1, 3, 2, 2)</td>
<td></td>
</tr>
<tr>
<td>(F_2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coverings Example

\begin{tabular}{|c|c|c|}
\hline
\textbf{k-set} & \textbf{Ordered Type} & \textbf{(Unordered) Type} \\
\hline
F_1 & (1, 3, 2, 2) & (3, 2, 2, 1) \\
F_2 & & \\
\hline
\end{tabular}
Coverings Example

<table>
<thead>
<tr>
<th>k-set</th>
<th>Ordered Type</th>
<th>(Unordered) Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_1</td>
<td>(1, 3, 2, 2)</td>
<td>(3, 2, 2, 1)</td>
</tr>
<tr>
<td>F_2</td>
<td>(1, 4, 1, 2)</td>
<td></td>
</tr>
</tbody>
</table>
Coverings Example

\[\begin{align*}
E_1 & \quad E_2 & \quad E_3 & \quad E_4 \\
\end{align*} \]

\[\begin{array}{c}
F_1 \\
F_2 \\
\end{array} \]

<table>
<thead>
<tr>
<th>(k)-set</th>
<th>Ordered Type</th>
<th>(Unordered) Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_1)</td>
<td>(1, 3, 2, 2)</td>
<td>(3, 2, 2, 1)</td>
</tr>
<tr>
<td>(F_2)</td>
<td>(1, 4, 1, 2)</td>
<td>(4, 2, 1, 1)</td>
</tr>
</tbody>
</table>
Consider a 3-uniform complete hypergraph on 9 vertices. Let \(\mathcal{M} = \{M_1, M_2, M_3\} \) be a perfect matching as depicted above.
Consider a 3-uniform complete hypergraph on 9 vertices. Let $\mathcal{M} = \{M_1, M_2, M_3\}$ be a perfect matching as depicted above. In order to make \mathcal{M} the unique perfect matching in the hypergraph, we must remove coverings of \mathcal{M}.
Consider a 3-uniform complete hypergraph on 9 vertices. Let $\mathcal{M} = \{M_1, M_2, M_3\}$ be a perfect matching as depicted above.

In order to make \mathcal{M} the unique perfect matching in the hypergraph, we must remove coverings of \mathcal{M}.

To organize our search, we start by considering the possible types of edges in the hypergraph:
Consider a 3-uniform complete hypergraph on 9 vertices. Let $\mathcal{M} = \{M_1, M_2, M_3\}$ be a perfect matching as depicted above.

In order to make \mathcal{M} the unique perfect matching in the hypergraph, we must remove coverings of \mathcal{M}.

To organize our search, we start by considering the possible types of edges in the hypergraph:

$$\begin{array}{|c|c|c|}
\hline
(1,1,1) & & \\
\hline
\end{array}$$
Consider a 3-uniform complete hypergraph on 9 vertices. Let $\mathcal{M} = \{M_1, M_2, M_3\}$ be a perfect matching as depicted above.

In order to make \mathcal{M} the unique perfect matching in the hypergraph, we must remove coverings of \mathcal{M}.

To organize our search, we start by considering the possible types of edges in the hypergraph:

| (1,1,1) | (2,1,0) |
Consider a 3-uniform complete hypergraph on 9 vertices. Let \(\mathcal{M} = \{M_1, M_2, M_3\} \) be a perfect matching as depicted above.

In order to make \(\mathcal{M} \) the unique perfect matching in the hypergraph, we must remove coverings of \(\mathcal{M} \).

To organize our search, we start by considering the possible types of edges in the hypergraph:

\[
\begin{array}{ccc}
(1,1,1) & (2,1,0) & (3,0,0)
\end{array}
\]
Consider a 3-uniform complete hypergraph on 9 vertices. Let \(\mathcal{M} = \{M_1, M_2, M_3\} \) be a perfect matching as depicted above.

In order to make \(\mathcal{M} \) the unique perfect matching in the hypergraph, we must remove coverings of \(\mathcal{M} \).

To organize our search, we start by considering the possible types of edges in the hypergraph:

\[
\begin{array}{ccc}
(1,1,1) & (2,1,0) & (3,0,0) \\
\end{array}
\]

Since edges in a covering must intersect every matching edge, we only consider edges of type \((1,1,1)\).
We count the number of coverings of \(\{M_1, M_2, M_3\} \) that only use edges of type \((1, 1, 1)\). Suppose \(\{A, B, C\} \) is such a covering.
We count the number of coverings of \{M_1, M_2, M_3\} that only use edges of type \((1, 1, 1)\). Suppose \{A, B, C\} is such a covering.

We label each vertex by the covering edge that contains it. After possibly renaming the covering edges, we assume the vertices in \(M_1\) are labeled as above.
We count the number of coverings of \(\{M_1, M_2, M_3\} \) that only use edges of type \((1, 1, 1)\). Suppose \(\{A, B, C\} \) is such a covering.

We label each vertex by the covering edge that contains it. After possibly renaming the covering edges, we assume the vertices in \(M_1 \) are labeled as above.

There are 6 ways to assign labels to \(M_2 \) and 6 ways to assign labels to \(M_3 \), giving a total of 36 coverings.
Let C be a fixed edge of type $(1, 1, 1)$ as depicted above.
Let C be a fixed edge of type $(1, 1, 1)$ as depicted above.

We count the number of coverings $\{A, B, C\}$ that contain edge C and only use edges of type $(1, 1, 1)$.
Let C be a fixed edge of type $(1, 1, 1)$ as depicted above.

We count the number of coverings $\{A, B, C\}$ that contain edge C and only use edges of type $(1, 1, 1)$.

Again, we label each vertex by the covering edge that contains it. After possibly renaming the covering edges, we assume the vertices in M_1 are labeled as above.
Let C be a fixed edge of type $(1,1,1)$ as depicted above.

We count the number of coverings \{A, B, C\} that contain edge C and only use edges of type $(1,1,1)$.

Again, we label each vertex by the covering edge that contains it. After possibly renaming the covering edges, we assume the vertices in M_1 are labeled as above.

There are 2 ways to assign labels to M_2 and 2 ways to assign labels to M_3, giving a total of 4 coverings that contain edge C.
By symmetry, every edge of type \((1,1,1)\) is contained in 4 coverings.
By symmetry, every edge of type \((1, 1, 1)\) is contained in 4 coverings.

Removing 1 edge from the hypergraph breaks at most 4 coverings.

Removing 9 edges from the hypergraph breaks at most 36 coverings.

In order to remove all 36 coverings from the hypergraph, we must remove at least 9 edges of type \((1, 1, 1)\).
By symmetry, every edge of type \((1, 1, 1)\) is contained in 4 coverings.

Removing 1 edge from the hypergraph breaks 4 coverings.

Removing 2 edges from the hypergraph breaks at most 8 coverings.
By symmetry, every edge of type $(1, 1, 1)$ is contained in 4 coverings.

Removing 1 edge from the hypergraph breaks 4 coverings.

Removing 2 edges from the hypergraph breaks at most 8 coverings.

Removing 9 edges from the hypergraph breaks at most 36 coverings.
Main Theorem Proof Sketch

- By symmetry, every edge of type \((1, 1, 1)\) is contained in 4 coverings.
- Removing 1 edge from the hypergraph breaks 4 coverings.
- Removing 2 edges from the hypergraph breaks at most 8 coverings.
- Removing 9 edges from the hypergraph breaks at most 36 coverings.
- In order to remove all 36 coverings from the hypergraph, we must remove at least 9 edges of type \((1, 1, 1)\).
We must also remove coverings of \(\{ M_1, M_2 \} \).
We must also remove coverings of \(\{M_1, M_2\} \).

- Every edge in a covering of \(\{M_1, M_2\} \) is of type \((2,1)\).
We must also remove coverings of \(\{M_1, M_2\} \).

Every edge in a covering of \(\{M_1, M_2\} \) is of type \((2, 1)\).

To specify an edge \(E \) with \(|E \cap M_1| = 1\) and \(|E \cap M_2| = 2\), pick one vertex from \(M_1 \) and 2 vertices from \(M_2 \). There are \(3 \cdot \binom{3}{2} = 9 \) such edges.
Main Theorem Proof Sketch

- We must also remove coverings of \(\{M_1, M_2\} \).
- Every edge in a covering of \(\{M_1, M_2\} \) is of type \((2, 1)\).
- To specify an edge \(E \) with \(|E \cap M_1| = 1\) and \(|E \cap M_2| = 2\), pick one vertex from \(M_1 \) and 2 vertices from \(M_2 \). There are \(3 \cdot \binom{3}{2} = 9\) such edges.
- All coverings are of the form \(\{E, \overline{E}\} \) for an edge as previously described. Hence, there are also 9 coverings.
Main Theorem Proof Sketch

- Given any edge F of type $(2, 1)$, F lies on exactly one covering $\{F, \overline{F}\}$. Caution: we may have $|F \cap M_1| = 1$ or $|F \cap M_1| = 2$.

![Diagram of two sets M_1 and M_2 with edges](attachment:diagram.png)
Main Theorem Proof Sketch

- Given any edge F of type $(2, 1)$, F lies on exactly one covering $\{F, \overline{F}\}$. Caution: we may have $|F \cap M_1| = 1$ or $|F \cap M_1| = 2$.

- In order to break all 9 coverings, we must remove at least 9 edges of type $(2, 1)$.
Given any edge F of type $(2, 1)$, F lies on exactly one covering $\{F, \overline{F}\}$. Caution: we may have $|F \cap M_1| = 1$ or $|F \cap M_1| = 2$.

In order to break all 9 coverings, we must remove at least 9 edges of type $(2, 1)$.

A symmetric situation occurs for any pair of 2 matching edges ($\{M_1, M_2\}, \{M_1, M_3\}$, or $\{M_2, M_3\}$). Hence we must remove at least $\binom{3}{2} \cdot 9 = 27$ edges of type $(2, 1)$ from the hypergraph.
The complete hypergraph has \(\binom{9}{3} = 84 \) edges.

We must remove at least 9 edges of type \((1,1,1)\).

We must remove at least 27 edges of type \((2,1)\).

There are at most \(84 - 9 - 27 = 48\) edges remaining in the hypergraph.
The complete hypergraph has \(\binom{9}{3} = 84 \) edges.

We must remove at least 9 edges of type \((1, 1, 1)\).

We must remove at least 27 edges of type \((2, 1)\).

There are at most \(84 - 9 - 27 = 48\) edges remaining in the hypergraph.
The complete hypergraph has \(\binom{9}{3} = 84 \) edges.

- We must remove at least 9 edges of type \((1, 1, 1)\).
- We must remove at least 27 edges of type \((2, 1)\).
The complete hypergraph has $\binom{9}{3} = 84$ edges.

We must remove at least 9 edges of type $(1, 1, 1)$.

We must remove at least 27 edges of type $(2, 1)$.

There are at most $84 - 9 - 27 = 48$ edges remaining in the hypergraph.
For \(k \geq 2 \) and \(m \geq 1 \), let

\[
b_{k,\ell} = \frac{\ell - 1}{\ell} \sum_{i=0}^{\ell-1} (-1)^i \binom{\ell}{i} \binom{k(\ell - i)}{k}.
\]

Theorem

Let \(\mathcal{H}_m = (\mathcal{V}_m, \mathcal{E}_m) \) be a \(k \)-uniform hypergraph with \(km \) vertices and unique perfect matching. Then

\[
|\mathcal{E}_m| \leq f(k, m)
\]

where

\[
f(k, m) = m + b_{k,2} \binom{m}{2} + b_{k,3} \binom{m}{3} + \cdots + b_{k,k} \binom{m}{k}.
\]

Moreover, this bound is tight.
Main Theorem Proof Sketch

The complete hypergraph has \(\binom{9}{3} = 84 \) edges.

We must remove at least 9 edges of type \((1, 1, 1)\).

We must remove at least 27 edges of type \((2, 1)\).

There are at most \(84 - 9 - 27 = 48\) edges remaining in the hypergraph.

\[f(3, 3) = 3 + 9\binom{3}{2} + 18\binom{3}{3} = 48. \]
Outline

1 Construction

2 Proof of the Upper Bound

3 Application
Benzene consists of 6 carbon atoms arranged in a hexagon.
Benzene consists of 6 carbon atoms arranged in a hexagon. Due to electron interactions along the hexagon, the carbon atoms tend to pair with a neighbor creating a diatomic molecule. This is the same as a perfect matching.
Electrons in Benzene Molecules

- Benzene consists of 6 carbon atoms arranged in a hexagon.
- Due to electron interactions along the hexagon, the carbon atoms tend to pair with a neighbor creating a diatomic molecule. This is the same as a perfect matching.
- This graph has two perfect matchings. By symmetry, both of these have the same energy. Hence, the molecule resonates in between the two configurations.

The resonance conjecture posits that resonating between states increases stability.
Electrons in Benzene Molecules

- Benzene consists of 6 carbon atoms arranged in a hexagon.
- Due to electron interactions along the hexagon, the carbon atoms tend to pair with a neighbor creating a diatomic molecule. This is the same as a perfect matching.
- This graph has two perfect matchings. By symmetry, both of these have the same energy. Hence, the molecule resonates in between the two configurations.
- The resonance conjecture posits that resonating between states increases stability.
Thank You

Thanks for coming! Special thanks to Dr. John Caughman and Dr. Gerardo Lafferriere.