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1 INTRODUCTION

1 Introduction

In this MTH 501 project, we present results from the article “Rainbow matchings of size m

in graphs with total color-degree at least 2mn” by Jürgen Kritschgau [5]. To do so, we will

consider several classes of simple graphs in which the edges have been colored (sometimes

arbitrarily, sometimes properly). By assuming that the average number of colors appearing

at each vertex is sufficiently large, we will see that the existence of a matching with a

specified number of distinctly colored edges is guaranteed. (Such a matching is called a

rainbow matching.) The families of graphs to be considered will include graphs that are

triangle-free, graphs that have no 4-cycles, and arbitrary graphs that are properly colored.

The original paper also considers arbitrary colorings of graphs, but we limit our discussion

here to the aforementioned families.

Our aim in this project is to present the main mathematical results of the paper, to

fill in occasional supplementary details that were left to the reader in the original, and to

offer additional commentary that will serve to illustrate results and elucidate proof methods

wherever possible. We also coded an implementation of the key algorithm that was central

to the proof of the main theorem.

1.1 Context and Motivation

Graph colorings form an important topic in applications of graph theory; many real-world

problems modeled by graphs involve partitioning the vertices or edges of a given graph into

disjoint sets such that the vertices or edges within these sets are non-adjacent or non-incident.

For example, such constraints commonly arise in problems concerning scheduling, either to

avoid conflicts or to minimize the total time of composite tasks when various sub-tasks

might be able to be performed simultaneously. For more information regarding applications

of coloring, we refer the interested reader to the textbook by West [12].

Recall that a matching in a graph G is any set of edges in G that share no endpoints.

If the edges of G are colored, then any set of edges that is assigned distinct colors is said to

be rainbow colored. The present paper is focused on the existence of rainbow matchings in

various edge-colored graphs.

Rainbow matchings in edge-colored graphs were originally studied due to their connection

to transversals of Latin squares (for more about this connection, see [8]). More recently, it

was conjectured (by Li and Wang in [10]) that if m ≥ 4, then any graph with minimum color-

degree at least m contains a rainbow matching of size ⌈m/2⌉. This conjecture was confirmed,

and others went on to improve the bounds (see [4], [6]). Studies on other sufficient conditions
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1.2 Organization of Paper 1 INTRODUCTION

that guarantee a rainbow matching of various sizes have also been conducted in [2] and [7].

In any edge-colored graph, the color-degree of a vertex v is the number of distinct colors

assigned to edges incident upon v. In the paper under consideration, rainbow matchings are

sought in edge-colored graphs whose vertices attain a given average color-degree.

Fix any non-negative integer m. The aspirational goal of this line of research would be

to show that any edge-colored graph with average color-degree at least 2m must contain

a rainbow matching of size m. In the present article, this is shown to be true for any

edge-colored graph G that falls into any of the following cases:

1. G is triangle-free (indeed an m+ 1 rainbow matching exists), or

2. G has no 4-cycles, or

3. G has at least 8m vertices and the coloring is proper, or

4. G has at least 12m2 + 4m vertices and the coloring is arbitrary.

For the most part, our exposition follows that of the original article. However, we focus

primarily on the first three of these cases. We also include some illustrative examples and

offer code to run an algorithmic implementation of the given construction for the case of

properly edge-colored graphs.

1.2 Organization of Paper

For ease of reading, the content of this project is organized into six chapters. Chapter

1 contains a very brief introduction to the topic of rainbow colorings, stating the main

results and describing the scope and organization of this paper. Chapter 2 summarizes

some definitions concerning graphs, edge-colorings, and matchings that will be needed in

our work. Chapter 3 establishes two of the main results of this paper. Specifically, given

an edge-colored graph G, we prove that rainbow matchings of various sizes are shown to

exist under the assumption that G is free of 3-cycles or free of 4-cycles. In Chapter 4, a

key algorithm is given to prove that large rainbow matchings exist for properly edge-colored

graphs with sufficiently many vertices and sufficiently high average color-degree. In that

chapter, we also prove that the algorithm establishes the desired bound. In Chapter 5,

we examine a Python implementation of the above algorithm. We explain how the code

functions and present sample output to illustrate the behavior. We have also developed

a reverse algorithm to construct the rainbow matching, whose existence has been proven.

Finally, in Chapter 6, we conclude with a brief discussion of potential directions for further

research.
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2 PRELIMINARY DEFINITIONS

2 Preliminary Definitions

This chapter offers some basic definitions from graph theory to provide sufficient context

for the exposition. For more details on these concepts, we refer the reader to any standard

textbook on graph theory (such as West [12]).

2.1 Simple Graphs

Since the main object of concern for this paper will be finite simple graphs, we now review

several of the most relevant definitions.

A (finite, simple) graph G consists of a (finite) vertex set V (G), and a corresponding

edge set E(G), consisting of a set of 2-element subsets of V (G). Each e ∈ E(G) is called

an edge, and its two vertices are called its endpoints. We call a graph empty when E(G)

is empty, i.e., when |E(G)| = 0. When u and v are the two endpoints of an edge e, they

are said to be adjacent, written u ∼ v. In this case, we often refer to e by its endpoints,

as in e = uv. We say an edge is incident with its endpoints, and we also say two edges are

incident when they share an endpoint. For any vertex u ∈ V (G), we denote by NG(u) the

set of vertices adjacent to u in G. We also introduce NG(u) to be the set of edges incident

to u in G. The degree of a vertex u is dG(u) = |NG(u)|, which is also the number of edges

that have u as an endpoint. We will drop the subscript on this notation when the context is

clear.

Figure 1: This graph has 6 vertices a, b, c, d, e, and f . It has 7 edges, as indicated, and we
say, for example, a ∼ e and a ≁ b.

Two graphs G and H are said to be isomorphic (written G ∼= H) whenever there exists

a bijection ϕ : V (G) → V (H) such that for any u, v ∈ V (G) we have u ∼ v if and only if

ϕ(u) ∼ ϕ(v).

Let G be a graph. By a subgraph of G, we mean any graph H satisfying V (H) ⊆ V (G)

and E(H) ⊆ E(G). If H is a subgraph of G, we denote this by H ⊆ G. If S ⊆ V (G), then
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2.2 Edge-Colorings 2 PRELIMINARY DEFINITIONS

we define G[S], the subgraph induced by S, to be the union of all subgraphs H ⊆ G

that have V (H) = S. In other words, G[S] is the subgraph of G that has vertex set S and

where two vertices u, v in S are adjacent in G[S] if and only if they are adjacent in G. By

a matching, we mean any set of edges M with the property that no two edges of M share

an endpoint. For any non-negative integer m, a matching consisting of exactly m edges is

called an m-matching.

Figure 2: The bold red edges form a 3-matching in the given graph.

2.2 Edge-Colorings

Let G be a graph. We define an edge-coloring c on G to be an assignment of colors to

edges, determined by a function c : E(G) → [r], where [r] denotes the set {1, ..., r}. We

refer to the elements of [r] as colors, but since they are represented by numbers, they carry

an implicit ordering. For each edge e, we refer to c(e) as the color of edge e, and we define

the color-set of the edge-coloring to be the image c(G), which is the set of colors assigned

to at least one edge of G. A color-class is the preimage of a color, so it will be a set of

edges of the form c−1(i) for some i ∈ [r]. We occasionally use a capital letter, such as R, to

denote a generic color or its corresponding color-class. A proper edge-coloring of G is an

edge-coloring such that c(e) ̸= c(e′) whenever e and e′ share an endpoint.

Figure 3: The graph above has a proper edge-coloring with four colors. We sometimes label
colored edges with an integer to distinguish the color.

6



2.2 Edge-Colorings 2 PRELIMINARY DEFINITIONS

We call a graph G rainbow under c when c is injective on E(G). In particular, a

matching M is rainbow if, for all distinct e, e′ ∈ M , we have c(e) ̸= c(e′). We define the

color-degree of a vertex v ∈ V (G), denoted d̂G(v), to be the number of colors c assigns to

the edges incident to v in G. We will drop the subscript on this notation when the context

is clear. Note that in a proper coloring, d̂G(v) = dG(v), the degree of v ∈ G. The total

color-degree of G with respect to c is the sum of all the color-degrees in the graph and is

denoted by d̂(G) as follows:

d̂(G) =
∑

v∈V (G)

d̂(v).

The average color-degree of a graph G is obtained by dividing the total color-degree by

|V (G)|, and is sometimes more convenient to work with than d̂(G) directly. The minimum

color-degree and maximum color-degree of G are denoted δ̂(G) and ∆̂(G), respectively.

For any color R, we let d̂R(v) denote the R-color-degree of v, that is, the number of

R-colored edges incident to v.

Figure 4: The graph G above uses five colors, thus has five color-classes, and is a proper
coloring. If we let B be the color-class of blue edges, then B = {ae, fg, ch}. We say d̂(a) = 1
and d̂(c) = 4. We note also that δ̂(G) = 1 and ∆̂(G) = 4.

Finally, we let G− v denote the graph G with the vertex v deleted, and similarly define

G − S for any subset S ⊆ V (G). We may also delete sets of edges, so that, for example,

G − R may denote the graph G with the edges in color-class R deleted. When convenient,

we let c(e) denote the color-class of the edge e, so that G−c(e) denotes the graph G without

any of the edges that belong to the color-class containing the edge e.
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3 TRIANGLE-FREE AND C4-FREE GRAPHS

Figure 5: The above shows the removal of the color-class of blue edges. Call the graph on the
left G and the set of blue edges B. Then the graph on the right represents G−B = G−c(ae).

Figure 6: The above shows the removal of vertices c and h. Call the graph on the left G.
Then the graph on the right can be written as G− c− h = G−N(d).

Figure 7: Alternatively, we may remove just the incident edges of a vertex. Say S is the set
of edges incident to d. Then the graph on the right shows G− S = G−N(d).

3 Triangle-free and C4-free Graphs

In this section, we consider rainbow matchings for graphs that are triangle-free or C4-free,

so we begin by defining those terms. A graph G is said to be triangle-free whenever it

contains no subgraph isomorphic to the cyclic graph C3. A graph G is said to be C4-free

whenever it contains no subgraph isomorphic to the cyclic graph C4.
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3.1 Triangle-free Graphs 3 TRIANGLE-FREE AND C4-FREE GRAPHS

Figure 8: A graph is triangle-free if it has
no subgraph isomorphic to the 3-cycle C3

shown here.

Figure 9: A graph is C4-free if it has no
subgraph isomorphic to the 4-cycle graph
C4 shown here.

We have an example of a triangle-free graph in Figure 10, and an example of a C4-free

graph can be seen in Figure 11.

Figure 10: The cube graph Q3 is triangle-
free but not C4 free.

Figure 11: The Peterson graph is both C3

and C4 free.

3.1 Triangle-free Graphs

In the case of triangle-free graphs, we can use a counting argument to guarantee the existence

of a rainbow matching of the desired size.

Theorem 3.1. Let G be a triangle-free graph on n vertices. Let c be any edge-coloring of G

where the total color-degree satisfies d̂(G) > 2mn for some integer m such that 0 ≤ m < n.

Then c admits a rainbow matching of size m+ 1.

Proof. Let G be a triangle-free graph on n vertices. Let c be an edge-coloring of G with

d̂(G) > 2mn. For the sake of contradiction, let M be a maximum rainbow matching of size

k ≤ m with edges uivi for 1 ≤ i ≤ k. Among all such matchings, assume M is chosen so that∑
v∈V (M) d̂(v) is minimized. Without loss of generality, suppose c (uivi) = i for 1 ≤ i ≤ k.

Claim 1. For each i (1 ≤ i ≤ k), we have d̂(ui) + d̂(vi) ≤ n.

Proof of Claim 1. Fix any i (1 ≤ i ≤ k). As indicated in Figure 12, let A = N(ui) −
{vi} − N(vi), let B = N(ui) ∩ N(vi), and let C = N(vi) − {ui} − N(ui). Since G has n

vertices, |A|+ |B|+ |C|+ 2 ≤ n. Since G is triangle-free, |B| = 0. Now d(ui) = |A|+ 1 and
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3.1 Triangle-free Graphs 3 TRIANGLE-FREE AND C4-FREE GRAPHS

d(vi) = |C| + 1, and therefore d(ui) + d(vi) ≤ n. Since d̂(ui) ≤ d(ui) and d̂(vi) ≤ d(vi), the

claim follows. □

Figure 12: Since G is triangle-free, ui and vi cannot share a neighbor. Such a shared vertex
would result in a triangle on the vertices ui, vi, and their shared neighbor in B.

Let H denote the subgraph induced on the vertices not in M . In other words, let

H = G[S] where S = V (G)\V (M). Suppose e ∈ E(H). Since M has maximum size, it must

be the case that c(e) ∈ {1, ..., k}. Without loss of generality, suppose that c(H) = {1, ..., j}
for some 0 ≤ j ≤ k.

Claim 2. For all v ∈ V (H), we have d̂(v) ≤ j + k.

Proof of Claim 2. Fix any v ∈ V (H). Consider Figure 13. Note that since |c(H)| = j, we

have at most j colors appearing on the edges of the set {vw | w ∈ N(v) ∩ V (H)}. Since G

is triangle-free, we know that |N(v) ∩ V (M)| ≤ k, as otherwise we would obtain a triangle

as indicated by the dashed line. Therefore, we have at most k colors appearing on the edges

of the set {vw | w ∈ N(v) ∩ V (M)}. It follows that d̂G(v) ≤ j + k, as desired. □

Figure 13: Illustrating the proof of Claim 2 for a vertex v ∈ V (H).
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3.1 Triangle-free Graphs 3 TRIANGLE-FREE AND C4-FREE GRAPHS

Claim 3. For any i ∈ {1, . . . , j}, we have d̂(ui) + d̂(vi) ≤ 2(j + k).

Proof of Claim 3. Since i ∈ {1, . . . , j}, there exists an edge xy ∈ H with c(xy) = i. By

Claim 2, we know that d̂(x) + d̂(y) ≤ 2(j + k). Since V (H) ∩ V (M) = ∅, swapping xy

with uivi would not change the color-set of M . But M was chosen so that
∑

v∈V (M) d̂(v) is

minimized, so it follows that d̂(ui) + d̂(vi) ≤ d̂(x) + d̂(y). □

Figure 14: Consider the figure above. Any edge with one endpoint in H and one endpoint
in M will be either fully in H or M after swapping edges. The total color-degree of vertices
in M was minimized, so there are at least as many colors incident with xy as with uivi.

Now consider the following calculation, where each step is justified below:

2mn <
k∑

i=1

(d̂(ui) + d̂(vi)) +
∑
v∈H

d̂G(v) (1)

≤
j∑

i=1

(d̂(ui) + d̂(vi)) +
k∑

i=j+1

(d̂(ui) + d̂(vi)) +
∑
v∈H

d̂G(v) (2)

≤ 2j(k + j) + (k − j)n+ (n− 2k)(j + k) (3)

= 2jk + 2j2 + 2nk − 2jk − 2k2 (4)

≤ 2(j2 − k2 + nk) (5)

≤ 2(k2 + nk − k2) (6)

≤ 2mn. (7)

Below, we offer justification for the steps above.
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3.2 C4-free Graphs 3 TRIANGLE-FREE AND C4-FREE GRAPHS

(1) We suppose that G has d̂(G) > 2mn. Since the vertices of G are partitioned

by M and H, we have that

d̂(G) ≤ d̂(M) + d̂(H) =
k∑

i=1

d̂(ui) + d̂(vi) +
∑
v∈H

d̂G(v).

(2) Here we split the first summation to separately count color degrees for edges

of M whose color appears in H versus the rest.

(3) Each term of the first sum is bounded by 2(k+j) by Claim 3. There are k−j

terms in the second sum, each bounded by n by Claim 1. There are (n− 2k)

terms in the final sum, each bounded by j + k, by Claim 2.

(4)-(7) Algebra and simplification utilizing j ≤ k ≤ m.

This is a contradiction to the total color-degree of G; therefore, k > m. Thus c admits a

rainbow matching of size k ≥ m+ 1. ■

A key element to the proof of Theorem 2.1 is the bound d̂(v) + d̂(u) ≤ n, where uv is

an edge in a maximum-size rainbow matching. We can obtain a similar bound in C4-free

graphs that will be explained in the following section.

3.2 C4-free Graphs

In this section, we apply a similar technique to graphs that have no 4-cycles.

Theorem 3.2. Let G be a C4-free graph on n vertices. Let c be any edge-coloring of G where

the total color-degree satisfies d̂(G) ≥ 2mn for some integer m such that 0 ≤ m < n. Then

c admits a rainbow matching of size m.

Proof. Let G be a C4-free graph on n vertices. Let c be an edge-coloring of G with

d̂(G) > 2mn. For the sake of contradiction, let M be a maximum rainbow matching of size

k < m with edges uivi for 1 ≤ i ≤ k. Among all such matchings, assume M is chosen so that∑
v∈V (M) d̂(v) is minimized. Without loss of generality, suppose c (uivi) = i for 1 ≤ i ≤ k.

Claim 1. For each i (1 ≤ i ≤ k), we have d̂(ui) + d̂(vi) ≤ n+ 1.

Proof of Claim 1. Fix any i (1 ≤ i ≤ k). As indicated in Figure 15, we let A = N(ui) −
{vi} −N(vi), we let B = N(ui) ∩N(vi), and we let C = N(vi)− {ui} −N(ui).
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3.2 C4-free Graphs 3 TRIANGLE-FREE AND C4-FREE GRAPHS

Figure 15: As G is C4-free, we see that ui and vi share at most 1 vertex.

Since G has n vertices, |A| + |B| + |C| + 2 ≤ n. Since G is C4-free, |B| ≤ 1. Now d(ui) =

|A|+ |B|+ 1 and d(vi) = |B|+ |C|+ 1, and therefore

d(ui) + d(vi) = |A|+ 2|B|+ |C|+ 2

= (|A|+ |B|+ |C|+ 2) + |B|

≤ n+ |B|

≤ n+ 1.

Since d̂(ui) ≤ d(ui) and d̂(vi) ≤ d(vi), the claim follows. □

Let H denote the subgraph induced on the vertices not in M . In other words, let

H = G[S] where S = V (G)\V (M). Suppose e ∈ E(H). Since M has maximum size, it must

be the case that c(e) ∈ {1, ..., k}. Without loss of generality, suppose that c(H) = {1, ..., j}
for some 0 ≤ j ≤ k.

Claim 2. If xy ∈ E(H), then d̂(x) + d̂(y) ≤ 2j + 2k.

Proof of Claim 2. As x, y ∈ V (H), each are incident to at most j colors assigned to edges

in H. As indicated in Figure 16, the edge xy can share at most two incident edges with any

edge in M without creating a C4 subgraph.

13



3.2 C4-free Graphs 3 TRIANGLE-FREE AND C4-FREE GRAPHS

Figure 16: Between edges xy and uivi, there are four possible edges. Notice that G can have
at most 2 of these without creating a C4 subgraph. Thus the edge xy is incident with at
most 2k edges that have an endpoint in M .

So we have at most 2k edges that are incident on both V (M) and {x, y}. So x, y are

incident to at most 2k colors on these edges. Thus, d̂(x) + d̂(y) ≤ 2j + 2k. □

Claim 3. For any i ∈ {1, . . . , j}, we have d̂(ui) + d̂(vi) ≤ 2(j + k).

Proof of Claim 3. Since i ∈ {1, . . . , j}, there exists an edge xy ∈ H with c(xy) = i. By

Claim 2, we know that d̂(x) + d̂(y) ≤ 2(j + k). Since V (H) ∩ V (M) = ∅, swapping xy

with uivi would not change the color-set of M . But M was chosen so that
∑

v∈V (M) d̂(v) is

minimized, so it follows that d̂(ui) + d̂(vi) ≤ d̂(x) + d̂(y). □

Claim 4.
∑

v∈H d̂G(v) ≤ (n− 2k)(j + k) + k.

Proof of Claim 4. The (n− 2k)j term comes from the fact that H has n− 2k vertices, each

of which can see at most every color in {1, ..., j} on its edges in H. This accounts for all

but the colors on edges from H to M . We will show that there are at most (n − 2k)k + k

such edges by contradiction. Suppose that there are (n− 2k)k + k + 1 edges from H to M .

By the pigeonhole principle, there exists an edge uivi ∈ M that receives at least n− 2k + 2

edges from H. Each vertex in H can send at most two edges to uivi. Therefore, there must

exist two vertices in H that each send two edges to uivi, witnessing a C4 subgraph; this is a

contradiction. □

Now consider

2mn ≤
k∑

i=1

(d̂(ui) + d̂(vi)) +
∑
v∈H

d̂G(v)

≤
j∑

i=1

(d̂(ui) + d̂(vi)) +
k∑

i=j+1

(d̂(ui) + d̂(vi)) +
∑
v∈H

d̂G(v)

≤ j(2k + 2j) + (k − j)(n+ 1) + (n− 2k)(j + k) + k

= 2kj + 2j2 + nk + k − nj − j + nj + nk − 2kj − 2k2 + k

= 2j2 + 2nk − j + 2k − 2k2

≤ 2j2 − 2k2 + 2k − j − 2n+ 2mn

< 2mn.

This is a contradiction on the total color-degree of G; therefore, k ≥ m. Thus c admits a

rainbow matching of size k ≥ m. ■
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4 PROPERLY EDGE-COLORED GRAPHS

4 Properly Edge-Colored Graphs

In this section, we consider properly edge-colored graphs. We will analyze a greedy algorithm

that constructs a matching as it appears in [5] with adjustments inspired by [3]. This type

of graph is a main focus for [1], [9], and [11].

Theorem 4.1. Let G be a graph on n vertices. Let c be any proper edge-coloring of G where

the total color-degree satisfies d̂(G) ≥ 2mn for some integer m such that 0 ≤ m < n/8. Then

c admits a rainbow matching of size m.

4.1 Algorithm

The algorithm given below will be used in the proof of Theorem 4.1 to show there is no

counterexample to the theorem. Kritschgau originally modified an algorithm from [1] and

[3], adjusting bounds.

Note: In our first attempted implementation, the algorithm could run beyond m steps,

creating the potential to have negative bounds for the vertex degree and color classes. In

practice, this meant that some steps did not remove any edges, which created an issue in the

situation leading to the contradiction used for the proof in [5]. To avoid this issue, we have

reintroduced a condition from [3] so that the algorithm terminates under two conditions:

when the graph is empty or i = m − 1. In addition, instead of removing vertices, we have

adjusted the algorithm to simply remove the set of incident edges for a given vertex.

Algorithm. Consider the following algorithm, initializing G0 := G;

1. If Gi−1 is empty or i = m− 1, pass to 5,

2. if there exists v ∈ V (Gi−1) with d̂(v) ≥ 3(m − i) + 1, then Gi = Gi−1 − N(v)

and return to 1,

3. else, if there exists color-class R with |R| ≥ 2(m − i) + 1 in Gi−1, then

Gi = Gi−1 −R and return to 1,

4. else, if there exists uv ∈ E(Gi−1), then Gi = Gi−1−N(u)−N(v)−c(uv) and

return to 1,

5. return i− 1.
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4.2 Proof of Theorem 4.1 4 PROPERLY EDGE-COLORED GRAPHS

4.2 Proof of Theorem 4.1

Assume that G is an edge-minimal counterexample to Theorem 4.1. Consider the algorithm

above. To prove the theorem, we must first prove the lemmas below.

Lemma 1. Suppose the algorithm returns k ≤ m. Then Gi contains a matching of size k− i

for 0 ≤ i ≤ k.

Proof. We will prove the claim by reverse induction on i. If i = k, then Gi is empty, and

the claim is true. Assume that the claim is true for i. We will prove the claim for i − 1.

By the induction hypothesis, there exists a matching M ⊆ Gi of size k − i. There are three

cases:

Case 1: Assume Gi = Gi−1 − N(v) where d̂(v) ≥ 3(m − i) + 1. By construction,

v /∈ V (M). Since d̂(v) ≥ 3(m − i) + 1, there exists u ∈ N(v), such that

u /∈ V (M) and c(uv) /∈ c(M). Then M ′ = M ∪ {uv} is a rainbow matching

of size k − i+ 1. A visual representation of this can be seen in Figure 17.

Case 2: Assume Gi = Gi−1 − R for some color R with |R| ≥ 2(m − i) + 1. This

implies that c(e) ̸= R for all e ∈ E(M). Since c is a proper coloring and

|R| ≥ 2(m−i)+1, there exists e ∈ Gi−1 such that c(e) = R and M ′ = M∪{e}
is a rainbow matching. A visual representation of this can be seen in Figure

18.
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Figure 17: Suppose we form Gi by remov-
ing a high degree vertex v from Gi−1. No-
tice v can be adjacent to 2(k− i) vertices
inM . Furthermore, asm−i+1 ≥ k−i, we
are sure to have a uniquely colored edge
with v as an endpoint. This edge is in
Gi−1 and can safely be added to M to
create a k − i+ 1 rainbow matching.

Figure 18: If we have a color-class with
at least 2(m − i) + 1 edges, then, if M
is a k − i matching, there is at least one
edge not incident with M . Thus, if we
remove the color-class when forming Gi,
there is at least one edge in Gi−1 that we
could add to the matching of Gi to create
a k − i+ 1 rainbow matching.

Case 3: Assume that Gi = Gi−1 − N(v) − N(u) − c(uv) for some uv ∈ E(Gi−1). By

construction {u, v} is disjoint from V (M) and c(e) ̸= c(uv) for all e ∈ M .

Therefore, M ′ = M ∪ {uv} is a rainbow matching.

Figure 19: Suppose we remove an edge, the incident edges of its endpoints, and its
color-class from Gi−1 to form Gi. Notice that our edge removed has a color distinct
from the edges of M . So there is at least one edge in Gi−1 that we could add to
the matching of Gi to create a k − i+ 1 rainbow matching.

This concludes the proof of the lemma. □

SinceG is an edge-minimal counterexample, the algorithm applied toG will return k < m.

We will now derive a contradiction.
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Lemma 2. Let W (Gi) denote the difference of total color-degree between Gi and Gi−1 under

c. Then for all 1 ≤ i ≤ k, we have W (Gi) ≤ 2n.

Proof. Recall we let W (Gi) denote the difference of total color-degree between Gi and Gi−1

under c. We consider W (Gi) under the conditions 2,3, and 4 of the algorithm.

Case 1: Assume Gi = Gi−1 − v where d̂(v) ≥ 3(m− i) + 1. Notice that v is incident

to at most n − 1 edges. Therefore, deleting v will remove at most 2(n − 1)

color-degrees, so W (Gi) ≤ 2(n− 1) = 2n− 2 < 2n.

Case 2: Assume Gi = Gi−1 −R for some color R with |R| ≥ 2(m− i) + 1. Because c

is proper, |R| ≤ ⌊n/2⌋. Deleting all edges of color R reduces the color-degree

by at most n, so W (Gi) ≤ n < 2n.

Case 3: Assume that Gi = Gi−1 − v − u − c(uv) for some uv ∈ E(Gi−1). Since Gi is

not constructed by step 2 , we know that d̂(u), d̂(v) ≤ 3(m− i). Furthermore,

since Gi is not constructed by step 3, we know that |c(uv)| ≤ 2(m− i). This

implies that

W (Gi) = 2(d̂(v) + d̂(u)) + 2|c(uv)|

≤ 16(m− i)

≤ 2n

Since W (Gi) ≤ 2n under all cases, we can be sure W (Gi) ≤ 2n for all 1 ≤ i ≤ k. □

Using the above lemma, we can now say,

2nm ≤ d̂(G)

=
k∑

i=1

W (Gi)

≤ k(2n) = 2nk

As k < m, 2nk < 2mn, which means we have 2mn < 2mn. This is a contradiction;

therefore, the theorem has been proven. ■
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5 Enacting the Algorithm in Python

To get a better idea of how the algorithm works and its connection to how one may build a

rainbow matching from backtracking the algorithm, we can code the algorithm in Python.

We will be exploring the standard algorithm as described by the algorithm. We also created

variations on this algorithm, which are acknowledged later. We present an abridged version

of the code for one function below. Full code for all variations can be found on GitHub.

5.1 Forwards Algorithm

To run the algorithm, we needed multiple tools to implement it under the different conditions.

We created a function that runs on any given graph to give a proper coloring. This function

cycles through the edge set randomly and assigns a color based on an integer, taking the

smallest integer possible. We also have a function that picks a random set from a set of

sets. This allows us to take a random color-class under condition 3 of the algorithm when

multiple color-classes achieve the desired cardinality. We also register a new color sequence

for use later and a function to create a dictionary of edges and their corresponding color.

1 !pip install igraph

2 import igraph as ig

3 import array as arr

4 import matplotlib.pyplot as plt

5 import random

6 from igraph import Graph

7 import matplotlib as mpl

8

9 def get_random_list(list_of_lists):

10 if not list_of_lists:

11 return None

12 return random.choice(list_of_lists)

13

14 def greedy_edge_coloring(graph):

15 num_edges = graph.ecount ()

16 colors = [0] * num_edges

17 available_colors = set()

18 used_edges = []

19
...

20 return colors

21

22 mpl.color_sequences.register(’color_classes ’, [’red’, ’blue’, ’yellow ’,

23 ’green’, ’pink’, ’purple ’,

19

https://github.com/soybean-143/501-Rainbow-Matchings-Algorithms
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24 ’cyan’, ’darkgreen ’,

25 ’orange ’, ’indigo ’,

26 ’magenta ’, ’olive’,

27 ’black’])

28

29 colors = mpl.color_sequences[’color_classes ’]

Listing 1: Global Algorithms

To make it easier to compare runs, we establish a graph elsewhere and then call a copy

of the graph and its edge-color dictionary to run each algorithm on. We pull the edge colors

for each edge in line 4 and establish a set of edge sets partitioned into their respective

color classes in lines 5 through 9. We also establish empty dictionaries rain choices and

cond sequence. We will be adding to these dictionaries in each step of the function. These

dictionaries will later be used by a reverse algorithm for creating a rainbow matching on the

graph g.

The function takes a given graph, its edge-color dictionary, and a chosen value of m.

This choice decides how long the function will run. Note that while we can choose any

value for m, a smaller value decreases the bounds in conditions 2 and 4, making it more

likely for the function to terminate for i-1 = m instead of terminating by reaching an empty

graph. Furthermore, though we can pick infinitely large values of m, it is unnecessary to pick

m ≥ n/2, as we naturally can’t find a matching with more than n/2 edges. The overarching

for loop runs i from 1 to m+ 1 to keep the bounds in conditions 2 and 3 nonnegative.

Line 16 allows us to later call on color classes by a color name instead of just an index.

The for loop introduced at line 19 will help us keep track of edge colors and the size of the

color classes.

1 g = reg.copy()

2 edge_colors = reg_edge_colors.copy()

3

4 g.es["color"] = [edge_colors.get(i, "black") for i in range(len(g.es))]

5 color_groups = {color: [] for color in mpl.color_sequences[’color_classes

’]}

6 for edge in g.es:

7 color = edge["color"]

8 if color in color_groups:

9 color_groups[color]. append(edge.index)

10

11 rain_choices = {}

12 cond_sequence = {}

13
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14 def algo_random(g,edge_colors ,m):

15 for i in range(1,m+1):

16 color_groups = {color: [] for color in

17 mpl.color_sequences[’color_classes ’]}

18

19 for edge in g.es:

20 color = edge["color"]

21 if color in color_groups:

22 color_groups[color]. append(edge.index)

23 edge_color_size = [len(a) for a in color_groups.values ()]

Listing 2: Algorithm Setup

Approaching condition 1 is rather simple. We want to make sure the function terminates

if the graph has become empty. In this case, we append the empty graph at step i to the

rain choices dictionary for use later.

1 if len(g.es) == 0:

2 cond_sequence.setdefault(i, []).append (1)

3 g_i = g.subgraph_edges(edges =[])

4 rain_choices[i] = g_i

5 return (g,i)

Listing 3: Condition 1

Condition 2 is triggered if there is a vertex of suitably high degree dependent on the value

of i. Thus, we check the maximum degree of the graph. If there is a vertex that satisfies the

degree, we record condition 2 in the cond sequence dictionary at its corresponding i index.

To account for multiple vertices of suitable degree, we create a list. The for loop added any

appropriate vertices to the lrg enough list. We then choose a random vertex from the list

and get the incident edges for the vertex. The set of edges is used to create a subgraph of g

to be saved as g i in the rain choices dictionary. The for loop starting on line 12 ensures

that for the edges in g i we use the appropriate edge colors per the coloring of g. Then we

remove the set of edges from g per the instruction of the algorithm. The function utilizes

many tools from the igraph library. The delete edges command not only removes a given

set of edges but also updates g, so we don’t need to update it manually. Line 17 resets the

lrg enough list for future i iterations.

1 elif (max(g.degree ()) >= 3*(m-i)+1):

2 cond_sequence.setdefault(i, []).append (2)

3 lrg_enough = []

4 for v in g.vs:

5 if g.degree(v) >= 3*(m-i)+1:
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6 lrg_enough.append(v.index)

7 vert = random.choice(lrg_enough)

8

9 edges_to_add = g.vs[vert]. incident ()

10 g_i = g.subgraph_edges(edges_to_add , delete_vertices=False)

11

12 for edge in g_i.es:

13 original_edge = g.es.find(_source=edge.source , _target=edge.

target)

14 edge["color"] = original_edge["color"]

15 rain_choices[i] = g_i

16 g.delete_edges(g.vs[vert]. incident ())

17 lrg_enough = []

Listing 4: Condition 2

Similarly to condition 2, condition 3 is triggered when the maximum size of any of the

color classes exceeds the bound per i. The if statement in line 5 has the additional condition

that the color-class must be nonempty. The for loop in line 9 collects the edge indices of a

given color to create the set edges to delete. We save the appropriate condition and g i

to our dictionaries for use later, then remove the set of edges from g.

1 elif (max(edge_color_size) >= 2*(m-i) + 1):

2 cond_sequence.setdefault(i, []).append (3)

3 lrg_enough_cc = []

4 for color in color_groups:

5 if len(color_groups[color]) >= 2*(m-i) + 1 and len(color_groups[

color ]) > 0:

6 lrg_enough_cc.append(color_groups[color])

7 color_class = random.choice(lrg_enough_cc)

8

9 for color , edge_indices in color_groups.items():

10 if color_class [0] in edge_indices:

11 color_cc = color

12 break

13

14 edges_to_delete = color_groups[color_cc]

15 g_i = g.subgraph_edges(edges_to_delete , delete_vertices=False)

16 for edge in g_i.es:

17 original_edge = g.es.find(_source=edge.source , _target=edge.

target)

18 edge["color"] = original_edge["color"]

19 rain_choices[i] = g_i

20
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21 g.delete_edges(edges_to_delete)

22 lrg_enough_cc = []

Listing 5: Condition 3

Condition 4 of the algorithm stipulates that we remove any edge, the incident edges of

its endpoints, and its color class. So for a nonempty edge set, we choose rm edge a random

edge from the edge set g.es. The for loop in line 6 serves to collect the edges of the same

color-class of rm edge. We then obtain the target and source of rm edge. We create g i at

line 13 before obtaining the incident edges of the source and target. This can be done at

this step because when reversing the algorithm later, we will only be adding rm edge to the

growing matching. We add the endpoint incident edges to our set of edges in the color-class

of rm edge, then remove the entire set from g. If we hit no conditions, we return g, i, and a

print statement to make it clear under which condition we terminated. We call the algorithm

using g, its edge colors, and a chosen value of m. Here, we are running for m=5.

1 else:

2 cond_sequence.setdefault(i, []).append (4)

3 if len(g.es) > 0:

4 rm_edge = random.choice(g.es)

5 edge_cc_adj =[]

6 for e in g.es:

7 if e["color"] == rm_edge["color"]:

8 edge_cc_adj.append(e.index)

9

10 source_vertex = rm_edge.source

11 target_vertex = rm_edge.target

12

13 g_i = g.subgraph_edges(rm_edge , delete_vertices=False)

14 for edge in g_i.es:

15 original_edge = g.es.find(_source=edge.source , _target=edge.

target)

16 edge["color"] = original_edge["color"]

17 rain_choices[i] = g_i

18

19 incident_edges_source = g.incident(source_vertex)

20 incident_edges_target = g.incident(target_vertex)

21 incident_edges = list(set(incident_edges_source +

22 incident_edges_target))

23 edge_cc_adj.extend(incident_edges)

24 g.delete_edges(edge_cc_adj)

25 edge_cc_adj = []

26
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27 return (g,"Terminating for i-1=m",i)

28 print(algo_random(g, edge_colors , 5)[1])

Listing 6: Condition 4

5.2 Example Run

For demonstration, we run the algorithm with the bounds presented by [5], taking random

choices on conditions 2,3, and 4. We will use a 4-regular graph on 15 vertices. This graph

makes for a good example as it has decently sized color classes, so when we run the function

with m = 5, we will hit conditions 2,3, and 4. Here we create the graph and coloring in a

global cell, and then create a copy for every run. This allows us to consistently experiment

on the same graph since the Graph.K Regular creates a random graph on each run. The

code below shows the construction in the global cell. The for loop creates a dictionary of

edge indices and their assigned color by the coloring algorithm for use by the algo random

function.

1 reg = Graph.K_Regular (15 ,4)

2 reg.vs["label"] = list(range(reg.vcount ()))

3 col_reg_edge_colors = greedy_edge_coloring(reg)

4 reg.es[’color’] = col_reg_edge_colors

5 reg_edge_colors = {}

6

7 for i, color in enumerate(col_reg_edge_colors):

8
...

9 print(reg_edge_colors)

We can make our copy of the example graph and call our function.

1

2 g = reg.copy()

3 edge_colors = reg_edge_colors.copy()

4 g.es["color"] = [edge_colors.get(i, "black") for i in range(len(g.es))]

5 color_groups = {color: [] for color in mpl.color_sequences[’color_classes

’]}

6 for edge in g.es:

7 color = edge["color"]

8 if color in color_groups:

9 color_groups[color]. append(edge.index)

10

11 print(algo_random(g, edge_colors , 5)[1])
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Figure 20: The function starts by printing the graph with its colored edges, using the
provided edge colors dictionary. We call this graph g.

Figure 21: At i = 1, we hit condition 4.
The condition is added to the condition
sequence for the run; cond sequence =

{1: [4]}. A random edge is chosen, in
this case, the edge with ID 24 and color
pink. We remove the edge, the incident
edges of its endpoints, and the pink color
class. The subgraph above containing
edge 24 and the remaining isolated ver-
tices of g are saved in the rain choices

dictionary as g 1.

Figure 22: Graph g is updated after re-
moving the edge of g 1, the incident edges
of its endpoints, and the pink color-class.
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Figure 23: At i = 2, we hit con-
dition 4 again. The condition is
added to the condition sequence for
the run; cond sequence = {1: [4],

2: [4]}. A random edge is chosen, in
this case, the edge with ID 16 and color
green. We remove the edge, the inci-
dent edges of its endpoints, and the green
color class. The function saves the above
subgraph g 2 to the rain choices dictio-
nary.

Figure 24: Graph g is updated after re-
moving the edge of g 2, the incident edges
of its endpoints, and the green color-class.

Figure 25: At i = 3, we hit con-
dition 4 again. The condition is
added to the condition sequence for
the run; cond sequence = {1: [4],

2: [4], 3: [4]}. Random edge with
ID 0 and color red. The function saves the
subgraph g 3 to the rain choices dictio-
nary.

Figure 26: Graph g is updated after re-
moving the edge of g 3, the incident edges
of its endpoints, and the red color-class.
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Figure 27: At i = 4, we hit condition 3.
The condition is added to the condition
sequence for the run; cond sequence

= {1: [4], 2: [4], 3: [4], 4:

[3]}. The function chooses the yellow
color class. The subgraph containing all
edges of color yellow and the remaining
isolated vertices of g are saved in the
rain choices dictionary as g 4.

Figure 28: Graph g is updated after re-
moving the yellow color-class.

Figure 29: At i = 5, we hit condition 2.
The condition is added to the condition
sequence for the run; cond sequence

= {1: [4], 2: [4], 3: [4], 4:

[3], 5: [2]}. At this step, the degree
required to qualify for condition 2 is
3*(m-i)+1 = 1, so any vertex with
degree 1 or more may be chosen. The
function chooses vertex 10, so all incident
edges of vertex 10 are removed. The
rain choices dictionary saves g 5 as
the graph of vertex 10, its incident edges,
and the remaining isolated vertices of g.

Figure 30: Graph g is updated after re-
moving the edges of g 5. At i = 6, the
function terminates for i-1 = m.
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5.3 Reverse Matching Algorithm

The reverse matching algorithm takes the input graph, the condition dictionary built in

the forward algorithm, the subgraphs for each step of the forward algorithm arranged in a

dictionary, and the original dictionary of edge colors for our graph.

1 def reverse_engineer(g, cond_sequence , rain_choices , edge_colors):

Listing 7: Reverse Engineer Algorithm

Figure 31: The reverse engineer func-
tion starts with an empty graph on the
same vertices utilized in the forward run-
ning algorithm.

Figure 32: Processing step i = 5. The
rain choices dictionary records hitting
condition 2, so a specific vertex and its
incident edges were removed by the algo-
rithm. The function cycles through, ran-
domly choosing an edge stored in g 5. If
the edge uses an endpoint or color already
utilized, the function will choose a new
random edge until it finds a suitable one.
Since the previous graph is empty, any
edge may be added to the matching safely.
The function chooses (3, 10) with the new
color blue.
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Figure 33: Processing step i = 4. The
rain choices dictionary records hitting
condition 3, so a specific color-class was
removed by the algorithm. We thus add
a random suitable edge from that color-
class to our matching. The edges stored
in g 4 are (2,10), (3,5), and (1,12). The
function notes that (2,10) and (3,5) al-
ready share an endpoint with an edge in
our matching, so they cannot be added.
We add (1, 12) with color yellow.

Figure 34: Processing step i = 3. The
rain choices dictionary records hitting
condition 4, so a specific edge, its neigh-
bors, and its color-class were removed by
the algorithm. We thus add the chosen
edge to our matching. The edge stored in
g 3 is edge (0, 9) with color red.

Figure 35: Processing step i = 2. The
rain choices dictionary records hitting
condition 4, so a specific edge, its neigh-
bors, and its color-class were removed by
the algorithm. We thus add the chosen
edge to our matching. The edge stored in
g 2 is edge (6, 11) with color green.

Figure 36: Processing step i = 1. The
rain choices dictionary records hitting
condition 4, so a specific edge, its neigh-
bors, and its color-class were removed by
the algorithm. We thus add the chosen
edge to our matching. The edge stored in
g 1 is edge (7, 14) with color pink.
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6 Other Research Directions

There are many possible directions for extending this research. First and foremost, there

are natural variations to the algorithm that could be explored to compare with the imple-

mentation explained here. For example, we list some variations below. Under all algorithm

variations, we consider a random edge from the edge set when enacting condition 4 of Theo-

rem 4.1. For the other conditions, we could make different choices. Case 1 below describes the

algorithm as we presented it here. The other two could be interesting to further investigate.

1) We consider a random vertex of suitable degree under condition 2 and choose a random

suitably large color-class under condition 3.

2) We consider the vertex of maximum degree in the set of sufficient degree under con-

dition 2 and the maximum size color-class from the set of suitably large color-classes

under condition 3.

3) We consider the vertex of minimum degree in the set of sufficient degree under condition

2 and the minimum size color-class from the set of suitably large color-classes under

condition 3.

Moreover, we could consider variations utilizing the original degree bound for condition

2 presented by [3]. In this case, we would modify condition 2 of the algorithm as presented

by Kritschgau to be the following: if there exists v ∈ V (Gi−1) with d(v) > 2(m − i), then

Gi = Gi−1 −N(v). Under this change, we could also consider the three variations above for

a total of six variations on the algorithm.

Additionally, there is an unresolved conjecture given by Kritschgau that any graph G with

d̂(G) ≥ 2mn contains a rainbow matching of sizem+1. Though this is still only a conjecture,

some improvement to the bounds on graphs not necessarily properly colored has been made

recently by Zhou [13]. Given the possibility that algorithmic variations (as described above)

could improve the performance, it seems plausible to us that such a conjecture might indeed

hold.
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