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1 Introduction

In this MTH 501 project, we offer an expanded presentation of the results
found in the 2013 paper, “Delay Colourings Of Cubic Graphs” by Agelos
Georgakopoulos [3]. Our aim in this project is to present the main mathe-
matical results, filling in occasional supplementary details of the paper that
are left to the reader, and to offer additional commentary which will serve to

illustrate results and elucidate proof methods wherever possible.

1.1 Context

Graph colorings form an important topic in applications of graph theory; many
real-world problems modeled by graphs involve partitioning the vertices or
edges of a given graph into disjoint sets such that the vertices or edges within
these sets are non-adjacent or non-incident. For example, such constraints
commonly arise in problems concerning scheduling, either to avoid conflicts or
to minimize the total time of composite tasks when various subtasks might be
able to be performed simultaneously.

The present paper is focused on distortion colourings of the edges of multi-
graphs, which is an mathematical abstraction rooted in the design of optical
networks [7]. In that conceptualization, a color assigned to an edge may ap-
pear distorted in some way, visually or temporally, from the vantage point of
one endpoint than from the other endpoint.

More specifically, in the paper under consideration, [3], the author defines a
novel graph-theoretic object, called a distortion, which associates a restricted
set of ordered pairs of colours with a given graph. The goal is to extend the
notion of proper edge colourings to this more general context and to show that

these novel proper edge colourings exist under specific constraints.

1.2 Statement of Main Result

The main result of the paper proves that every cubic bipartite multigraph

admits a distortion colouring. In particular, we have the following.



Theorem 1. Let G be a bipartite multigraph with maximum degree d, partition
classes A and B, and a distortion (definitions in the next section) on d + 1

colours. If d =3, then G is properly (d + 1)-distortion-colourable.

1.3 Organization of Paper

For ease of reading, the content of this project is organized into five chap-
ters. Chapter 1 contains a very brief introduction to the topic of distortion
colourings, offering a bit of historical and mathematical context, and stating
the main result. Chapter 2 presents a summary of the necessary definitions
concerning graphs, colourings, matchings, and distortions. Chapter 3 collects
a number of important preliminary results to facilitate the proof of the main
result, including the main construction that will establish the 4-colourability of
the graphs under consideration. In Chapter 4, the main proof shows that the
construction achieves the desired goal. Finally, in Chapter 5 we conclude with
a brief discussion of extent, related work and potential directions for further

research.

2 Background and Definitions

This chapter houses some basic definitions from graph theory to provide the
context for the exposition. For more detail on these concepts, we refer the
reader to any standard textbook on graph theory, such as West [6]. More im-
portantly, it also introduces and rigorously defines the novel objects associated

with distortions.

2.1 Multigraphs

The main object of concern for this paper will be finite, loopless multigraphs,
defined immediately below.
A (finite, loopless) multigraph G consists of a (finite) vertex set V(G),

a (finite) edge set F(G), and an incidence relation that associates, with



each edge, an unordered set of two vertices, called its endpoints. When u and
v are the endpoints of an edge, they are said to be adjacent, written u ~ v.
The degree of a vertex v is the number of edges that have v as an endpoint.
A multigraph in which every vertex has degree 3 is said to be cubic.

A multigraph G is said to be bipartite whenever the vertex set V(G) can
be partitioned into two nonempty subsets A, B such that every edge has one

endpoint in each partition class.

Figure 1. A bipartite cubic multigraph

2.2 Matchings and Colourings

A set M of edges in a multigraph G is called a matching if no two edges in
M share an endpoint. A perfect matching of GG is any matching M with the
property that every vertex of G occurs as an endpoint of some edge in M.

An edge-colouring of a multigraph G is a labeling f : F(G) — S, where
S is a set of labels known as colours. When [S| = r, we refer to such a
labeling f as an r-colouring and the set of edges assigned any given colour
as a colour class.

An r-colouring is said to be proper whenever each colour class forms a

matching. If a multigraph G requires at least r colors to be properly coloured,
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we refer to r as the edge chromatic number, \'(G). In other words, the
chromatic number is the minimum number of colours needed to label the edges

so that edges incident with a vertex receive different colours.

Figure 2. A proper 4-colouring of the edges of a multigraph

2.3 Distortion Colourings

In this section, let G denote a finite, loopless multigraph. Assume G is bipar-
tite, with partition classes P; and P,. The vocabulary regarding distortions is

as follows.

Definition 1. Let an edge distortion d,,, be a set of ordered pairs (2-tuples)

of colours that is:
(1) a priori associated to edge uv, with
(2) the indices i in each tuple corresponding to partition classes P;, where

(8) each colour is found exactly once in each index (over all tuples in the
set).



For example, one edge distortion over the colours {a, 3,7} is

{(o, @), (8,7), (v, B)}-

If w e P, and v € P,, the first element of a tuple corresponds to a potential
colour for the u incidence, and the second element of a tuple corresponds to
a potential colour for the v incidence. Furthermore, condition (3) satisfies the
requirements for the values in any two indices of a tuple (over all tuples) to be
a valid permutation of the underlying colours, by definition of permutation.
Therefore, an edge distortion acts as a bijective function over the colours,
mapping values in one index of a tuple to values in some other index of a tuple
(over all tuples), e.g. dy(5) = . The inverse of the function is denoted using

the same notation with the subscripts reversed: d,,(y) = 5.

Definition 2. For a given multigraph G, let a distortion be the set of all
edge distortions for the edges of G.

Definition 3. For a given edge in a multigraph G, let a distortion repre-
sentative be the tuple from an edge distortion used to colour the endpoints of
that edge.

Definition 4. Let a distortion colouring be the labeling resulting from the
assignment of distortion representatives to all edges in a graph. A distortion
colouring s proper whenever no two edge endpoints incident to a given vertex

are the same colour, over all vertices.

3 Preliminary Results

This section collects a number of important preliminary results concerning

bipartite cubic graphs and perfect matchings.

3.1 Bipartite Cubic Multigraphs

We first show that, if a bipartite multigraph has maximum degree 3, we can

consider it to be a subgraph of a bipartite multigraph that is cubic.
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Lemma 1. Any bipartite multigraph with maximum degree 3 can be extended

to a cubic bipartite multigraph.

Proof. Let G be a non-cubic bipartite multigraph with maximum degree 3.

Consider the following construction to create G':

1.

G may contain some quantity of degree-0 vertices. If so, replace each
degree-0 vertex with an instance of the complete bipartite graph on 6
vertices (commonly denoted Kj3), making six degree-3 vertices. This

will force G’ to contain no degree-0 vertices.

GG may contain degree-1 or degree-2 vertices in both partitions. If so, in
one of the two partitions, for each non-degree-3 vertex, add and connect
a new vertex to the non-degree-3 vertex with either one or two edges to
make the non-degree-3 vertex degree-3. This will force G’ to have any

remaining degree-1 and degree-2 vertices in one partition.

G may contain more than three degree-1 vertices within a partition. If
so, for each set S of these three degree-1 vertices, add three new vertices
and six edges such that there are two edges incident to each degree-1
vertex and the new vertex paired with it, making those degree-1 vertices
degree-3. This construction will force G’ to contain fewer than three

degree-1 vertices but will create new degree-2 vertices.

G may contain more than three degree-2 vertices within a partition. If
so, for each set S of these three degree-2 vertices, add a new vertex with
three edges such that each edge is incident to a vertex in S, making those
degree-2 vertices degree-3. This will force G’ to contain fewer than three

degree-2 vertices.

GG may contain at least one degree-1 vertex and at least one degree-2 ver-
tex within a partition. If so, collect the degree-1 and degree-2 vertices
in pairs until there are no more of one of the degrees; for each pair, add

a new vertex and three edges: one from the new vertex to the degree-2



vertex, and two from the new vertex to the degree-1 vertex.

It remains to be shown that the resulting multigraph G’ will be cubic.

Assume not. Then G’ has either one or two degree-1 vertices, or one or two
degree-2 vertices, all in one partition. Each degree-1 vertex can be connected
to a new vertex via two edges to make degree-2 vertices. If there are two
degree-2 vertices, a vertex can be added and connected to them to make a
unique degree-2 vertex. A degree-2 vertex can be attached to a new vertex by
a single edge to make a degree-1 vertex. Therefore, the four remaining cases
can be treated as equal to the case of a unique degree-1 vertex without loss of
generality.

As G’ is bipartite, this implies the vertex partition with the unique non-
degree-3 vertex is incident with some number of edges that is congruent to
1 (mod 3). Since each edge has exactly one endpoint in the other partition,
the other vertex partition must also be incident to 1 (mod 3) edges, but all
vertices in that partition are degree 3. This is a contradiction. Note that at
every step of the construction, the number of edges incident to each partition

consistently changes as follows:

0 mod 3 — 0 mod 3
1 mod 3 < 2 mod 3
2 mod 3 — 1 mod 3

Since every step of the construction is fully reversible, the contradiction in G’

implies an impossible starting graph. Thus, G’ is cubic for any given G. [

3.2 Matchings in Bipartite Multigraphs

We next review two basic facts about matchings.

Lemma 2. Suppose G is any bipartite, k-reqular multigraph. The edge set of

G is decomposable into k disjoint perfect matchings.



Proof. Consider the following construction:

For each ¢ > 1, create the ith matching by choosing edges only incident
to vertices of degree k — ¢+ 1. As each edge is assigned to a matching,

remove it from the graph.

Note that, by virtue of the multigraph being bipartite and regular, the two
implied vertex partition classes must have the same cardinality via the Pigeon-
hole Principle. It follows that the iteration of the above construction produces

the desired perfect matchings. ]

Lemma 3. Suppose G is any multigraph. The union of any two disjoint perfect

matchings in G is a set of disjoint cycles that span all of the vertices.

Proof. Every vertex appears in each perfect matching exactly once, by defini-
tion. Since the matchings are disjoint, every vertex in the union of two disjoint

perfect matchings has degree 2. This is only possible in a forest of cycles. [

3.3 Agreement Among Distortions

Below is a highly useful combinatorial result which guarantees some agreement

among the tuples of any two distortions.

Lemma 4. Any two edge distortions (comprised of tuples with two indices)

over the same set of colours have at least one tuple in common.

Proof. Assume not. Given that each edge distortion is a permutation of
colours, there are n — (i — 1) choices for the ith tuple (given some arbitrary
ordering) of the first edge distortion. Each tuple of the second edge distortion
must avoid the first, so there are n — (i — 2) choices for the ith tuple (given
the same ordering as the first edge distortion). However, this forces 0 valid
choices for the final tuple of the second edge distortion, which is impossible.
Thus, two edge distortions (comprised of tuples with two indices) built from

the same colour sets must have at least one tuple in common. O]
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3.4 The Main Construction

Suppose we are given a bipartite cubic multigraph G with a corresponding
distortion. As the main result is an existence claim, we aim to provide a con-
struction that always permits a proper 4-distortion-colouring. In this section,

we present said main construction. Consider the following:

By Lemma 2, there exists a decomposition of the edges of GG into three
perfect disjoint matchings, M;, My, M3. By Lemma 3, we may choose any
matching M;, and let C; be the cycles of the union of the other two matchings.
Define an edge set M;; 4 = {(a,b)|(a,b) € M;;a € V(C;NA)}, the set of edges
in M; with endpoints in the vertices of C; that are in vertex partition A. Let
the edge set M;,; 5 = {(a,b)|(a,b) € M;\ M;, a;a € V(C;NB)}, the remaining
edges in M, with endpoints in the vertices of C; that are in vertex partition
B. Thus, M;; aNM;; p={} and M;; s UM,; p = M;.

Furthermore, define uvy be a two-edge arc of C; such that v and y are in
vertex partition A. Let m,, and m, be the edges in Mj;; 4 incident to u and y,
respectively, and m, the edge in M;; p incident to v. Finally, denote the four

colours all edge distortions are defined over as «, 3, v, and 4.

We now prove the key property of the above construction in the following

lemma.

Lemma 5. For every C; in My U Ms, there is a 4-distortion-colouring fa
of Ms; 4 such that for every 4-distortion-colouring fg of Ms, g, there is a 4-
distortion-colouring fo of E(C;) such that foU fgU fe is a proper 4-distortion-

colouring of C;.

Proof. 1t will suffice to show the set of available distortion representatives
for each edge of C; during the process of distortion colouring is non-empty.

Consider four cases: dy, = dy, Or dyy 7# dyy, and u # y or u = y.

Case 1: If d,, = dy, and u # y, that is, the edge distortions of uv and
yv are identical and the arc uvy is not a 2-cycle, then assign distortion rep-

resentatives to m,, and m, (i.e. distortion-colour those edges) such that the
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underlying colours associated to the v and y endpoints are different. Without
loss of generality, choose a for the association with v and S for y. Assign
distortion representatives to the rest of M; arbitrarily to complete f4 and fg.

Distortion-colour E(C;) starting at edge vu and continue around the cy-
cle ending with edge yv as follows. Since fi and fp are already distortion-
coloured, if the colour associated to the m, endpoint v by fg is the same as
the colour d,,(f3), then there are three options for yv and two for vu. Choose
either available distortion representative for vu. Note this reduces the options
for yv to two; only the representative (3, d,,(/5)) and whichever representative
conflicts with the uv representative are unavailable of the four tuples. Else,
the colour associated to the m, endpoint v by fg is not the same as the colour
of d,,(5). Since, in this case, dy,(5) = duw(5), colour uv with the distortion
representative that would associate § to u. This ensures that yv still has at
least two available options; only the representative (3, d,,(3)) and whichever
representative conflicts with the m, representative by fp are unavailable of
the four tuples.

Since G is cubic and bipartite, every vertex in V(C;) \ {u, v, y} is incident
to one edge in M3, which has already been distortion-coloured by fa or fz.
Having distortion-coloured vu, the next edge in the cycle (the third edge in-
cident to u that is neither vu, the previous edge in the cycle, nor m,, the
edge in M3), will have two available distortion representatives: namely, those
not conflicting with the representatives for vu and m,. Choose one of the two
non-conflicting representatives. Continue this pattern until reaching yv, as for
each new edge, there will be two choices (those not conflicting with the rep-
resentatives for the previous edge in the cycle or the edge in M3). At yv, the
final edge of the cycle, of the two choices originally guaranteed by the strategic
distortion-colouring of vu, only one will not conflict with the representative
chosen for the previous edge in the cycle. Distortion-colour yv with this single

non-conflicting representative. Then E(C;) has a 4-distortion-colouring.

Case 2: If dy,, = dy, and u = y, that is, the edge distortions of uv
and yv are identical and the arc uvy is a 2-cycle, then assign any distortion

representative to m, = m,. Without loss of generality, choose a for the
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association with u = y. Regardless of fg, there are still at least two distortion
representatives available for vu and yv: the tuples of d,, with a not in the
first index and whatever colour fp associates with v in the second. Choose
from these available representatives distinctly for each edge in arc uvy; then

E(C;) has a 4-distortion-colouring.
Case 3: If d,, # dy, and u # y, that is, the edge distortions of uv and yv

are different and the arc uvy is not a 2-cycle, then the distortion-colouring of
uvy is slightly more nuanced. Since dy, # d., there is at least one tuple in
dy, not in dy, and at least one tuple in dy, not in d,,, the non-shared tuples.

By Lemma 4, there is also at least one tuple in d,, Nd,,, a shared tuple. Note

Yo
that, combinatorially, non-shared tuples cannot exist in isolation; if they did,
this would implies three shared tuples in each distortion, which would force
the fourth tuple to be shared.

Distortion-colour m, and m, such that the underlying colours associated
to the u and y endpoints are the same, say «, and such that the chosen
representatives satisfy the relation d,, (o) # dy,(), (i.e. « is the first index
in both members of a pair of non-shared tuples between d,, and d,,). Assign
distortion representatives to the rest of M; arbitrarily to complete f4 and fg.

To distortion-colour E(C;), as in Case 1, the objective is to find distortion
representatives such that a distortion-colouring of one the edges of uvy permits
two options for the other edge, as then the logic for distortion-colouring the
rest of the cycle is the same. There are three subcases. If the colour associated
to the m, endpoint v by fp is a, then pick either edge vu or yv, and distortion-
colour it with another non-shared tuple. This choice will force the other edge
to have two valid options (at least one of which is a shared tuple), as desired.

If the colour associated to the m, endpoint v by fp is not «, but some
colour y which is the second index of another non-shared tuple pair, then one
of the edges will have three valid options and the other will have two. This is
because combinatorially, from the restrictions of this subcase, there are three
non-shared tuple pairs, with («, x) being a non-shared tuple in one of the two
distortions. Hence, that distortion will only have one invalid choice, instead

of the two invalid choices expected (the tuple starting with « and the tuple
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ending with y). To start the distortion-colouring process of the cycle, pick
any representative from the edge distortion with two valid colours. This will
invalidate a representative in the other edge distortion, bringing the number
of options from three to two, as desired.

If the colour associated to the m, endpoint v by fg is not «, but some colour
x which is the second index of a shared tuple pair, then both edge distortions
will have two valid options: some non-shared tuple associating a to v, and
some other non-shared tuple (by the same logic as the previous subcase). Pick
either edge and choose the representative that does not associate o to v. This
ensures both options in the other edge distortion are available when closing
the loop, as desired.

Thus, for all subcases, E(C;) has a 4-distortion-colouring.

Case 4: If d,, # d,, and u = y, that is, the edge distortions of uv and
yv are different and the arc uvy is a 2-cycle, then distortion-colour as in Case
3. If the colour associated to the m, endpoint v by fp is not «, then the
logic is the same as the third subcase of Case 3. If it is a, then the logic is
the same as the first subcase of Case 3. Either way, the other edge in the arc
will have two options available, as desired, and it follows that E(C;) has a

4-distortion-colouring.

Since, for all cases, given the f4 distortion-colouring logic and an arbitrary
fp distortion-colouring, F(C};) has a 4-distortion-colouring, it immediately fol-
lows that there is a 4-distortion-colouring f4 of Mj; 4 such that for every 4-
distortion-colouring fp of Mj; g, there is a 4-distortion-colouring fe of E(C;)

such that f4 U fp U fo is a proper 4-distortion-colouring of Cj. [

4 Proof of Main Theorem

Recall the main statement to be proved: Let G be a bipartite multigraph with
maximum degree d, partition classes A and B, and a distortion on d+1 colours.

If d = 3, then G is properly d + 1-distortion-colourable.
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Proof: By Lemma 1, restrict G to cubic bipartite multigraphs. By Lem-
mas 2, 3, and 4, complete the construction shown in the proof of Lemma 5 for
any single cycle as given by Lemma 3. By Lemma 3, all cycles are disjoint, so
the construction in Lemma 5 can be trivially extended to all cycles (as given by
Lemma 3) keeping the distortion colouring proper. This is because the edges
distortion-coloured by f4 for any given 7 correspond to some subset of edges
distortion-coloured by fp for all other 7, and fp is specifically defined to be
arbitrarily distortion-coloured for each cycle, there is no conflict in extending
the distortion-colouring cycle by cycle. By Lemma 3, since the union of Mj;; 4
over 7 is M, this distortion colouring covers . Therefore, for every bipartite
multigraph G of maximum degree three, and given any distortions over G,

there exists a proper distortion colouring on four colours. O

5 Discussion and Related Research

Edge distortions, though defined here in generality, are found elsewhere in the

literature, with several unanswered questions and partial results.

5.1 Delay Colourings

While this paper proves the d = 3 case, it is not presently known if bipar-
tite multigraphs with maximum degree d are (d + 1)-distortion-colourable in
general. However, if the edge-distortion is restricted to a specific type of per-
mutation, (afy...w) and its powers, further results are known.

Wilfong, et al [7] call this restriction a delay colouring, and, proving it true
for d = 4, conjectured in 2001 that all bipartite multigraphs with maximum
degree d are d + 1-delay-colourable. In 1952, Hall [4], not using the language
of delay-colourability, proved a combinatorially equivalent to (d + 1)-delay-
colourability for spindles via what is now known as the Fundamental Theorem
of Juggling. In 2007, Alon and Asodi [1] showed other families of multigraphs
are (d + 1)-delay-colourable, such as the d-regular multigraphs whose under-

lying simple graph is a simple cycle of even length where d 4 1 is prime. Alon
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and Asodi further conjecture that multigraphs, not necessarily bipartite, are
(X'(G) + 1)-delay-colourable, attempting to associate the delay-colourability
of G to the edge chromatic number of G.

5.2 Extending to Hypergraphs

There is also a different relaxation with a more standard application. Recall
the language of the definition of an edge distortion: let an edge distortion be
a set of ordered tuples of colours that is a priori associated to edge, with the
indices ¢ in each tuple corresponding to partition classes P;, where each colour
is found exactly once in each index (over all tuples in the set). This language
was employed specifically to trivially generalize the definition to hyperedges
(and hypergraphs). Indeed, consider the following conjecture from Wilfong et
al [7].

Conjecture 1. Let H be a tripartite 3-uniform hypergraph with partition
classes A, B, and C, such that |B| = |C| = |A| + 1. Suppose that for ev-
ery x € A, the set of hyperedges containing x induces a perfect matching of
BUC. Then A is matchable.

Here, A being matchable means that there is a matching in H containing
all vertices in A. The equivalence to the Main Proposition of this paper is as
follows: represent each edge in the Main Proposition by a vertex in A, and let
B and C be sets of size d + 1 = |A]| 4+ 1, to be thought of as the colour on
the left endpoint and the right endpoint, respectively. This strengthens the
well-known Brualdi-Stein conjecture, named by Brualdi [2] and Stein [5], who
independently considered the question: in every n x n Latin square, does there
exist a transversal of size n — 17

The implication from the hyperedge construction is follows: construct a
tripartite hypergraph H with A being the set of rows of a Latin square, B, the
columns, C' being the set {1,...,n}, and each entry of the Latin square intro-
ducing a hyperedge contains the three corresponding vertices of H. Delete an
arbitrary vertex in A with all edges containing it to obtain the hyperedge con-

struction. As of this writing, the Brualdi-Stein conjecture is an open problem.
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