\documentclass[12pt]{article} \setlength{\oddsidemargin}{0in} \setlength{\textwidth}{6.5in} \newcommand{\donetex}{ \vspace{\fill} \hspace*{\fill} Done in \LaTeX. } \begin{document} \centerline{Exam \#3} \bigskip \noindent Due: Wednesday 5/29 \noindent \underbar{On your own paper do the following problems.} \bigskip \noindent You must show your work to receive credit. \vspace{.5in} \begin{enumerate} \item For the dampened Spring-Mass system $$ {d^2x\over dt^2}~+~b{dx\over dt}~+~16x~=~0 $$ \noindent (a) If $b=10$, $x(0)=0$, and $x'(0)=-3$, solve the differential equation. \bigskip \noindent (b) For what values of $b$ are the motions of the above differential equation overdamped? \bigskip \item Find the amplitude, period and phase angle for the motion described by $$ {10\over 32}x''~+~60x~=~0~,~x(0)=\frac1 6 ~,~x'(0)=-4~. $$ \bigskip \item Given $${dq\over dt}=I~~ \hbox{ and }~~{dI\over dt}=-\frac{37} 9 q $$ \bigskip \noindent (a) Find $dI\over dq$. \bigskip \noindent (b) Solve the separable differential equation you obtained in part (a) and find the equation of the solution curve in the phase plane given by $q(0)=6$ and $I(0)=0$. \bigskip \noindent (c) Now solve the differential equation $$ {d^2q\over dt^2}~+~\frac{37} 9 q~=~0 $$ subject to $q(0)=6$ and $q'(0)=0$. \bigskip \item Show that $x=t^{-1}$ is a solution of $$ 2t^2x''~+~3tx'~-~x~=~0 $$ \noindent and find the general solution for $t>0$ by the method of reduction of order. \bigskip \item For the linear system $$ {d{\bf X}\over dt} = \left[ \begin{array}{cc} 2 & 13 \\ -1 & -8 \end{array} \right] {\bf X}(t) $$ \bigskip \noindent a. Find the eigenvalues and eigenvectors for the linear system. \bigskip \noindent b. Find the general solution to the linear system. \bigskip % \vspace{2.5in} \begin{figure}[h] \vspace{2.5in} \caption{coupled mass spring system} \label{fig: Coupled Mass-Spring System} \end{figure} \bigskip \item Develop the system of differential equations that model the above coupled mass spring system in Figure 1. State what your variables represent. Use $k$'s for spring constants and $m$'s for masses. \bigskip \newpage \item {\bf Repeated eigenvalues, } Suppose the following system has non distinct eigenvalues, $\lambda_1 = \lambda_2$. $$ {d{\bf X} \over dt} = \mbox{ {\large {\bf A}} }~ {\bf X}(t) $$ \noindent Show why on the {\it luckier} attempt $$ {\bf X}(t) = {\bf v}e^{\lambda_1 t} + t{\bf u}e^{\lambda_1 t}~~ ,$$ \noindent the vector you need to find, satisfies the equation $$ {\bf A}_{\lambda} {\bf v} = {\bf u} ~~. $$ \noindent Use this information to solve the following. $$ {d{\bf X}\over dt} = \left[ \begin{array}{cc} 2 & 4 \\ -4 & 10 \end{array} \right] {\bf X}(t) $$ \end{enumerate} \donetex \end{document}