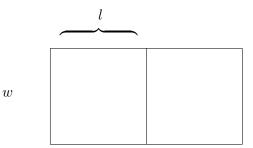
Worksheet Key # 2

Bradford

Don't forget to use your neighbors and play around with the ideas presented here.

1. Everyone knows the formula $Area = width \times length$ for a rectangular field. The formula gets more complicated if you want to construct two corrals of equal size as in the figure below.



Come up with an equation that represents the *Area* of the two corrals. Enter it into the **Numeric Solver** in your calculator and answer the following questions.

Find the Area if:

$$w = 15$$
 $l = 27$ $A = 810$
 $w = 55$ $l = 220$ $A = 24, 200$

1

mth 93

w = 55	l = 550	A=60,500
w = 200	l = 75	A = 30,000
w = -8	l = 103	A = -1648

Find the *width* if:

l = 100	A = 6785	w = 33.925
l = 525	A = 185,000	w = 176.19
l = 430	A = 260,580	w = 303
l = 600	A = 878,400	w = 732

Find the length if:

w = 25	A = 6,250	l=125
w = 73.5	A = 12,300	l = 83.67
w = 79	A = 22,752	l = 144
$w = \frac{1}{100}$	A = 3	l = 150

Find the equation for the *Perimeter* of our two corrals and enter it into the **Numeric Solver**. Answer the following questions.

Find the *Perimeter* if:

w = 25

l = 36

P=219

 $\mathbf{2}$

w = 120	l = 180	P = 1080
w = 43.789	l = 59.231	P = 368.291

Find <i>length</i> if:		
w = 75	P = 550	l=81.25
w = 23	P = 293	l = 56
w = 100	P = 726	l=106.5
w = 2,250	P = 1,000	l = -1437.5

Find the *width* if:

l = 32.3	P = 185.3	w = 18.7
l = 37	P = 160	w=4
l = 200	P = 1367	w = 189
l = 8	P = .01	w = -10.663

2. Let's investigate an equation that can have more than one solution. Enter:

$$a * x^{\wedge}2 + b * x + c = 0$$

into your Numeric Solver.

Give the variables the following values,

a = -1 , b = 2.5 , c = 21 .

The remaining unknown \mathbf{x} has two possible solutions. One near -5 and one near 5. Find them.

Answer: x = 6 and x = -3.5

Give the variables the values a = -.1 , b = .5 , c = 5 , and find the two solutions.

Answer: x = 10 and x = -5

Given $a=\frac{1}{6}$, $b=3\frac{1}{3}$, $c=5\frac{1}{3}.$ Both the solutions for ${\bf x}$ are negative. Find them.

Answer: x = -1.7538 and x = -18.246

Given a = .25, b = -7, c = 49. There is only one solution for **x**. Find it.

Answer: x = 14.000

Suppose we want x = 2 to be a solutions of the equation. Let b = 6 and c = -3. What does the **Numeric Solver** get for a?

Answer: a = -2.25

4

3. Let us use the **Numeric Solver** for economics, enter the following cost function.

$$cost = fixed + a * q^{\wedge}3 + b * q^2 + c * q$$

Give the variables the following values,

fixed = 2000 a = .0033b = -1.5c = 225

To find the cost producing a quantity of 150 units make q = 150. Find the cost.

Answer: cost = 13, 137.5

Find the cost for q = 50, 100, and 200.

Answer: $cost_1 = 9912.5$ $cost_2 = 12800$ $cost_3 = 13400$

Find what quantity keeps cost at \$12000.

Answer: q = 78.195

Change our variables to a = .5 , b = -2 , c = 100. What happens to cost?

Answer: cost = 236, 653.40

Done in ${\rm IAT}_{\rm E}{\rm X}.$