Winplot Introduction

Start by launching $\mathit{Winplot}$ and follow $\mathbf{Window} {\rightarrow} \, \mathbf{2\text{-}dim} \, .$

In order to graph follow Equa $\rightarrow 1$. Explicit...

Needed commands

$\exp(x)$	Gives the natural exponential function.
pi	Gives the constant π .
$2^{\wedge}10$	Raises 2 to the 10th power.
$\operatorname{sqrt}(\mathbf{x})$;	Gives \sqrt{x} .
$\mathrm{x}^{\wedge}(1/3)$	Graphs only the positive side of $\sqrt[3]{x}$.
$\mathrm{root}(3,\!\mathrm{x})$	Gives the entire cube root.
$\sin(\mathrm{pi}^*\mathrm{x})$	The trig function has a period of 2.
$\arctan(x)$	Gives the function $\tan^{-1}(x)$.

 $\mathbf{Equa} \! \to \! \mathbf{Library}$ lists all the built in functions.

abs(x)

Graphs the absolute value |x|.

Now graph $y = x^2$ using the **Equa** \rightarrow 1. **Explicit...**

Make the view window $-8 \le x \le 8\,,\, -2 \le y \le 30$ by following $\mathbf{View} {\longrightarrow} \mathbf{View}...$

Click on **set corners** and enter the values.

Next, try adding a grid to your graph. Follow $View \rightarrow Grid$. Click on **rectangular** and then click on **dotted**.

Calculus Function Forms

Try graphing the following functions. Graph each function separately. You will need to change the view window as necessary to get a good representation of the function graph.

$$f(x) = \ln(x)$$
, $g(x) = 2e^{-0.3x} \sin\left(\frac{\pi}{2}x\right)$, $h(x) = 15 - 9e^{-0.5x}$, $m(x) = \tan^{-1}(x)$

Parametric Plotting

$$x(t) = 4\cos(t) + 2\cos(12t)$$

$$y(t) = 4\sin(t) + 2\sin(12t)$$

Graph the parametric plot by following Equa→ Parametric...

Use $0 \le t \le 2\pi$ for the t interval.

Slope Fields in Winplot

$$\frac{dy}{dx} = \frac{2}{x}y + 2x^2$$

To plot the slope field of the DE, follow Equa \rightarrow Differential \rightarrow 1. dy/dx...

Enter the right hand side of the DE.