Digital Developments 70's - 80's

Hybrid Synthesis "GROOVE"

- In 1967, Max Mathews and Richard Moore at Bell Labs began to develop Groove (Generated Realtime Operations on Voltage-Controlled Equipment)
- In 1970, the Groove system was unveiled at a "Music and Technology" conference in Stockholm.
- Groove was a hybrid system which used a Honeywell DDP224 computer to store manual actions (such as twisting knobs, playing a keyboard, etc.) These actions were stored and used to control analog synthesis components in realtime.
- Composers Emmanuel Gent and Laurie Spiegel worked with GROOVE

Details of GROOUE

GROOVE System included:

- 2 large disk storage units
- a tape drive
- an interface for the analog devices (12 8-bit and 2 12-bit converters)
- A cathode ray display unit to show the composer a visual representation of the control instructions
- Large array of analog components including 12 voltage-controlled oscillators, seven voltage-controlled amplifiers, and two voltage-controlled filters

Programming language used: FORTRAN

Benefits of the GROOVE System:

- 1st digitally controlled realtime system
- Musical parameters could be controlled over time (not note-oriented)
- Was used to control images too:
 - In 1974, Spiegel used the GROOVE system to implement the program VAMPIRE (Video and Music Program for Interactive, Realtime Exploration)

Laurie Spiegel at the GROOVE Console at Bell Labs (mid 70s)

The 1st Digital Synthesizer "The Synclavier"

- In 1972, composer Jon Appleton, the Founder and Director of the Bregman Electronic Music Studio at Dartmouth wanted to find a way to control a Moog synthesizer with a computer
- He raised this idea to Sydney Alonso, a professor of Engineering at Dartmouth and Cameron Jones, a student in music and computer science at Dartmouth.
- Alonso suggested that they ignore the Moog entirely and build something completely digital.
- The concept led to the Dartmouth Digital Synthesizer finished in 1975. Alonso designed the hardware in consultation with Appleton, and Jones designed the software (KLANG and SING).
- The Dartmouth Digital Synthesizer used a network of integrated circuits connected to a microprocessor.

The Synclavier con't.

- In 1975 Alonso and Jones formed the New England Digital Corporation
- By 1977, they finished creation of the Synclavier, a much improved descendent of the Dartmouth Digital Synthesizer.
- Details of the Synclavier
 - Used a specially designed 16-bit microprocessor called "ABLE"
 - Memory bank (used primarily as a sequencer)
 - Synthesis engine with a bank of timbre generators, each providing 24 sine waves for each voice (1st Synclavier had 8 available voices)
 - Five-8ve keyboard
 - Push-button envelope controls (for overall envelope and envelope controls of individual harmonics)
 - Alpha-numeric keyboard for programming controls
 - Digital display to show numerical reading of the current settings
 - Optional FM controls for each voice

The Synclavier – 1977 Alonso, Appleton, & Jones

Benefits of the Synclavier:

- 1st entirely digital synthesizer
- More portable than most analog synthesizers
- Could be used for realtime performance (unlike computer music at the same point in time)
- Was attractive to academic composers and affluent commercial musicians

Synclavier II (1979–80's)

- Could be run with battery
- Added a sample-to-disk option, to keep up with the new competition with samplers.

The Synclavier II Appleton on the Connecticut River

Brush Canyon - 1986

The Origins of Sampling "The Fairlight CMI"

- In the Mid-70s, two Australians, Peter Vogel and Kim Ryrie formed the company Fairlight Instruments and designed a prototype audio processor known as the QASAR M8 by 1978.
- By 1979, The Fairlight "Computer Music Instruments" (CMI) was complete.
- The Fairlight CMI was the first digital synthesizer to use sampling technology.

Details of the Fairlight CMI

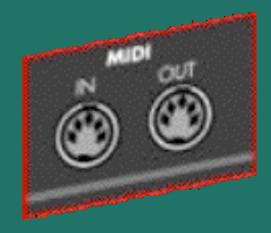
- Externally generated sounds are digitized, and stored in memory for processing and re-synthesis
- Manufacturer provided voice module cards as an alternative to recording new sounds
- 2 8-bit microprocessors were used in the 1st version, later being replaced by 16-bit technology
- The Fairlight CMI also included:
 - 2 six-octave keyboards to transpose samples
 - An interactive graphics unit controlled by a light pen to edit or create sounds by drawing wave forms
 - an alpha-numeric keyboard
 - optional foot pedals

The Development of MIDI (Musical Instrument Digital Interface)

- As more digital synthesizers became available (late 70searly 80s), it became clear that an industry standard for a communications protocol was needed.
- 1981-1983, Roland and Sequential Circuits collaborated on a prototype, and decided to use a serial interface (inexpensive and fast enough for consumer market)
- In January 1983, at the National Association of Music Merchants (NAMM), Roland and Sequential demonstrated the first prototype by hooking up a Roland with MIDI to a Sequential with MIDI, which demonstrated that notes played on the keyboard of one synthesizer could be heard on the other.
- By August 1983, Roland, Yamaha, Korg, Kawai, and Sequential refined the prototype, calling it the version 1.0

Features of MIDI

 Serial communications protocol - all commands and data are transmitted as a single sequential stream of bits down a single cable. Information flow is one-way only.


NOTE#1: MIDI sends information, not sound

NOTE#2: MIDI cannot make an instrument do something it is not designed to do.

- Connects to instruments via a MIDI interface and 5-pin DIN connectors
- 3 types of MIDI ports: MIDI IN, MIDI OUT, and MIDI THRU
 - MIDI THRU used to pass information from one device, through a second device, and into a third device (MIDI OUT port does not necessarily echo information received in MIDI IN port)
- 16 channels
- Can connect to computer using special interface and simple serial or (more recently) USB cables

MIDI Hardware

Types of MIDI Messages

- Note On turns on a note (Velocity 0 127, Pitch 0 -127, middle C=60)
- Note Off turns a note off (actually a note on message with a velocity of 0)
- Polyphonic Pressure pressure is transmitted for each note
- Channel Pressure pressure is transmitted to all notes on a channel
- Control Change switches between controllers (ex. Foot pedal, pitch bend wheel, etc.)
- Program Change changes a patch by sending a number for that patch
 - Note #1: patch numbers between instruments are often inconsistent
 - Note #2: General MIDI helps to standardize patch numbers between instruments
- Pitch Bend transmits pitch bend data in a stream of numbers

The First MIDI Synthesizer – 1983 "The Yamaha DX7"

- Inexpensive -under \$2000
- Used the patented Chowning FM algorithms
- Velocity sensitive (can sense speed at which key is struck) and pressure sensitive (aftertouch)
- 16 channels
- Stored 32 sounds in internal memory