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1. Introduction

The Wilson nonconforming finite element has been widely used in computa-
tional mechanics and structural engineering because of its good convergence
behavior. In many practical cases, it seems better than the bilinear conforming
element.However, it is shown in [2, 3, 4] that the convergence rate of Wilson
rectangular element in the energy norm is of first order. As for the arbitrary
qguadrilateral meshes, a first-order convergence can also be retained provided a
slight restriction on meshes is satisfied, see [6]. Furthermore, the first author
has given an example [7] showing that the first-order convergence is optimal.
Recently, Chen and Li [1] strictly proved this first-order optimality.

Meanwhile, computations have observed its superconvergence at the center
of elements, thus the question of superconvergence was raised, see [7,9]. Li
justified in [5] this observation for the simplest model/Au = f. Subsequently,
the result was extended to a class of second-order elliptic problems in [1], see
Lemma 2.

On the other hand, following [8], it can be easily proved that the bilinear
conforming element posseses the superconvergence at the center, as well as at
the four vertices and the midpoints of four edges of rectangular meshes.
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In this paper we prove that besides the center of rectangles as shown in
[1], Wilson element has also the superconvergence at these eight points like the
bilinear element.

2. Wilson element

We consider the general second-order elliptic boundary value problem

2.1) —0Ok(a10xu) — Oy(a0yu) +agu =f in 2,
' u=0 on 02,
where all funtions;,i = 1,2,3 and f are smooth enough (see Remark 1), and

O<c<a <c<+oo,i =12 0<a3 <3< +oo,

2 C R? is a rectangular domain.

Let 7, be a rectangular partition a®, satisfying the regularity assumption
[2], 20 = (X0, Yo) is the center oK € Z, 2h, and 2, are the lengths of two
edges ofK in x and y direction respectivelh = max (hx, hy).

Definition. 7, is called a uniform partition when dltiy are equal and so are alll
hy.
The variational problem of (2.1) is to finad € H3(£2) such that

(2.2) A(u,v) = (f,v) Yo € H(2),

where
A(u,v) = // (a10xudxv + a0yudyv + aguv) dx dy,
0

(f,v) :/ fodx dy.
2
The Wilson element solution* € W, of (2.2) satisfies
(2.3) An(w™,v) = (f,v) Yo € W,
where
An(u,v) = Z // (19 Udkv + 220, udy + aguv)dx dy,
Kem? /K
and the finite element spadst, = {wn,wh|k € P2(K) is determined by the
function values at the four vertices Bf and the mean values of its two second

derivativesoywn anddyywn on K, wy = 0 at vertices belonging t0s2}.
The bilinear element solution* € Q, satisfies

(2.4) An(u*,v) = (f,v) Yv e Qp,

where Qn = {un,Un|xk € Qi(K) is determined by its function values at four
vertices ofK, up|an = O}.

In the following, we assume that(with or without subscript) is a generic
constant which may take different values at different places and is independent
of the mesh sizé and the solutioru.
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3. Some lemmas

The following lemmas are known or can be easily derived.

Lemma 1 [2].
(3.1) lu—w*[yn < chljullz,e,
(3.2) U —w*|o.e < ch?|lufl2e,

where the semi-norm

1
an = Q 1Ek)2
K

Lemma 2[1, Th.2].

(33) V(U — w)(@)| < ch?|Inh||[ul3co-
Lemma 3 [8].
(3.4) [V(u— u*)(@)| < ch?|Inhl||ulls,oc-

If the partition is uniform, 2 is a vertex or a midpoint of edges of K, then
(3.5) [V(u = u*)(z")| < ch?[Inhl||ufl3,cc,
whereV refers to taking average over all neighbouring elements*of z

This lemma is a superconvergence result of the bilinear element, providing
u € W3(02) NH).

Let w* = (w*)' +v*, where (v*)' is the bilinear interpolation ofv* at the
vertices of elements, clearly,* € C°(£2).Therefore, ¢*)' andv* are respec-
tively the conforming and nonconforming part of Wilson element approximation

*

w.
By definition,

W=

o — e DZX—X0)?
(36) (W )k = (Bow )k X[ 2" h?

2 hf -1+ (ayyW*)K

1].

Lemma 4 [1, Cor.1].
[[w*]|2,00,0 < f[u|2,00-

Lemma 4 implies
|(8xxw*)K| < CHUHZOO’

|yyw" )| < ef|ufl2,00-
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From Lemma 4 and (3.6), we have

Lemma 5.
(3.7) [v*[1,00,h < Chl[U]|2,00,
(3.8) [v*[0,00 < Ch?[U|2,00-

Lemma 6 [1, Lemma 3 and Cor.1].

(3.9) [(w*)' = U100 < ch?[INh][ull2,cc-
Lemma 7.

(3.10) U — w*[1,00 < ChlJul|2,00,
(3.11) U — w*[o,00 < ch?|[INh]||ul2,00-

Proof. From [8], we can see

(3.12) Ju—u*|100 < chljullz,ec,

(3.13) U — U*[o,00 < ch?[Inhl[|u]l2,cc-

Combination of Lemma 5, Lemma 6, (3.12) and (3.13) completes the praof.

4. Superconvergence estimates

Theorem 1 Suppose uw* are the solutions of (2.2), (2.3) respectively,ai
W32(£2) H&(£2), and the rectangular partitionz, is uniform, K and K, are
two adjacent elements,; (%) is the center of Ki =1, 2.

Case 1. If x = X, i.e., the elements are up-down adjacent, then

(4.1) |Oyyw ks = (Byyw),)| < chf|ullzco-

Case 2. If y = y,, i.e., they are right-left adjacent, then
(4.2) |(Oxw™ )k, — (Fxxw™ )k, | < chl|u3,co-

Proof. Case 1. Supposk; = OP;P,P3P, andK; = OP4P3PsPs are up-down
adjacent as shown below. All points needed in the proof are shown in the Fig. 1.
2hi, 2hiy are the lengths of edges Bf in x andy direction respectively. Since
the partition is uniformpyy = hyy = hy, andhy, = hy = hy.

The finite element equation (2.3) can be written as
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P> Py
B, A By
Az A
P3 Py
Aq o Az
A
Ps Ps
Fig. 1.

(43)  Anw’ on) = Anu, o) * [(Fon) — An(u,en)] Yo € Wh
Let

V-0 ey ek,
(44 n= =3O -1 () e ke

0, (x,y) € 2 — Ky — Ko

From (4.3), we have

/ a0yw”* Oyvpdxdy = / adyudyvndxdy
KiUK3 KiUK3

+ az(u — w*)vhdxdy+E,
K1UK>

(4.5)

whereE = (f,v) — An(u, v) is known as the consistency error of a noncon-
forming element.
In view of (3.6) and (4.4), the left side of (4.5)

/ a0y w* Oyvndxdy = / a0y (w*) dyvndxdy
Ki1UK>

Ki1UK>
(4.6) + [ ap(y — yo)?dxdy(wyy )k,
K
- / ag(y — Ya2) dxdy(wyy ),
Kz

Since ¢ — yi)? > 0, there exis®) € K; andA9 € K, such that

4
/ auly — yaYaxdy = 2(A9) hih},
Ky

4
| ety - yaraxdy= aaad) .
Kz

Therefore, the last two terms on the right side of (4.6)
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[ 2oty — yaPaug e, — [ sty v dncug
Kl 4 K2
(47) = ap(A)(wyy), — (wi)e) gy
+(@0(AD) — 2u(AD) S )

Inserting (4.6), (4.7) into (4.5), we obtain

oA (i, — (i) 1Y
= (2a(AD) — 2o(AD) S )

@8 4 / a0, (U — w*)' &, vy dxdxy+ / a0, (U — u")d, vndxdy
Ki1UK3 K

1UK2

+ az(u — w*)vpdxdy+E
K1UK>
=h+h+I+I+E.

Using Lemma 4, the first terrdy on the right side of (4.8) can be bounded from
above

(4.9) [31] < ch®fJullz,c0-

The second ternd, is estimated as follows. It is easily verified that

(4.10) dy(u — w*)' dyvndxdy = 0.
Ki

Let S be the midpoint oP3P4 = K3 [ K». Using (4.10), the standard interpolation
error estimate, Lemma 7 and Lemma 4, we get

32| = / (a2 — 32(S))dy (u — w*)' yvndxdyl
K41UK2 |
< ch®|(u — w*) 1,00
(411) S Ch4(|u - w*|l,oo + |(U - w*) — (U — w*)' ‘l,oc)
< ch*(u — w100 + hlU = w"|5.00)
< ch5||u|\2700.

Now we consider the third terrds. From Taylor expansion formula, it's easily
seen that

U U= 0l — X7 — 1+ Saully —y)° R+ Re(u) in K,

and
Rx(u) =0 Vu € Py(K).
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Therefore, Bramble-Hilbert lemma yields
IRo(U)m,o0k < C* ™Ulz ook, M=0,1
Then we have
1 1
Oy(u—u) = Bagul(x —%)* — hZ+ S apul(y — yi)° — h]
+opu(y — Vi) + Ry,

and
|OyRy| < ch2|u|3,oo.

Hence
33| < ch®[|ufl3,00 + | / a0yyu(y — y1)°dxdy — / apdyyU(y — Y) dxdy).
K1 K2

Let ro denote the last term of the above inequality, using the same technique
dealing with the last two terms on the right side of (4.6), we get
[rol < ch®||u[3,cc,
hence
(4.12) 193] < ch®||ul[3,00-

The estimate 08, is easy. In fact, Lemma 1 gives

[Jda] < | az(u — w*)vhdxdy|
Ki1UK>2
(4-13) < ch3|u — w*|o79
< ch?||ul|2,00-

Finally, application of (4.9), (4.11), (4.12), (4.13) to (4.8) implies

(4.14) |(wy )k, — (wyy)i,| < chlju]ls o0 +ch™[E].

Now we estimateE.
Applying Gauss integration formula, the equation (2.1) and the definition of
vh, We have

[El =1/ [2a10xuwncosf,x) +adyuvny cosf,y)lds
oKy

+ [a10xuvn cosf, X) + ax0y U cosfr, y)]ds|

(4.15) Ot
=1 [ (aaduuody - [ (@dumdy
.P4P1 P3P2
o [ @owody— [ (@oumdy
PsPs P&Ps
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Let q(x,y) = a10¢U, so thatq' € Qp, then the mean-value theorem giv@s €
P4P1, Bz S P3P2, such that

I/ (@ — q")ondy — / (@ — q")undy|

=WWWWMfM*®®M/ onds|

P4P
(4.16) < ch'|g - q'[1,00 o

< ch’lq|2,0

< ¢ch®||ul[3,00-

Similarly,

(4.17) I/ (@- q')vhdy—/ (@ — 9')endy| < ch®||ul|3 e
On the other hand, Simpson rule gives

q'vhds = 2q| Uh(Al)Zhy
P4Py 3

= _gh)?ql(Al)a

2
q'vnds = — 3hy3q|(A2)7

P3P2

2
q'vnds = _hiq'(Ag),
PsPs

2
[ alds= Sna'ca,
PsPs3

whereAy, Ao, Az, A4 are the midpoints oP4Py, P3P,, PsP,4, PsP3 respectively.
The last four equalities together with (4.15), (4.16), (4.17) imply

(4.18) E| < ch®||ufl3,00 + §|qI(A1) —q'(A2) — 9'(As) + ' (A
Sinceq' € Qy, we have
19'(A1) — a'(A2) — ' (Ag) + ' (A)|

= 21a(Py) — a(P2) — a(Ps) + a(Pe)

(4.19)
< ch?(g2,00
< ch?||ul|300.-
Therefore
(4.20) E| < ch®[ul|3,c0-
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Combining (4.14)and (4.20) yields the inequality (4.1).
Case 2 can be proved in the same wayl

Lemma 8. Letv* be the nonconforming part @f*, 7 is a uniform rectangular
partition, z* is a vertex or a midpoint of edges of K, then

(4.21) |Vo*(2*)] < ch?||ul|300-

The proof of Lemma 8 can be derived directly by using Theorem 1.
Since

(422)  V(u—w(z") = V(- u)z)+ VU~ (w))Z) + Vo' (z"),

applying Lemma 3, Lemma 6 and Lemma 8, we get the following superconver-
gence result.

Theorem 2. If the rectangular partition %, is uniform, then there holds the su-
perconvergence estimate

(4.23) IV(u — w*)(z")| < ch?[Inh|||ul[3,c-

Remark 1.Following [1], [8] and the proof of Theorem 1, the regularity of the
coefficientsg; of the equation (2.1) may be stated as follows:

ap,a € W22(£2), age WHe(02).

Remark 2The uniform partition condition can be weaken to C-uniform partition,
under which Theorem 1 and 2 still hold. C-uniform rectangular partition means
that for two adjacent element§, andK, , if y1 = y», thenhy — hy = O(h?),

and if x; = xp, thenhyy — hyy = O(h?).

Remark 3.So far it has been shown that the asymptotic convergence rate of
Wilson nonconforming element either in the energy norm, in the maximum norm
or at the nine special superconvergence points of each element is not superior to
the bilinear conforming element. The question is still open why the numerical
performance of Wilson element is better than the bilinear one in many engineering
computations.

References

1. Chen, H.C., Li, B. (1994): Superconvergence analysis and error expansion for the Wilson non-
comforming finite element. Numer. Math9, 125-140

2. Ciarlet, P.G. (1978): The Finite Element Method for Elliptic Problems. North Holland

3. Lesaint, P. (1976): On the convergence of Wilson nonconforming element for solving the elastic
problem. Comput. Methods. Appl. Mech. Engng.1-6

Numerische Mathematik Electronic Edition
page 267 of Numer. Math. (1997) 78: 259-268



268 Z.-C. Shi et al.

4. Lesaint, P., Zlamal, M. (1980): Convergence of the nonconforming Wilson element for arbitrary
guadrilateral meshes. Numer. MatBg, 33-82

5. Li, B. (1987): An analysis on the convergence of Wilson’s nonconforming element. the 1st China
Conf. on Numerical Methods for PDE (in Chinese)

6. Shi, Z.C. (1984): A convergence condition for the quadrilateral Wilson element. Numer. Math.
44, 349-361

7. Shi, Z.C. (1986): A remark on the optimal order of convergence of Wilson nonconforming
element. Math. Numer. Sinic8&, 159-163 (in Chinese)

8. Zhu, Q.D., Lin, Q. (1989): Superconvergence Theory of the Finite Element Methods. Hunan
Science Press (in Chinese)

9. Zienkiewicz, O.C. (1977): The Finite Element Method. 3rd edn, Mcgraw-Hill, New York

This article was processed by the author using #igX_style file pljourlm from Springer-Verlag.

Numerische Mathematik Electronic Edition
page 268 of Numer. Math. (1997) 78: 259-268



