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Summary. In this paper the Wilson nonconforming finite element method is con-
sidered to solve a class of two-dimensional second-order elliptic boundary value
problems. A new superconvergence property at the vertices and the midpoints of
four edges of rectangular meshes is obtained.
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1. Introduction

The Wilson nonconforming finite element has been widely used in computa-
tional mechanics and structural engineering because of its good convergence
behavior. In many practical cases, it seems better than the bilinear conforming
element.However, it is shown in [2, 3, 4] that the convergence rate of Wilson
rectangular element in the energy norm is of first order. As for the arbitrary
quadrilateral meshes, a first-order convergence can also be retained provided a
slight restriction on meshes is satisfied, see [6]. Furthermore, the first author
has given an example [7] showing that the first-order convergence is optimal.
Recently, Chen and Li [1] strictly proved this first-order optimality.

Meanwhile, computations have observed its superconvergence at the center
of elements, thus the question of superconvergence was raised, see [7, 9]. Li
justified in [5] this observation for the simplest model:−4u = f . Subsequently,
the result was extended to a class of second-order elliptic problems in [1], see
Lemma 2.

On the other hand, following [8], it can be easily proved that the bilinear
conforming element posseses the superconvergence at the center, as well as at
the four vertices and the midpoints of four edges of rectangular meshes.
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In this paper we prove that besides the center of rectangles as shown in
[1], Wilson element has also the superconvergence at these eight points like the
bilinear element.

2. Wilson element

We consider the general second-order elliptic boundary value problem

(2.1)

{ −∂x(a1∂xu)− ∂y(a2∂yu) + a3u = f in Ω,

u = 0 on ∂Ω,

where all funtionsai , i = 1, 2, 3 and f are smooth enough (see Remark 1), and

0 < c1 ≤ ai ≤ c2 < +∞, i = 1, 2, 0≤ a3 ≤ c3 < +∞,

Ω ⊂ R2 is a rectangular domain.
Let Jh be a rectangular partition ofΩ, satisfying the regularity assumption

[2], z0 = (x0, y0) is the center ofK ∈ Jh, 2hx and 2hy are the lengths of two
edges ofK in x and y direction respectively.h = maxK (hx , hy).

Definition. Jh is called a uniform partition when allhx are equal and so are all
hy.

The variational problem of (2.1) is to findu ∈ H 1
0 (Ω) such that

(2.2) A(u, v) = (f , v) ∀v ∈ H 1
0 (Ω),

where

A(u, v) =
∫ ∫

Ω

(a1∂xu∂xv + a2∂yu∂yv + a3uv) dx dy,

(f , v) =
∫ ∫

Ω

f v dx dy.

The Wilson element solutionw∗ ∈ Wh of (2.2) satisfies

(2.3) Ah(w∗, v) = (f , v) ∀v ∈ Wh,

where

Ah(u, v) =
∑

K∈Jh

∫ ∫
K

(a1∂xu∂xv + a2∂yu∂yv + a3uv)dx dy,

and the finite element spaceWh = {wh, wh|K ∈ P2(K ) is determined by the
function values at the four vertices ofK and the mean values of its two second
derivatives∂xxwh and∂yywh on K , wh = 0 at vertices belonging to∂Ω}.

The bilinear element solutionu∗ ∈ Qh satisfies

(2.4) Ah(u∗, v) = (f , v) ∀v ∈ Qh,

where Qh = {uh, uh|K ∈ Q1(K ) is determined by its function values at four
vertices ofK , uh|∂Ω = 0}.

In the following, we assume thatc(with or without subscript) is a generic
constant which may take different values at different places and is independent
of the mesh sizeh and the solutionu.
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3. Some lemmas

The following lemmas are known or can be easily derived.

Lemma 1 [2].

(3.1) |u − w∗|1,h ≤ ch‖u‖2,Ω ,

(3.2) |u − w∗|0,Ω ≤ ch2‖u‖2,Ω ,

where the semi-norm
|.|1,h = (

∑
K

|.|21,K )
1
2 .

Lemma 2 [1, Th.2].

(3.3) |∇(u − w∗)(z0)| ≤ ch2| ln h|‖u‖3,∞.

Lemma 3 [8].

(3.4) |∇(u − u∗)(z0)| ≤ ch2| ln h|‖u‖3,∞.

If the partition is uniform, z∗ is a vertex or a midpoint of edges of K , then

(3.5) |∇(u − u∗)(z∗)| ≤ ch2| ln h|‖u‖3,∞,

where∇ refers to taking average over all neighbouring elements of z∗.

This lemma is a superconvergence result of the bilinear element, providing
u ∈ W3,∞(Ω)

⋂
H 1

0 (Ω).
Let w∗ = (w∗)I + v∗, where (w∗)I is the bilinear interpolation ofw∗ at the

vertices of elements, clearly,w∗ ∈ C0(Ω).Therefore, (w∗)I and v∗ are respec-
tively the conforming and nonconforming part of Wilson element approximation
w∗.

By definition,

(3.6) (v∗)K = (∂xxw
∗)K

h2
x

2
[
(x − x0)2

h2
x

− 1] + (∂yyw
∗)K

h2
y

2
[
(y − y0)2

h2
y

− 1].

Lemma 4 [1, Cor.1].
‖w∗‖2,∞,h ≤ c‖u‖2,∞.

Lemma 4 implies
|(∂xxw

∗)K | ≤ c‖u‖2,∞,

|(∂yyw
∗)K | ≤ c‖u‖2,∞.
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From Lemma 4 and (3.6), we have

Lemma 5.

(3.7) |v∗|1,∞,h ≤ ch‖u‖2,∞,

(3.8) |v∗|0,∞ ≤ ch2‖u‖2,∞.

Lemma 6 [1, Lemma 3 and Cor.1].

(3.9) ‖(w∗)I − u∗‖1,∞ ≤ ch2| ln h|‖u‖2,∞.

Lemma 7.

(3.10) |u − w∗|1,∞ ≤ ch‖u‖2,∞,

(3.11) |u − w∗|0,∞ ≤ ch2| ln h|‖u‖2,∞.

Proof. From [8], we can see

(3.12) |u − u∗|1,∞ ≤ ch‖u‖2,∞,

(3.13) |u − u∗|0,∞ ≤ ch2| ln h|‖u‖2,∞.

Combination of Lemma 5, Lemma 6, (3.12) and (3.13) completes the proof.�

4. Superconvergence estimates

Theorem 1. Suppose u,w∗ are the solutions of (2.2), (2.3) respectively, u∈
W3,∞(Ω)

⋂
H 1

0 (Ω), and the rectangular partitionJh is uniform, K1 and K2 are
two adjacent elements, (xi , yi ) is the center of Ki , i = 1, 2.

Case 1. If x1 = x2, i.e., the elements are up-down adjacent, then

(4.1) |(∂yyw
∗)K1 − (∂yyw

∗)K2)| ≤ ch‖u‖3,∞.

Case 2. If y1 = y2, i.e., they are right-left adjacent, then

(4.2) |(∂xxw
∗)K1 − (∂xxw

∗)K2| ≤ ch‖u‖3,∞.

Proof. Case 1. SupposeK1 = �P1P2P3P4 andK2 = �P4P3P6P5 are up-down
adjacent as shown below. All points needed in the proof are shown in the Fig. 1.
2hix , 2hiy are the lengths of edges ofKi in x andy direction respectively. Since
the partition is uniform,h1y = h2y = hy, andh1x = h2x = hx .

The finite element equation (2.3) can be written as
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Fig. 1.

(4.3) Ah(w∗, vh) = Ah(u, vh) + [(f , vh)− Ah(u, vh)] ∀vh ∈ Wh

Let

(4.4) vh =


h2

y

2 [ (y−y1)2

h2
y

− 1], (x, y) ∈ K1,

− h2
y

2 [ (y−y2)2

h2
y

− 1], (x, y) ∈ K2,

0, (x, y) ∈ Ω − K1 − K2.

From (4.3), we have

(4.5)

∫
K1∪K2

a2∂yw
∗∂yvhdxdy =

∫
K1∪K2

a2∂yu∂yvhdxdy

+
∫

K1∪K2

a3(u − w∗)vhdxdy+ E,

whereE = (f , vh) − Ah(u, vh) is known as the consistency error of a noncon-
forming element.

In view of (3.6) and (4.4), the left side of (4.5)

(4.6)

∫
K1∪K2

a2∂yw
∗∂yvhdxdy =

∫
K1∪K2

a2∂y(w∗)I∂yvhdxdy

+
∫

K1

a2(y − y1)2dxdy(w∗yy)K1

−
∫

K2

a2(y − y2)2dxdy(w∗yy)K2.

Since (y − yi )2 ≥ 0, there existA0
1 ∈ K1 andA0

2 ∈ K2 such that∫
K1

a2(y − y1)2dxdy = a2(A0
1)

4
3

hxh3
y ,

∫
K2

a2(y − y2)2dxdy = a2(A0
2)

4
3

hxh3
y .

Therefore, the last two terms on the right side of (4.6)
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(4.7)

∫
K1

a2(y − y1)2dxdy(w∗yy)K1 −
∫

K2

a2(y − y2)2dxdy(w∗yy)K2

= a2(A0
1)((w∗yy)K1 − (w∗yy)K2)

4
3

hxh3
y

+(a2(A0
1)− a2(A0

2))
4
3

hxh3
y (w∗yy)K2.

Inserting (4.6), (4.7) into (4.5), we obtain

(4.8)

a2(A0
1)((w∗yy)K1 − (w∗yy)K2)

4
3

hxh3
y

= (a2(A0
2)− a2(A0

1))
4
3

hxh3
y (w∗yy)K2

+
∫

K1∪K2

a2∂y(u − w∗)I∂yvhdxdxy+
∫

K1∪K2

a2∂y(u − uI )∂yvhdxdy

+
∫

K1∪K2

a3(u − w∗)vhdxdy+ E

= J1 + J2 + J3 + J4 + E.

Using Lemma 4, the first termJ1 on the right side of (4.8) can be bounded from
above

(4.9) |J1| ≤ ch5‖u‖2,∞.

The second termJ2 is estimated as follows. It is easily verified that

(4.10)
∫

Ki

∂y(u − w∗)I∂yvhdxdy = 0.

Let S be the midpoint ofP3P4 = K1
⋂

K2. Using (4.10), the standard interpolation
error estimate, Lemma 7 and Lemma 4, we get

(4.11)

|J2| = |
∫

K1∪K2

(a2 − a2(S))∂y(u − w∗)I∂yvhdxdy|
≤ ch4|(u − w∗)I |1,∞
≤ ch4(|u − w∗|1,∞ + |(u − w∗)− (u − w∗)I |1,∞)

≤ ch4(|u − w∗|1,∞ + h|u − w∗|2,∞)

≤ ch5‖u‖2,∞.

Now we consider the third termJ3. From Taylor expansion formula, it’s easily
seen that

u − uI =
1
2
∂xxu[(x − xi )

2 − h2
x ] +

1
2
∂yyu[(y − yi )

2 − h2
y ] + R2(u) in Ki ,

and
R2(u) = 0 ∀u ∈ P2(K ).
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Therefore, Bramble-Hilbert lemma yields

|R2(u)|m,∞,K ≤ ch3−m|u|3,∞,K , m = 0, 1.

Then we have

∂y(u − uI ) =
1
2
∂xxyu[(x − xi )

2 − h2
x ] +

1
2
∂yyyu[(y − yi )

2 − h2
y ]

+∂yyu(y − yi ) + ∂yR2,

and
|∂yR2| ≤ ch2|u|3,∞.

Hence

|J3| ≤ ch5‖u‖3,∞ + |
∫

K1

a2∂yyu(y − y1)2dxdy−
∫

K2

a2∂yyu(y − y2)2dxdy|.

Let r0 denote the last term of the above inequality, using the same technique
dealing with the last two terms on the right side of (4.6), we get

|r0| ≤ ch5‖u‖3,∞,

hence

(4.12) |J3| ≤ ch5‖u‖3,∞.

The estimate ofJ4 is easy. In fact, Lemma 1 gives

(4.13)

|J4| ≤ |
∫

K1∪K2

a3(u − w∗)vhdxdy|
≤ ch3|u − w∗|0,Ω
≤ ch5‖u‖2,∞.

Finally, application of (4.9), (4.11), (4.12), (4.13) to (4.8) implies

(4.14) |(w∗yy)K1 − (w∗yy)K2| ≤ ch‖u‖3,∞ + ch−4|E|.
Now we estimateE.

Applying Gauss integration formula, the equation (2.1) and the definition of
vh, we have

(4.15)

|E| = |
∫
∂K1

[a1∂xuvh cos(n, x) + a2∂yuvh cos(n, y)]ds

+
∫
∂K2

[a1∂xuvh cos(n, x) + a2∂yuvh cos(n, y)]ds|

= |
∫

P4P1

(a1∂xuvh)dy−
∫

P3P2

(a1∂xuvh)dy

+
∫

P5P4

(a1∂xuvh)dy−
∫

P6P3

(a1∂xuvh)dy|.

Numerische Mathematik Electronic Edition
page 265 of Numer. Math. (1997) 78: 259–268



266 Z.-C. Shi et al.

Let q(x, y) = a1∂xu, so thatqI ∈ Qh, then the mean-value theorem givesB1 ∈
P4P1,B2 ∈ P3P2, such that

(4.16)

|
∫

P4P1

(q − qI )vhdy−
∫

P3P2

(q − qI )vhdy|

= |[(q − qI )(B1)− (q − qI )(B2)]
∫

P4P1

vhds|
≤ ch4|q − qI |1,∞
≤ ch5|q|2,∞
≤ ch5‖u‖3,∞.

Similarly,

(4.17) |
∫

P5P4

(q − qI )vhdy−
∫

P6P3

(q − qI )vhdy| ≤ ch5‖u‖3,∞.

On the other hand, Simpson rule gives∫
P4P1

qIvhds =
2
3

qIvh(A1)2hy

= −2
3

h3
y qI (A1),∫

P3P2

qIvhds = −2
3

h3
y qI (A2),∫

P5P4

qIvhds =
2
3

h3
y qI (A3),∫

P6P3

qIvhds =
2
3

h3
y qI (A4),

whereA1,A2,A3,A4 are the midpoints ofP4P1,P3P2,P5P4,P6P3 respectively.
The last four equalities together with (4.15), (4.16), (4.17) imply

(4.18) |E| ≤ ch5‖u‖3,∞ +
2
3
|qI (A1)− qI (A2)− qI (A3) + qI (A4)|h3

y .

SinceqI ∈ Qh, we have

(4.19)

|qI (A1)− qI (A2)− qI (A3) + qI (A4)|

=
1
2
|q(P1)− q(P2)− q(P5) + q(P6)|

≤ ch2|q|2,∞
≤ ch2‖u‖3,∞.

Therefore

(4.20) |E| ≤ ch5‖u‖3,∞.
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Combining (4.14)and (4.20) yields the inequality (4.1).
Case 2 can be proved in the same way.�

Lemma 8. Let v∗ be the nonconforming part ofw∗, Jh is a uniform rectangular
partition, z∗ is a vertex or a midpoint of edges of K , then

(4.21) |∇v∗(z∗)| ≤ ch2‖u‖3,∞.

The proof of Lemma 8 can be derived directly by using Theorem 1.
Since

(4.22) ∇(u − w∗)(z∗) = ∇(u − u∗)(z∗) +∇(u∗ − (w∗)I)(z∗) +∇v∗(z∗),

applying Lemma 3, Lemma 6 and Lemma 8, we get the following superconver-
gence result.

Theorem 2. If the rectangular partitionJh is uniform, then there holds the su-
perconvergence estimate

(4.23) |∇(u − w∗)(z∗)| ≤ ch2| ln h|‖u‖3,∞.

Remark 1.Following [1], [8] and the proof of Theorem 1, the regularity of the
coefficientsai of the equation (2.1) may be stated as follows:

a1, a2 ∈ W2,∞(Ω), a3 ∈ W1,∞(Ω).

Remark 2.The uniform partition condition can be weaken to C-uniform partition,
under which Theorem 1 and 2 still hold. C-uniform rectangular partition means
that for two adjacent elementsK1 and K2 , if y1 = y2, thenh1x − h2x = O(h2),
and if x1 = x2, thenh1y − h2y = O(h2).

Remark 3.So far it has been shown that the asymptotic convergence rate of
Wilson nonconforming element either in the energy norm, in the maximum norm
or at the nine special superconvergence points of each element is not superior to
the bilinear conforming element. The question is still open why the numerical
performance of Wilson element is better than the bilinear one in many engineering
computations.
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