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Abstract

Non-overlapping Domain Decomposition and Heterogeneous Modeling Used in

Solving Free Boundary Problems
by

Bin Jiang
Doctor of Philosophy in Mathematics

University of California at Santa Barbara

Professor J.C. Bruch, Jr., Chair

Non-overlapping domain decomposition techniques for free boundary problems
are extensively considered in this dissertation. We use a model problem to test the
effectiveness of various kinds of DDM schemes.

The problem of fluid flow past a truncated concave shaped profile between walls
is solved using conformal mapping techniques. An open wake is formed behind the
profile. The problem formulated in a hodograph plane is decomposed into two non-
overlapping domains. We use different modeling techniques to describe the problems.
First, a heterogeneous model is used, i.e., we use different functions in different sub-
domains to describe the problem. In one of these domains, a Baiocchi type transfor-
mation is used to obtain a fixed domain formulation for the part of the transformed
problem containing an unknown boundary. The second method is a heterogeneous
modeled problem where the Baiocchi type transformation is extended into the second
domain. Next, a parallel version of the latter model is considered. Numerical results
show all the methods have good agreement with a published solution. Furthermore,
the parallel version of the DDM method is extended to solve other free boundary
problems.

Finally, the convergence issue from a mathematical point of view is considered.

The existence and convergence properties of the free boundary problems considered



in this dissertation, (including the problem of flow past a concave shaped profile, the
rectangular dam problem and the problem of flow through a porous dam with a toe

drain), are proved.
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Chapter 1

Introduction

Parallel Programs have been extensively used recently in solving large scale scien-
tific and engineering problems with the development of multiple-CPU structure(Cray
T3E and SGI Origin 2000). Domain decomposition methods(DDM) and multigrid
methods also become hot topics since they are highly related to the parallel pro-
grams. The general idea of domain decomposition methods is to split the domain
of the partial differential equation(PDE) into two(or more) subdomains and then to
obtain solutions of related PDE problems on each subdomain. The solution on all the
subdomains are then combined to obtain the solution on the whole domain. Domain
decomposition is advantageous in that it allows the efficient use of parallel processing

in an obvious manner.

There are two types of domain decomposition methods. Let us use two-subdomain
splitting to clarify this. The first type is the overlapping domain decomposition
method, where there is a common intersection area of these two subdomains. For
this type of decomposition, we can solve the PDE on each subdomain with Dirichlet

boundary condition.

The second type is the non-overlapping domain decomposition method, where
the intersection of these two subdomains is a common boundary interface. For this
type of decomposition, we can solve one subdomain PDE with the Dirichlet condition

on the common boundary while solving the second subdomain PDE with Neumann



condition on the common boundary.

In this dissertation, we will use the non-overlapping domain decomposition method
to solve free boundary problems arising from fluid flow problems(such as flow past
a concave profile and flow through porous media). Flow through porous media has
great importance in many facets of engineering practice. In particular such flows
with free surfaces make up a significant part of the seepage phenomena that occur in
nature. Some examples of these are seepage through earth dams; seepage from open

channels such as rivers, ponds, irrigation systems and recharge basins.

The flow past concave(or convex) profile arises from many practical engineering
problems, such as the flow past bridge piers and channel constrictions. This will fall

into the category of potential flow with a free streamline.

Dormiani et al.[11] considered the flow past symmetric convex profiles with open
wakes. A fixed domain approach and a Baiocchi type transformation in conjunction
with a modified Schwarz alternating scheme are used to solve this problem. The
flow is such that an open wake is formed behind the profile. Overlapping domain
decomposition methods are used. Then, Bruch et al.[7] used a non-overlapping domain
decomposition approach to solve the same problem and the numerical results were
in good agreement with Davis[10] and Dormiani et al.[11]. However, it is difficult
to prove the existence and uniqueness of this problem and the convergence of the
numerical scheme from a mathematical view point, since a different type of function
is defined in each subdomain and the interface condition involving these two different

functions is complicated. This became an open problem.

Bruch et al.[8] considered the flow past symmetric concave profiles with open
wakes. The non-overlapping domain decomposition method is used together with
heterogeneous modeling, that is, a different dependent variable is used in each sub-
domain. With this method, we can show the numerical results can approximate a
published solution within 0.6%. However it is still difficult to prove the convergence

and existence.

Jiang et al.[13] proposed a new non-overlapping DDM scheme with the same

function extended across the interface between the two subdomains to solve the flow



past symmetric concave profiles with open wakes. In this way, the mathematical
formulation becomes very simple and the proof of existence and uniqueness becomes
possible. Furthermore, the convergence of the numerical scheme can also be proved
due to the simplicity of the interface conditions expressed by the same function from

both sides.

One thing to note is that we can not use this method to handle the flow past

symimetric convex profiles with open wakes.

To speed up the parallel computation of the above problem, we devised another
version of DDM scheme which can execute the computation on both domains at the
same time when more than one CPU is available such as a Cray T3E. The convergence

speed will be twice as fast as before.

We also used this new parallel DDM scheme for problems of flow through porous
media. The numerical results showed that this new method is also advantageous on

these problems compared with the traditional DDM.

Finally, we proved the existence and uniqueness of the solution of flow past a
concave profile with open wake and show the convergence of the numerical scheme to

the true solution.

For the flow through porous media problems, we also considered the mathematical
proof of the convergence of the numerical solution to the true solution which is known

to exist and be unique[3].

The remainder of this dissertation is organized as follows. In Chapter 2, the
model problem of flow past a concave profile with open wake is solved using the non-
overlapping method and heterogeneous modeling along with the original dependent
variable in one subdomain and a Baiocchi type transformation variable in the other
subdomain, which shows excellent performance. In Chapter 3 non-overlapping DDM
and heterogeneous modeling are again used to handle the same problem. This time
the Baiocchi type transformation is extended into the second subdomain. The per-
formance is still as good as before. In Chapter 4, a revised parallel DDM scheme and
heterogeneous modeling for the latter problem is used and it is shown that the new

scheme is almost twice as fast as the old one. In Chapter 5, the new DDM scheme is



applied to other fluids problems and there is also speed up. In Chapter 6 and Chap-
ter 7, the uniqueness, existence of the true solution and convergence of the numerical

scheme toward the true solution for the above mentioned fluids problems are given.



Chapter 2

Flow Past a Concave Profile

With Open Wake in a Channel

2.1 Introduction

The physical problem to be investigated in this chapter is flow past a concave
shaped profile which is situated in a channel. This type of flow falls into the category of
potential flow with a free streamline. Figure 2.1 shows such a case where the location
of the free streamline is unknown a priori. This two-dimensional, incompressible and
inviscid flow is an approximate model of the basic flows that occur in many practical
engineering problems.The objective herein is to provide basic potential-flow solutions

to the problem and in particular to determine the location of the free streamline.

The physical problem will be formulated in a hodograph plane using conformal
mapping techniques. See Bruch and Dormiani[5] and the references therein for work
done using this approach. The basic technique that will be used to solve this problem
is the fixed domain method in conjunction with the Baiocchi transformation. This
approach has had considerable success in solving a wide variety of free and moving

boundary problems.

Although the fixed domain approach and a Baiocchi type transformation are not

applicable over the entire solution domain, they will be used in conjunction with a



non-overlapping domain decomposition and a modified alternating iteration scheme.
The numerical results that are obtained herein for flow past a profile between walls

will be compared with those of Lesnic et al.[15].

2.2 Formulation of the Problem

This study is concerned with Helmholtz motions, defined as follows:

(a) the motion takes place in free space, i.e., gravity is neglected.

(b) the motion is steady, i.e., p + %pu2 = constant, where p, p and u are the
pressure, the density and the speed of the fluid, respectively.

The flow field includes a pair of free streamlines on which the pressure and velocity
are constants, p. and q., respectively. The channel height, 2h, the velocity on the
boundary of the cavity, g., and the profile shape are assumed to be known. However,
the upstream velocity in the channel, g, and the free streamline locations are to be
found(see Figure 2.1).

Because of symmetry the flow region under consideration, R, is bounded between
the axis of symmetry, AB, half of the profile, BC, the free streamline, CD, and the
wall of the channel, D' A’. In this region the stream function, 1, identically satisfies the
continuity equation and the irrotationality condition which gives Laplace’s equation
as the governing differential equation. The boundary ABCD is the 1 = 0 streamline
and 1) = gooh on the wall D' A’. The downstream jet half-width, d, is found from the
conservation of mass relation

gede = gooh (2.1)

and ¢, may be set to unity without any loss of generality. Therefore, the mathematical

formulation of the problem in the physical plane becomes: find 1 (z,y) such that

Ap(z,y) =0 inR (2.2a)
$(z,y) =0 on ABCD (2.2b)
¥ =guh on DA’ (2.2¢)
lim 9(2,y) = ygoo on AA’ (2.2d)

T—r 0



Figure 2.1: The Physical Problem

Jim p(z,y) = [y — (h —de)lge  on DD’ (2.2¢)
V| = g, on CD(free surface). (2.2f)
Note that velocity at each point is

— .
d= (q1,q2) = ge'’ = g(cos 6 + isin®).

We can choose g1 and g2 as our variables instead of z and y. We perform the trans-
formation 71 : (z,y) — (q1,¢2), and we can easily prove

Ty Y

_ 2.
og? - dq3 23)

in the region Ry = T1(R) on the q; — g2 plane(the hodograph plane) (see Figure 2.2).

Since

dip = g—wdm + g—wdy = —qodz + q1dy = —qsinfdz + ¢ cos Ody, (2.4a)
L Y



Figure 2.2: The Transformed Problem in g;-¢g2 Plane

dé = @day + @dy = qi1dz + gody = qcos Odz + gsinOdy,
or Oy
we obtain 0
dz +idy = —(d¢ + idy).

q
It is convenient to introduce the variable o by

qg=gqee "or o= -

dc

Now the variables are (6, 0) instead of (q1,g2).

(2.6)

The coordinate transformation (z,y) — (6, 0) maps the problem in the physical

plane onto the hodograph plane, where € is the polar angle of velocity and ¢ =



—In(q/q.). Values of the harmonic function ¢ are unchanged on the boundaries of
the region under the conformal mapping.

Since the profile is concave, the coordinates X and Y of the curve in the (6, 0)
hodograph plane representing the surface of the profile can be expressed in terms of
6, where 0 is the angle between tangent to the curve and z-axis. Let X (#) and Y (0)

be this parameterization. Then R(H), the algebraic radius of curvature, is

= /X162 +Y'(6 (2.7)

and bounded.

Now (2.5) can be written as
o+i0
dz +idy = (dop + idip). (2.8)
C
The left hand side of this equation is the total differential so the right hand side must
be too,
L (dp +idyp) = E(28d0 + S2do + 98 d0 + 1%L do) 2.9
o+ib i .
= <255 +i55)d0 + (52 + i5%)do].

Now we can write the condition of total differentials for the right hand side of (2.9)

namely
9 eotid a¢ aw o ot a¢ aw
80[ e (% + %)] (99[ e ((90 + 80)]

After differentiating and simplifying we obtain
9 oy oy _ 99

T _Tr_Zr 2.1
do 00" 0o 00 (2.10)
From which we deduce, eliminating ¢,
82¢ 82¢
=N = =T 2.11
202 + 992 =0 on R (R), ( )

where T represents the transformation (z,y) — (6, 0) from the physical to the hodo-

graph plane (see Figure 2.3). Note

I'=T(P) (2.12)
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is the transformation of the profile, and
o=1(0) (2.13)

is the curve in the hodograph plane corresponding to the profile in the physical plane.
The boundary conditions for % in the hodograph plane are

¥(0,0) =0 on o > oy
$(0,0) =hgse  0n0<0 < 0n (2.14)
$(0,0) =0 0<60<06;
$(0,0) =0  onT. (2.15)

On I', the transformation of the profile boundary to the hodograph plane, the radius

of curvature is

R) =—/X' (02 +Y( l)2 (216)

dx dy
= —[(@)* + (@),
where 6 is the angle between the tangent to the curve and the x-axis. and we can

write (2.8) along the boundary of profile where 1) = 0 and dy = 0. Therefore

dX +idY = < (de + idip) = < (dg) 217
<7+19 :
= < (G5d0 + 5;‘;’610—).
From (2.10) we have % = 6_15 and a—‘g = 80’ therefore (2.17) becomes
eo+ib a,lp aw
dX +idY = —df + —do 2.18
+i o (=5,40 + 54d0)- (2.18)
Also note that on the profile diyp = 0,
dyp = 81/1 d9 + g—wd =0,
hence
., oy
-— = . 2.1
500 &) =2, (2.19)

Therefore (2.18) becomes

. o+i60
dX +idY == (—%£d6 — L1 (0)do)

= (001 4 1(9)2]af,

qc
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then y
dX dY et g LD

Consider (2.16) and the fact that % < 0 on I'(since » =0 on I' and ¢ > 0 below I),
we obtain _

o gee " R(0)

— = I. 2.20

oo 1+0(0)2 " (2.20)
From (2.19)

M O 4 RO)'(6)
90 — (0) 9 FNI0E on TI. (2.21)
Finally, on the wake boundary we have
$(0,0) =0 0<6 <64, (2.22)

where 6, is the polar angle of common tangent to the wake and profile at the con-
necting point. Therefore, the governing equation and boundary conditions take the

following form in the hodograph plane:

Ap=0  onR=T(R) (2.23)
$(0,0) =0  ono > om

$(0,0) =hgeo 000 <0< 0u (2.23a)

$(0,0)=0  onT (2.23b)

g_f — % onT (2.23¢)

CERLC

$(6,0)=0 0<6<0;. (2.23¢)

These equations are identical to (2.11), (2.14), (2.15), (2.20), (2.21) and (2.22), re-
spectively, and R is the image of region R under the transformation and I' is the
representation of the profile in the hodograph plane (see Figure 2.3). On I', 0 = [(0).

Note that the location of I' and the point (0, o) are unknown a priori.
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The region R of the problem in the hodograph plane is next divided into two
non-overlapping regions Ry, and R, (see Figure 2.3) such that

R =Ry UR, UI'1, where Ry, = {(0,0)|0 <0 <6y, o>0},
Ry, ={(0,0)|00 <0 < 0,0 <(0)}, T'1={(0,0)|0=06), >0},

in which 6y is the value of 0 at the stagnation point and 6; is the value at the

detachment point of the cavity boundary from the profile.

B O =-In(q/qc) B
R
Ry
A
Ooo|” A’
D’ IE C 5
D M 0o M 61

Figure 2.3: The Transformed Problem in #-0 Plane

Define an integrated stream function by using the Baiocchi type transformation

e~ o)
w (8, 0) = / (0, 7)dr (2.24)
gc Jo

on the region R,,. Note that u; > 0 in R, since ¢) > 0 there.

Next, the dependent variable u; is continuously extended across the boundary I,

on which u; = 0, into
Rezt = {(0,0)]60 < 0 < 61,1(0) < o < oo},

such that u; is zero in Ry Let Ry, = Ry, U Repe UL and g is defined in (2.24) for
the region R,,. Therefore, V¢p € C§°(R,,), u1(8,00) =0, u1,(6,00) = 0 in the region
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R, we obtain

ffRuvul ) V¢d9d0 = ffRu (U'10¢0 + u10¢0)d9d0
= ffRul (u190 + u1aa)¢d9d0-

Since
ug =<2 10 emypy(0, 7)dr + 2 Op(0,1(0))1'(6)
_ e 0) r
— eqc I eTg(0, T)dT
and
e 7 l(é?) e 7
Uly = — / e’ (0, T)dr — e’P(6,0),
de Jo qc
then

wigg = 5[50 €7 ipoo (8, m)dr + <7l Oapy(8,1(0))1'(6)
= =< 3 o (0,)dr + 2 D (0,10)1(0)

el %(9 1(6)) + e (6,0) (2.25)
+e;—ffg e (0, 7)dr + £ ¢a(9 10)I'(9)
el Oy, (0,1(0)) + o %(9 o) + £ Oy (6,1(0)I'(0)
+eq—c <>¢<9,l<9>>—q% (0,0) — <= f(,”’ (0, T)dr
and o ) ) — .
t10g = & /(, Y. TIT + e (0.0) — v (6.0), (2.26)

where subscripts ¢ and 6 denote differentiation with respect to that variable. There-

fore,
U199 + Uloe = _eq__c"el(ﬂ) [1/)0(07 1(9)) - 1/),9 (97 l(e)ﬂl(e)]
= — 7O (6,10)) + 44 (6,1(6))'(6)]
= —e""R(0).
Hence,
/ / Ruvul - Vdfdo = / / N (e~ R(0)]¢dbdo. (2.27)

Therefore, we obtain

(92u1 82’111

Bur= g T G2

=—R(0)e "xr,, in Ry, (2.28)

where xg,, is the characteristic function defined by xr, =1 in Ry, and xg,, =0

otherwise.
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Since u; > 0, [—Au (0, 0) — R(6)e™?] > 0, then
uy[—Aui(0,0) — R(0)e™"] = 0. (2.29)

In the right region R,,,, only u; is defined, but in the left region Ry, ¢ is defined,
and these unknowns have some interface conditions on I'y that connect them, therefore

our original problem can be stated using 1) and u; in the two non-overlapping regions

as follows:
Ap=0  inR, (2.30a)
(0,00 =0 0<6<6b, (2.300)
$(0,0) = hgso 0 < 0 < 000 = —zn‘;ﬁ (2.30¢)
¥(0,0) =0 o0 >0y
P(#,00) =0 0<6< 6
$(0o,0) = —ge(ur +u1y) onTy (2.30d)
and
Auy = —E(H)e*”XRul in R, (2.31a)
w(f,0)=0 o3>0 (2.31b)
ul +u, =0 only (2.31c¢)

U1(9,OO)ZO 9039391

e—O'

o0
u19(6p, 0) = . / e (0o, 7)dT onI'y, (2.31d)

where T’y = {(0,0)]6p <0 < 6;,0 =0}.

Co-ordinate transformation expressions describing the co-ordinates of the physical
plane in terms of the co-ordinates of the hodograph plane, are needed for calculating
the co-ordinates of the wake boundary z = z(0,0) and y = y(0, o).

Since 0 = 0 thus do = 0 on the wake boundary, from (2.18) we obtain

1 1
dr = 1% cos0df and dy = _Low sinfdf on 'y U T, (2.32)
qc 0o qc 0o

where I's = {(0,0)]|0 <8 < 6y,0 = 0}.
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2.3 Numerical Procedure and Results

The problem posed in the hodograph plane by equations (2.30) and (2.31) is
formulated in a region which is unbounded in the positive o- direction. For numerical
computations, the region will be truncated. Toward this end, a ¢, is chosen which is
sufficiently large so that for all practical purposes the values of ¢ and u; for o > oy
are approximately zero.

Note that since the function defining o is logarithmic, o = —ln(q%), and wuy is
weighted by an exponential function, the truncation has little or no effect on the
numerical results. Hence, oy, provides an upper bound for R,; U Ry UI". The solution
algorithm is a finite difference successive over- relaxation scheme for both u; and v
with projection for the uj-problem only. A grid of mesh points is superimposed on
the bounded region, where each node is specified by row ¢ and column j. Therefore,

the field equation for 1, equation (2.30a), can be written as the following difference

equation:
¢(3+ ) = [a&(ﬁ)g)jgﬁfﬁ][(ua WTi Ww ,JH
(2.33a)
+ TR e Z@/’znﬁ + Wm¢§i)1,j]
and
i = wll) +w(¢§,nj+%) — ), (2.33b)

where A6 and Ao are the spacings in @ and o- direction, respectively, o and 8 provide
for unequal divisions for mesh points, w is the over-relaxation parameter and @/)Z(Z-) is
the value of ¢ at node 7, j for the nth iteration. Similarly, for u; in the region R,,

(see equation(2.31a)):

(n+3)  _  aB(A0)2(Ao)? [ (1) 4™
) 2[a(A0)2 1 6(L0)2] L{Tra)(B0)2 H1(i,j—1) <1+a><M> U1(i,5+1)
(2.34a)

2 (n+1) (n) o
HFA T Hli-1g) T BTG ML) + R(0;)e™1]
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and

1
ity = maz (0wl + (s — i), (2340

where uY(LZ.)j) is the value of u; at node 7, for the nth iteration. These iterations are

stopped when

n+1)
7j

(n+1)

( _ ™ _ ™
rrllg,xhl)z Y| <e and H%Efx|u1(i,j) ul(i,j)| <€, (2.35)

where ¢ is some fixed positive constant.

Note that on the boundary I'y = {(0,0)|0 < 8 < 6y,0 = 0, }, which corresponds
to the stagnation point in the physical plane , ¢ ~ 0, for the region R,. On the
boundary I's = {(6,0)|0p <0 < 01,0 =0y}, u; =0.

The values of 1 at the mesh points on I'; are calculated using equation (2.30d), in
which w1, is approximated by a central difference expression; therefore for 6y = niAf,

where n1 is the number of spacings in the 0-direction in Ry,

“@d,o - “5?11,0] (2.36)

200

w(n'i‘l)

2,11

= qclu g?,)o +

On the other hand, the column of mesh points bounding region Ry, which are
on the line I'j, forms the boundary of the region R,,, and equation(2.31d) is used to
calculated the boundary condition. The integral in this equation is approximated by
using a mid-point formula;hence

(n+1) _  (n41) Abluri s (iA e A0 5
Ujio) = Uig) — 2 [wiint (i) ) (2.37)
dc

where

ulmt(iAU) = %[B(H—I)AO (d)zgi)lvnle - 41/%(2)1,71171 + 3¢§Z)1,n1)

BT g = A0 1+ 3L (2A6) + (i + 1) A0)

and u1ine(NAo) =0, where N is the number of divisions in the o-direction.
The iteration sequence is started by setting the boundary conditions for ¢ in the

region Ry and for u; in the region R,,, and a zero initial guess for the interior 7,/)1((;-)

(0)

and Ui )" Then using equations (2.33), the 1#1(37-) are obtained starting from the lower
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left interior point and moving to the right along mesh points and upwards until all
the interior points in Ry, are covered. The next step is to set the boundary conditions
for R,, making use of equation (2.37) and the newly calculated values for ¢, and
then starting from the upper left point in the region until the entire mesh is covered.
uy(p,j) on 'z will be computed as the last row by using a difference scheme derived
from the combination of (2.31a) and (2.31c¢). This provides new w; values for points
on I't, and hence new boundary conditions for ¢ in region R using equation (2.36).

This alternating sweeping of the two regions continues until the conditions (2.35)
are satisfied. Since numerical values for w; inside the boundary, I', are nonzero and
those on the boundary and inside of it are zero, the zero points bordering non-zero
points in the R, region determine this boundary.

The velocity on the boundary of the cavity, g., is assumed to be known but, as
stated before, the upstream velocity g, is,like the boundary I', unknown a priori
and is to be found as part of the solution. Therefore, different values for o,,, where
oo = —In(goo/qc), are used until the best one is found. The calculation sequence
assumes mesh points on the boundary I'y = {(0,0)|60 = 0,0 < 0 < 0y}, starting from
the point with minimum o and going upwards. For each assumed o, the alternating
iteration sequence described above is performed and coordinates of the wake, using
equation (2.32),are calculated.

In order to calculate co-ordinates of the boundary of the wake, we must first
consider I'y to obtain the location of CE; then consider I's = {(#,0)|0 < § < 6y} to
obtain the location of ED.

On I'y, ¥ = —qc(ug + u1y) and ¥ = 0, then u1, = —uy and

¢U = _QC(Ula + Ulaa) = _QC(ulaa - U1)~
Therefore, using (2.32) we have
yA\")
Tpl+j—1 = Tpltj — T[t]’ CcoSs 9]' +1j-1cos 9]'_1] onI'y (2.38&)

and

yA\")
Ynlt+j—1 = Ynltj — T[t]’ Ccos 9]' + tj_l CcOos 9]'_1] on I's, (2.38b)
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where Zn1412, Yn1+n2 are the co-ordinates of C, 1 < j < ng, ng is the number of spacing

in the #-direction in R,,, t; is approximated by its forward difference expression
tj = (20 * ’ul(ojj) — 5.0 % ’ul(l,j) + 4.0 % ul(Z,j) — UM:},J))/(AO’)Z — ul(O,j)'

On I's, equation (2.32) are integrated directly between two adjacent mesh points using

the trapezoidal rule, which yields

A6 0 0
Tj-1=12Tj + g[a—i}b COS 9] + a—i}b',l COS 9]',1] on ]__‘3 (239@)
and
VAo, 0
Yj—1 =1y + g[ﬁ_i)b CoS 9j + 8—Z)|j,1 CoS ijl] on I's, (2.39b)

where 1 < 5 < nq, %ﬁé\ ;j is approximated by its forward difference expression

B |
%Ij = E[—?ﬂ/}o,j + dap1j — -

Once the co-ordinates of the wake are determined, the cavity distance d.,which is
the distance between the boundary of the cavity and the wall at infinity (see Figure
2.4) is calculated. Then from equation (2.1) the upstream velocity g or consequently
0xo, 18 calculated and is compared to the assumed value of 0. The mesh point
corresponding to the minimum difference between the calculated upstream velocity
and assumed upstream velocities chosen for the desired value for o. It is evident
that the finer the mesh points are on boundary '3, the better is the accuracy in the
determination of 0.

Results obtained are shown below and we can see the coincidence of our results

with another published numerical solution( Lesnic et al.[15]).

2.4 Computational Results

Figure 2.4 shows results for an open profile which has the shape of an arc of a
circle(radius = 1.0) and for which the free streamline leaves the profile at 180 degrees
(01 = 180). The profile is located between walls each having a distance h = 10.0

from the axis of symmetry for one case and h = 50.0 for another. These cases are
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shown in Figure 2.4 along with the results given by Lesnic et al.[15] without walls.
As can be seen, the shapes and locations of the free streamlines are in appropriate
agreement. The velocity on the boundary of the cavity was assumed to be g. = 1,
the over-relaxation parameter was taken to be w = 1.6, o, = 4.0 and the number of
divisions in the 6 and o-directions were 150 and 200, respectively, with variable Ao.
The upstream uniform fluid velocity was computed to be go, = 0.68147 for the case
of h = 10.0 with € = 1.3 x 10™* and ¢, = 0.84713 for the case when h = 50.0 with
€ = 8.0 x 107°. The calculated and assumed upstream velocities in each of the two

cases were in agreement to within 0.6%.

1.8 T T T T T T
@]
1.7F o h=50m + b
@]
* h=10m
*
1.6 + h=infinity (Lesnic et al.[15]) b
o *
1.5F % _
(@)
1.4 .
*
13 L -
+ %
1.2 o _
+ *
11F + *
°,

n ® ]
0.9 _
08 1 1 1 1 1 1

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

Figure 2.4: Comparison of Numerical Results



20

2.5 Summary and Conclusion

The numerical algorithm presented here is simple and efficient and, as seen from
the comparison of results, give reasonable solutions. Thus, the solution approach can
be applied to general truncated concave shaped profiles between walls. Furthermore,
the numerical scheme gives the velocity along the profile which is the curve I' in the
(0, 0)-plane as part of the solution. This is simply the line that separates the region
where u; > 0 from that where u; = 0. This free boundary type of problem is different
from other such problems in that the free streamline CD is a horizontal line in the
(0, 0)-plane, whereas the velocity distribution on BC becomes the unknown T, the

boundary sought in the (6, o)-plane.
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Chapter 3

Domain Decomposition and
Heterogeneous Modeling Used in

Solving a Free Streamline Flow

3.1 Introduction

The physical problem studied herein is again the flow past a concave shaped profile
in a channel. Figure 2.1 shows the flow where the location of the free streamlines are
unknown a priori. The objective is to provide a basic potential-flow solution to this
problem and in particular the location of the free streamline.

Dormiani et al. [11] use an overlapping domain decomposition approach and
Bruch et al. [7] use a non-overlapping domain decomposition approach in solving a
problem of flow past a truncated convex profile. Also, Bruch et al. [8] used a non-
overlapping domain decomposition approach to solve a similar problem to the one
studied herein. In the problems solved in [3], [6], [7] and in Chapter 2, the original
dependent variable, the stream function, was the solution variable that was used in the
domain without the unknown boundary. On the boundary between the two solution
domains a relationship between the stream function and the Baiocchi transformation

variable is used. In the approach used herein the Baiocchi type variable transforma-
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tion is extended across the boundary between the two domains. This assures that the
dependent variables and their normal derivatives are continuous along this common
boundary. The numerical results obtained herein will again be compared with those

of Lesnic et al.[15] for a truncated circular arc profile.

3.2 Formulation of the Problem

The formulation and the approach to obtain the hodograph plane are given in
Chapter 2. The region R of the problem in the hodograph plane is divided into two
non-overlapping regions R,,, and R, (see Figure 3.1), such that R = R,,, UR,, UT',
where R,, = {(0,0)|0 < 8 < by,0 > 0}, Ry, = {(6,0)]0p < 6 < 6,0 <o <)},
and I'; = {(0,0)|0 = 6y,0 > 0}, in which 6y is the value of 6 at the stagnation point
and #; is the value at the detachment point of the cavity boundary from the profile.

In Chapter 2, we defined an integrated stream function w; in the right subdo-
main only and still used 1 in the left domain. The numerical scheme then iterates
between these two subdomains by computing u; and 1 alternatively. The numerical
scheme shows the performance is good. However, it is hard to prove the convergence
of that numerical scheme since the interface condition expressed by w; and v is com-
plicated. Next, we propose a new scheme which uses only one function on the whole
domain, then the expression of this problem seems more natural than the first scheme
introduced in Chapter 2.

Again define an integrated stream function by using the Baiocchi type transfor-

mation
—a

e
dc

in the region R,,. Note that u; > 0 in R, since ¢ > 0 there.
Let D = {(0,0)|c > 0,0 <0 <6,}, and u; is defined in (3.4) for the region R,,,

but in R,, UIL'1, us is defined as :

0)
w (6, 0) = /0 D 0. 7)dr (3.4)

e*O’

UQ(Q,J) =

- /U T e (0, 7)dr (3.5)

and v is defined in R as follows
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We had proven in Chapter 2( see (2.27)) that
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/ . Vui - Vpdodo = / / . (e~ R(0)]¢pdbdo. (2.27)

Furthermore, we can easily prove Aug(f,0) =0 in R,, by using Lemma 1 and

repeating the same procedure as in Chapter 2. The proof is skipped.

Lemma 1 Suppose ¢, o, 0 have the same meaning as previously given, then

lim e’ (0,0) =0 and O_ILIEO e’ Py(0,0) =0 in R,,.

o—00

Proof.

Let us prove the first limit. For the variable transformation (6,0) — (q1, g2),

we

can consider 1(#,0) and a function J(ql,qz). From (2.7), i.e., ¢ = gq.e”? where ¢ is
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the scalar velocity, we have

lima—*)oo 601/1(9, O') = 1iInq~>0 gqii;((ha QZ)
= limg0 £((0,0) + 5= (A1 + 42(B)ae)

= limy o % (52 (A)q cos(0) + %’;(E)g sin(f)

= limg 0 5 (A)ge cos(6) + limy o 52 (B)ge sin(6)
=0.

Here we have used the Taylor expansion of ¢ at (0,0), the stream function (0,0) = 0,
and the fact that +, = 1), =the components of the velocity at the stagnation point
B =0 gives iql = z;qz = 0 at the stagnation point B, where ¢; and ¢ are the two
components of scalar velocity g. A and B denote some point close enough to (0,0)

from the Taylor theorem.

Now let us prove the second limit. Since variables g and o satisfy o = —ln;iﬂ
then
q= QCeig-
Therefore, N N R
00 _0Gog _ 9% . o)
do g0 dg ¢ T T Toy
then N
limy o0 74y (6,0) = limg 0 %(~q55)

= limg0 _C]c%'qéi
= limqﬂo _QC(/(ZQI COS(Q) + KZqz Sin(e))
= ~e(14, (0,0) cos(8) + 14, (0, 0) sin(6)).

Since the components of the velocity at the stagnation point B are zero, i.e.,

Jln (an) = @qz (07 0) =0,

therefore, we have
O_ILIEO e’y (0,0) =0.
Now this second approach seems more natural since the only unknown of our

problem is u and on the common interface I'y the connection conditions are the

continuity of v and %. Then our original problem can be solved using the traditional
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non-overlapping domain decomposition method and the property of convergence can
be proved in the area of DDM. In comparison, the first method uses a heterogeneous
modeling using v and v in different regions, the interface condition is not obvious and
the proof of convergence seems impossible due to the complexity of interface condition
and the difference of representation of PDE’s in each domain.

In fact, uy is simply an extension of u; since on I'y, ui(6y,0) = u2(6y,0) and
u19(0p, 0) = u29(0y, o). The first equality is clear from (3.4) and (3.5). The second
equality can be proved as follows:

From (3.5), we have

e*O’

ugg(0,0) = / e"g(0,7)dT in Ry,

qc

therefore,
—0

e o0
ugg(6p,0) = / e"g(6o, T)dT

dc

while from (3.4)

o

uip(0,0) =<7 [10 eTpy(0,7)dr + < y(0,1(0))

= <2 (1O ¢Tpy (0, 7)dT in Ry,

qc

since 1(0,1(#)) = 0 on I';. Therefore,

—0

u19(90,0):e / e"g(6o, 7)dT.

dc

Now it is clear that ui9(0y, o) = ug9(0y, o) on I'y.
Therefore, the representation of our problem using u; and us can be stated in the

two non-overlapping regions as follows:

Auy(0,0) = —]é(Q)e_‘TXRu1 in R, (3.6a)
Ul (9,0) + ulg'(97 0) = 0, 90 < 0 < 91 (36b)
u(01,0) =0, o>0 (3.6¢)

ui(0,0) =uz(0,0) on I'y (3.6d)
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and
Auz(0,0) =0 in Ry, (3.7a)
u2(0,0) + u2,(0,0) =0, 0<6<6 (3.7b)
u2(0,0) =hle™? —e7 7], 0<0<0y; u0,0)=0, 0>o04 (3.7¢)
ug9(0,0) = u19(0,0) on I'y. (3.7d)

Expressions describing the co-ordinates of the physical plane in terms of the co-
ordinates of the hodograph plane, ie., x = z(6,0) and y = y(0,0) are needed for
calculating the co-ordinates of the wake boundary. These expressions are:

Y

1 1
dr = ————cosfdf and dy= _1o sinfdf on I'y UT's. (3.8)
qc 0o q. 0o

3.3 Numerical Procedure

The problem posed in the hodograph plane by equations(3.6) and (3.7) is for-
mulated in a region which is unbounded in the positive o- direction. For numerical
computations, the region will be truncated. Toward this end, a o, is chosen which is
sufficiently large so that for all practical purposes the values of ¢ and u; for o > oy
are approximately zero. The solution algorithm is a finite difference successive over-
relaxation scheme for both w; and us with projection for the u;-problem only. A grid
of mesh points is superimposed on the bounded region, where each node is specified

by row i and column j. Therefore, the field equation for ug, (3.7a), is:

(n+3)  _ aB(A0)%(A0)? (n+1) (n)
u2(7;=j§ - Q[Q(A(Q)Z)-I-%(ABT)Z] [(1—|—o¢)2(A,9)2 u2(i,j71) + muz(m#l)
(3.9a)
H IR G Y2(im 1) T BB B Ya(it1,5)]
and
+1 (n+1)
ug’&-’j)) B “g(?ﬁ +wluy; 3" — ug@,j)), (3.90)

where A and Ao are the spacings in # and o- direction, respectively, a and 3 provide

(n)

for unequal divisions for mesh points, w is the over-relaxation parameter and Usi i)
2
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is the value of ugs at node 4, j for the nth iteration. Similarly, for u; in the region R,,,

(see equation(3.6a)):

(n+3)  _ aB(A0)%(Ac)? 2 (n+1) 2 (n)
“Mm‘i T 2[(A0)*+8(A0)?] [(1+a)(A9)2u1(iJ*1) 1 AT A7 Yi+1)

(3.10a)

2 (n+1) 2 (n) B0\ oy

TR B Ui-1y) T FaEAH G Uity T BO)e 7]

and
n+1 n (n+3) n

ey = maew{0ully ) + wlus = uii)h (3.100)
where uY(LZ.)j) is the value of u; at node 7, for the nth iteration. These iterations are

stopped when

(n+1)
2(4,5)

n n+1 n
- ué(i),j)| <e and HZ!Z@XWS(ZJ-)) - ug(i),j)l < e, (3.11)

rrlgg,‘x lu
where € is some fixed positive constant.

Note that on the boundary {(#,0)|0 < 6 < 6y, 0 = 0, }, which corresponds to the
stagnation point in the physical plane , up ~ 0, for the region R,,,. On the boundary
{(0,0)|60 < 0 < 61,0 = oy}, up = 0, which provides the appropriate boundary
condition.

The iteration sequence is started by setting the known boundary conditions for
ug for the region R,,, and a zero initial guess for the interior ugg’j) and on I'y. Then
using equations (3.7b). Using equations (3.9), the u&ij) are obtained starting in
the first row from the lower right interior point and moving to the left along mesh
points and upwards until all the interior points in R, are covered. The next step is
to set the boundary conditions for R, making use of equation (3.6¢) and the newly
calculated values for ug and set a zero initial guess for the interior u?(i, i) Then using
equations (3.10) starting from the upper left point in the region R, and move to the
right and downward until the entire mesh is covered and finally use equation (3.6b).
This provides new values for u; in R,,, and hence new boundary conditions for us for
region R,, are set using equation (3.7d). This alternating sweeping of the two regions

continues until the conditions (3.11) are satisfied. Since numerical values for u; inside
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the boundary, I', are nonzero and those on the boundary and inside of it are zero, the
zero points bordering non-zero points in the R, region determine this boundary.
The velocity on the boundary of the cavity, ¢., is assumed to be known but, as
stated before, the upstream velocity g, is, like the boundary I', unknown a prior:
and is to be found as part of the solution. Therefore, different values for o,, where
0o = —In(goo/qc), are used until the best one is found. The calculation sequence

assumes mesh points on the boundary
Iy ={(0,0)]0 =0,0 <0 <oy}

starting from the point with minimum ¢ and going upwards. For each assumed o
the alternating iteration sequence described above is performed and coordinates of
the wake, using equation (2.32), are calculated.

For calculating co-ordinates of the boundary of the wake, see equations (2.38)
and (2.39). Once the co-ordinates of the wake are determined, the cavity distance
d., which is the distance between the boundary of the cavity and the wall at infinity
is calculated. Then from equation (2.1) the upstream velocity g or consequently
0o, 18 calculated and is compared to the assumed value of 0. The mesh point
corresponding to the minimum difference between the calculated upstream velocity
and assumed upstream velocities chosen for the desired value for o,. It is evident
that the finer the mesh points are on boundary ['y, the better is the accuracy in the

determination of 0.

3.4 Computational Results

Figure 3.2 shows results for an open profile which has the shape of an arc of a
circle(radius = 1.0) and for which the free streamline leaves the profile at 180 degrees
(f; = 180). The profile is located between walls each having a distance h = 10.0
from the axis of symmetry for one case and h = 50.0 for another. These cases are
shown in Figure 3.2 along with the results given by Lesnic et al.[15] without walls.
As can be seen, the shapes and locations of the free streamlines are in appropriate

agreement. The velocity on the boundary of the cavity was assumed to be g. = 1,
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the over-relaxation parameter was taken to be w = 1.6, 0, = 4.0 and the number of
divisions in the 6 and o-directions were 150 and 200, respectively, with variable Ao.
The upstream uniform fluid velocity was computed to be go, = 0.69037 for the case
of h = 10.0 with € = 1.0 x 1075 and ¢, = 0.85419 for the case when h = 50.0 with
e = 1.0 x 10™%. The calculated and assumed upstream velocities in each of the two

cases were in agreement to within 0.24%.
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Figure 3.2: Comparison of Numerical Results
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Chapter 4

A Parallel Domain
Decomposition Iteration Scheme
For a Heterogeneously Modeled
Free Boundary Problem

4.1 Introduction

A new domain decomposition technique for the free boundary problems is consid-
ered. We propose a parallel iterative scheme that reduced the original free boundary
problem to a sequence of problems on both subdomains, one of which includes the
free boundary and is described by a variational inequality and the other includes the
remainder of the problem and is described by a second order PDE. At each step of the
iteration, we solve these two subproblems simultaneously either by using a Dirichlet
condition on the interface or using a Neumann condition on the interface. Since these
two subproblems can be solved simultaneously in this parallel scheme, the conver-
gence speed is faster than the old scheme which can only iterate one subproblem at
one time. Furthermore, this new parallel scheme can be extended to multi-subdomain

problems very easily.
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Many problems, involving free boundaries, can be reduced to the study of vari-
ational inequalities. The flow past the concave-shaped problem considered in the
previous two chapters belongs to this type. There are some other problems which
also involve free boundaries and will be considered in Chapter 5. In Papadopolous et
al.[19], [20], the authors proposed several domain decomposition methods, trying to
split the domain into two or more subdomains, one of which includes the free bound-
ary and is described by a variational inequality and the others will be described by the
PDE. Then by iterating between these subdomains we can solve the whole problem
and find the free boundary. However, the above schemes solve one subproblem at
one time. Now we propose a new DDM scheme which can solve these two or more
subproblems simultaneously.

In this chapter, we will use this new parallel scheme to solve the model problem,
i.e., flow past a concave-shaped profile. This new scheme is based on the domain
decomposition scheme derived in Chapter 3.

A successive over-relaxation approach is applied over the whole problem domain
with use of a projection-operation over only the fixed domain formulated part(the
part containing the unknown boundary). The scheme starts by assuming Dirichlet
data on the boundary between the two domains for both domains in the first iteration.
Neumann data is then obtained from each domain on this boundary, averaged and
used as the boundary data for the next iteration. The iterations in each domain are
done in parallel on different processors and continued until the preset error criteria
are satisfied. Numerical results are given for the case of a truncated circular profile.
These results are again compared with other published results and are found to be in

good agreement.

4.2 Formulation of the Problem

We will use u; and uo as before. The problem can be stated in the two non-

overlapping regions as follows:

Auy(0,0) = —]é(Q)e_‘TXRu1 in R, (4.1a)
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u1(0,0) +u15(6,0) =0, 6y <6<, (4.1b)
ui(6h,0) =0, o>0 (4.1¢)
u1(0,0) = uz(f,0) on I'y (4.1d)
and
Auz(0,0) =0 in Ry, (4.2a)
us(0,0) + u2g(6,0) =0, 0<6< by (4.20)
u2(0,0) =hle™? —e7 7], 0<0<0y; u0,0)=0, 0>o04 (4.2¢)
ug9(0,0) = u19(0,0) on I'y. (4.2d)

Expressions describing the co-ordinates of the physical plane in terms of the co-
ordinates of the hodograph plane, ie., x = z(f,0) and y = y(#,0) are needed for

calculating the co-ordinates of the wake boundary. These expressions are (2.32).

4.3 Numerical Procedure

The problem posed in the hodograph plane by equations (4.1) and (4.2) is for-
mulated in a region which is unbounded in the positive o- direction. For numerical
computations, the region will be truncated. Toward this end, a o, is chosen which is
sufficiently large so that for all practical purposes the values of u; and uy for o > oy
are approximately zero. The solution algorithm is a finite difference successive over-
relaxation scheme for both w; and us with projection for the u;-problem only. A grid
of mesh points is superimposed on the bounded region. The new numerical iteration
procedure is shown below:

(0) _ . . . (n+%) (n+3%
1. Let A'Y) =0 be given on I'1. We consider the two functions wu, and u;

)

, n. > 0 satisfying, respectively, the problems:

1 -
Augn—i— 2) —R(0)e " xr

in R
(n+%) “
vy

1 n 1
u"2(0,0) + " (6,0) = 0



and

(n+3
Uy

2. Let u(™ =0.5%

as follows:

1
W2 (0),0) = 0

(n+%)

Uy = A" on Ty

n—l—%
Ry = {00 (0,0) > 0}
Uy

1
AT =0 in R,

1 L
u$2(0,0) + ul 7 (6,0) = 0

2)(0, o) = preassigned as in (4.2¢)

1
uén+2) =A™ on Ty.

(n+ )
br— + 0.5 % au%a on I';. Then solve for u

Augnﬂ) = —R(0)e " xr gy 11 Ry
“1

and

(

Then let A"+t = 0.5 % u

W*”(e o) =0
(n+1)
3u1 _ M(n)
o0

R o = {(6,0)]ui""V (0, 0) > 0}

on Fl

Aul™ =0 in Ry,
us™(6,0) + ufr T (6,0) = 0

nﬂ)(O o) = preassigned as in (4.2c)

(239 =™ on I'y.
(n+1) (n+1)

1 + 0.5 * uy on I'y.

3. Repeat Step 1 with n + 1 replacing n.

(n+1)
1
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(4.3a)

(4.3b)

and u("H)

(4.4a)

(4.4b)
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These iterations are stopped when

1 1
max |ug(1;;)) - ug&.),jﬂ <e and max |u§T(L:'j)) - u%),jﬂ <, (4.5)

where € is some fixed positive constant.

Note that on the boundary {(#,0)|0 < 6 < 6y, 0 = 0, }, which corresponds to the
stagnation point in the physical plane , us = 0, for the region R,,,. On the boundary
{(0,0)|60 < 0 < 61,0 = oy}, u1 = 0, which provides the appropriate boundary
condition.

The iteration sequence is started by setting the known Dirichlet boundary con-
ditions for ug in the region R,, and wu; in the region R,, and a zero initial guess
for the interior ugg’j) and u%’j). Then using equations (4.2b) and (4.3), the uél(;j)
are obtained starting in the first row from the lower right interior and moving to
the left along the mesh points and upwards until all the interior in R,, are covered,
while at the same time, using (4.4) ugl(; ;) are obtained starting from the upper left
point in R, and move to the right and downwards in this region until the entire
mesh is covered and finally use boundary condition (4.1b). The next step is to set
the Neumann boundary conditions for both R, and R,, making use of (4.2d) and
taking the average of normal derivative of the newly computed u; and us. Then we
can use (4.2ab) to compute uy and (4.4) and (4.1b) to compute u; simultaneously
as before, but on the common boundary I';, the averaged normal derivative is used.
This provides new values for u; in R,, and for us in R,,. Then we repeat the step
of using a Dirichlet BC on I'y and using the average of u; and us as the boundary
condition on I';. Repeat alternating in this way, until conditions (4.5) are satisfied.
Since numerical values for u; inside the boundary, I', are nonzero and those on the
boundary and outside of it are zero, the zero points bordering non-zero points in the
R, region determine this boundary.

The velocity on the boundary of the cavity, g., is assumed to be known but, as
stated before, the upstream velocity g is, like the boundary ', unknown a priori

and is to be found as part of the solution. Therefore, different values for o,, where

oo = —In(goo/qc), are used until the best one is found. The calculation sequence
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assumes mesh points on the boundary
Iy ={(0,0)]0 =0,0 <0 <oy},

starting from the point with minimum ¢ and going upwards. For each assumed o
the alternating iteration sequence described above is performed and coordinates of
the wake, using equation (2.32), are calculated.

For calculating co-ordinates of the boundary of the wake, see equations (2.38)
and (2.39). Once the co-ordinates of the wake are determined, the cavity distance
d., which is the distance between the boundary of the cavity and the wall at infinity
is calculated. Then from equation (2.1) the upstream velocity g or consequently
0o, 18 calculated and is compared to the assumed value of 0. The mesh point
corresponding to the minimum difference between the calculated upstream velocity
and assumed upstream velocities is chosen for the desired value for o,,. It is evident
that the finer the mesh points are on the boundary I'y, the better is the accuracy in

the determination of 0.

4.4 Computational Results

Figure 4.1 shows results for an open profile which has the shape of an arc of a
circle (radius = 1.0) and for which the free streamline leaves the profile at 180 degrees
(01 = 180). The profile is located between walls each having a distance h = 10.0 from
the axis of symmetry for one case and h = 50.0 for another. These cases are shown in
Figure 4.1 along with the results given by Lesnic et al.[15] without walls. As can be
seen, the shapes and locations of the free streamlines are in appropriate agreement.
The velocity on the boundary of the cavity was assumed to be g. = 1, the over-
relaxation parameter was taken to be w = 1.6, g, = 4.0 and the number of divisions
in the # and o-directions were 150 and 200, respectively, with variable Ag. The
upstream uniform fluid velocity was computed to be g5, = 0.69040 for the case of
h = 10.0 with € = 2.0 x 107° and ¢s = 0.85420 for the case when h = 50.0 with
e = 1.0 x 107%. The calculated and assumed upstream velocities in each of the two

cases were in agreement to within 0.24%.
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The new parallel version in this chapter uses less time for convergence than the
traditional DDM methods used in Chapter 3. The required iteration number for
convergence of the new parallel method when A = 10.0 is 4603 while the iteration
number for the traditional method in Chapter 3 is 8872. Therefore, the parallel

version saved almost half of the time for convergence.

1.8 T T T T T T
1.7F o h=50m + O A
h=10m o N
1.6 + h=infinity (Lesnic et al.[15]) b
*
@]
1.5 b
*
1.4 o) b
*
1.3F +o b
+ %
1.2 + _
o
+ *
11 + b
i%

1 _
0.9 _
08 1 1 1 1 1 1

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4

Figure 4.1: Comparison of Parallel Numerical Result with Lesnic et al.[15]
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Chapter 5

Application of the New Parallel
Version Scheme to Other Free

Boundary Problems.

5.1 Introduction

From the last Chapter, we can see that the new parallel scheme based on non-
overlapping shows good performance for the flow past a concave profile problem. In
fact, we can extend this new idea to some other free boundary problems that have been
considered. In this Chapter, we will reconsider two of these problems and show that
the performance of the parallel version is better than the traditional DDM method.

The first example is to find the free surface in a steady, two-dimensional seepage
through a rectangular dam. The second example is a free boundary seepage problem
of flow through a porous dam with a toe drain.

Before we consider these problems, we propose the general idea of our parallel
scheme applied to a general free boundary problem as follows:

Consider the following free boundary value problem on the open bounded con-

nected set D in RZ:

Find {w,Q}, w(zy,29) € H (D), € C D such that
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Lw = f(z1,22)xa in D,
w=g ondD
Q= {(z1,22) € D: w(z1,z2) > 0}

with

2
0 0
Lw=- Z a—xi(aij(xhxz)ﬁ—w)—f—)\w, A>0

ij=1 i

f>0inD, g>0onadD,

where {a;;} are symmetric, bounded, smooth and satisfying

1
Z AT T > M(x% +$%)a M >0
t,j=1

for all + = (v1,22) € R?, a,b are piecewise smooth and
xo=1lonQ, xq=0onD—Q.

Examples of this arise in the filtration of a liquid through a porous dam, convex and
concave profile wake problems, etc.

Before we introduce the new parallel scheme, let us take a look at an earlier
scheme proposed by Papadopoulos et al.[19]. The following non-overlapping domain
decomposition scheme is widely used to solve free boundary problems:

Split the domain D into two subdomains D and D,. I' is the interface between
D; and Ds. The free boundary problem is stated above. We iterate between these
two subdomains as follows:

Choose ¢(z) >0 on I'. Let () = ¢(z) and for n =1 :

1. Solve the following Dirichlet subproblem for {u{™, Q{"} in D;:

Lu{” = fxgm on Dy
1
ugn) = g on 0D -T
ugn) = Ao on T
Q" = {(z1,m2)lu"” (w1, 22) > 0}

(n)
Then let (™ = 6(;21 on I') where n; is the exterior normal of I'.
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2. Solve the following Neumann subproblem u% in Dy:

Lugn) = [ on Dy

ugn) = g on 0Dy—-T
(n)
3gn21 = u™ on T.

Then let ("D =@« XM 4 (1 —9) « ugn), where 0 < 0 < 1.
3. Repeat step 1 with n + 1 replacing n. These iterations are stopped when

1 1
T jusfery) —ub| < e and e i) — gl < e

where ¢ is some fixed positive constant.

There are some other variants of the above method which show good performance
in numerical computation. However, in order to solve these problems, we must solve
only one subproblem at one time while the other is waiting. With the advent of
parallel computers, the demands for parallel computing are increasing. Therefore, we
devised a new parallel scheme based on the above scheme as follows:

Choose ¢(z) on I, let A() = ¢(z). (¢(z) = 0 is acceptable)

1. Solve the following two Dirichlet subproblems for {u§n+§)7 QYH%)} and u(n+%)

simultaneously:

Luf"™"?) = IX oty 0 Dy
u(n+%) = g ;n oD, —-T
Uy B _ A on T
o = {(an,z)lu" P (@1,2) > 0)

and )

Lu, = f in Dy

Usy = g ondDy—-T

ué = A" onl.

il
u" %)

Then let p(™ = 0% 40— 4+ (1 — 0) « % on I, where ny is the exterior

normal on I'.



40

Y

2. Solve the following two Neumann subproblems for {ugnﬂ) QYLH)} and uénﬂ)

simultaneously:

L“gnﬂ) = [Xxqm+y in Dy

1
ugnﬂ) = g ondD -T
(n+1)

8u81m _ H(n) on T

Q" = {(wr,22)[ul" ) (21, 22) > 0}
and

L™ = § in D,
(n+1)

us = g ondDy—-T
(n+1)
augnl = u™ onTl.

Then let A("t1) =@ % ugnﬂ) + (1 —0) « ugnﬂ) onT.
3. Repeat Step 1 with n + 1 replacing n.

These iterations are stopped when

(n+1) _ (n) (n+1) _ (n)
rrlg?jx|u2(i7j) — Uyl <€ and rrlgg,.x|u1(ijj) —uy; )l <6

where € is some fixed positive constant.

Numerical results show that the parallel scheme is better than the old one since it
makes use of the parallel properties of the problem and solves these two subproblems
at one time by using two processors on parallel machines. Thus the speed is increased.
It is not hard to see that the new scheme can be easily extended to a problem split

into more subdomains.

5.2 Example Problem 1

5.2.1 Numerical scheme

Consider the following free boundary value problem: Find the free surface in a
steady, two-dimensional seepage through a rectangular dam. For simplicity, the soil
in the flow field is assumed to be homogeneous and isotropic, and the capillary and
evaporation effects are neglected. In addition, the flow follows Darcy’s Law:

T = —kVh = —kV[(L) +y), (5.1)
pg
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where 7 is the velocity vector, p is the pressure, k is the permeability of the soil,

p is the density of the soil, g is the gravitational acceleration, y is the vertical coor-
dinate(positive upward), and h is the piezometric head. The seepage velocity has a

potential:

6= k[(%) +y]. (5.2)

In this example, the free surface, whose position is not known a priori, is to be found.

On the free surface two boundary conditions have to be satisfied:

¢ =ky (5.3)

and
by =0, (5.4)
where 7 is the outward normal direction. Either Neumann or Dirichlet data are given
on the remainder of the boundaries. The location of the free surface y = f(z) and

the seepage domain 2 need to be found. As shown in Figure 5.1, the seepage region

is defined as:
Q={(z,y): 0 <z <z1,0 <y < f(z))}, (5.5)

where z; is the horizontal distance from point a to b.

In the domain €2, setting &k = 1 for simplicity, the following conditions must hold:

A= 0 inQ
¢= y1 onlaf]
¢= y2 on[b
¢= y onlc]
¢ = y on fd
¢p= 0 on J/"ZZ
¢y < 0 on [ed],

where y; and y9 is the height of the water on the left and right side, respectively. The
flow domain is not known a priori since the location of the free surface is unknown.

A new known region D is defined as:

D={(z,y):0<z<z,0<y <y} (5.6)
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D,

o

=

D,

=n
>

Figure 5.1: The First Example Problem.
A new variable ¢ is defined:

52{ ¢(z,y) inQ

Y in D— Q= Qe

which extends ¢(z,y) into D. It follows that

By using a Baiocchi transformation, a new dependent variable w is defined as:

Y1 _
wiz,y) = [ Bla,7) - 77 (53)
y
Then w satisfies:
Aw = xq inD
w(0,y) = 3 —y)?* onlaf]
_ ¥ ¥y
w(z,0) = 5 Se2e on [ab]
w(z,y) = 32 —y)* on [b
w = 0 inD-Q.
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Once we obtain w satisfying the above, then

Q= {(z,y) : (z,y) € D,w(=,y) > 0}
graph f = 0Q — 9D = points of 9Q not in ID
¢ = Yy — wy in ).

Next we use our new scheme to solve this problem. Decompose D into two non-

overlapping regions D) and Dy with common boundary I' such that Ds is the region

not containing the free surface(Figure 5.1). Now consider the following scheme:
Choose ¢(z) on I, let A() = ¢(z). (¢(z) = 0 is acceptable)

1 1
1. Solve for n = 1 the following two Dirichlet subproblems for {w§n+2), Q(n+2)}

1

and wémr%) simultaneously:
A §n+%) — Xy @ Dy
o = Ly -y on[gf]
MY = Ly -y onfhd
§n+%) = 0 on|[fe]on [ce]
(5 _ A onT
o = @yl ) > 0}
and
Aw;n—i_%) = 1 in Dy
Y~ Ly -y)?  on lag]
S = Sy on i
e
(n+3) A on T

1 1
Then let (™ =0 « o (1 — 0) aw%y on T.
. (n+1) H(n+1) (n+1)
2. Solve the following two Neumann subproblems for {w; "/, Q] "} and w,
simultaneously:

n+1 .
Awg ):XQYLH) in D

n 1
w =S —v)?  on[of]
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. 1
wi" ™ = 5 (2 = y)?  on [hd]

wgnﬂ) =0 on[fe] and [ce]

O = {(2, y) [ (2,y) > 0}

and
Aw™™ = 1 in D,
wi™ = Lyi—y)?  onag]
wi* = Sy —y)®  on [bh]
wgi—i)) = % — yz;iygzr on [ab]
awf;; = u™ onl.

Then let A+ = g w{™™ + (1 - ) « w{"™  onT.
3. Repeat Step 1 with n + 1 replacing n.

These iterations are stopped when

(n+1) (n) (n+1) (n)
max [y’ — gl < e and maxlwyggy —wig,)l <e

where € is some fixed positive constant.

5.2.2 Discretization and results

This numerical example uses the following data: y; = 20.0, yo =

15.0, w = 1.85, ¢ = 0.001, Az = Ay =0.3333 and 0 = 0.5. D = {(z,y) : 0 < z <
15.0, 0 <y < 20.0} is subdivided as shown with D; = {(z,y) : 0 < z < 15.0, 10.0 <
y < 20.0},D9 = {(z,y) : 0 <z < 15.0, 0 < y < 10.0}. To determine a point (xg, yo) of

the free surface, choose the smallest yy so that 0 < w(xg,yp) < 0.01. The numerical

scheme proceeds by solving the two Dirichlet subproblems simultaneously using 2

CPU. These two solutions produce input data for the two Neumann subproblems

which we solve simultaneously using the same 2 CPU. The process continues until

convergence.
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The new parallel version converged in 4 loops with total number of iterations
being 368, while the old version needed 8 loops to converge with the total number of
iterations being 4639. Most of the iterations occurred in the first 2 loops for the old
method. The final error of the old method is 7 x 10™* and the final error of the new
method is 9 x 104, The new parallel method reduces the number of iterations by

running the program on two CPU.

5.3 Example Problem 2

5.3.1 Numerical scheme

The second example is a free boundary seepage problem of flow through a porous
dam with a toe drain. For simplicity, the soil in the flow field is again assumed to be
homogeneous and isotropic, and the capillary and evaporation effects are neglected.

In addition, the flow follows Darcy’s law:

p
T =—kVh=—kV[(=) +y], (5.9)

Py
where ¢ is the velocity vector, p is the pressure, k is the permeability of the soil, p
is the density of the fluid, ¢ is the gravitational acceleration, y is the vertical coor-

dinate(positive upward), and h is the piezometric head. For homogeneous, isotropic

soil, the permeability k is constant. The seepage velocity has a potential:

¢ = k[(fg) ). (5.10)

In this study, the free surface, whose position is not known a priori, is to be found.

On the free surface, the boundary condition is

¢ =ky (5.11)

while on the other boundaries, either Neumann or Dirichlet data are given. The
location of the free surface I'y = {z, f(z)}y and the seepage domain {2 need to be

found, see Figure 5.2. The seepage region is defined as:

Q={(z,y):0<z<zp, 0<y<alx); zr<z<zc, 0<y<flz)}, (512)
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N X

Figure 5.2: The Second Example Problem.

where a(z) is the shape function of the dam profile.

The functions ¢(z,y) and (z,y) are defined on Q and are to be in H*(Q2)NC(Q).
Further, for the problem shown in Figure 5.2:

Q={(z,y):0<z<zp, 0<y<alz); zm<z<zC, 0<y< f(z))}

¢r — Py =0in Q

by + by =0 in Q

¢ =yr on AF

¢ =0 on [BC]

¥ = q on [AB]

¢ =0onT,

¢ =yonli, (5.13)

where yp is the height at F', a(z) is the shape function of the dam profile, and ¢ is the
flow rate through the flowfield. Let the solution domain €2 be extended to the known
region D = {(z,y) : 0 <z <zp, 0<y<a(z); zpm<z<ze,0<y<yr}in
Figure 5.2. Then extend ¢ and % continuously to be defined on D by setting
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a(a:,y):{m’y) me

y in D —Q
and B

E(:c,w:{w(‘”’y) e

0 inD — Q.

This yields
¢y —tp,= 0inD
ay +Ea: = Xp-a in D

in the sense of distributions where x, g=1in D — Q, Xp_g=01in Q.

(5.14)

Next define a new dependent variable w using the Baiocchi transformation

w(P) = /_ —pdz + (y — ¢)dy, (5.15)

FP
where FP is a smooth path in D joining F to P in D in Figure 5.2. The integration

is independent of the path due to (5.14). Then for all w in H?(D) (N CY(D) (See [3]):
Aw=yxq inD (5.16)

wy =y —yr on AF
2
w = (q—)—i—q(xB—x) on [AB]

6

wy = 0 on [BC] (5.17)
w=0in D — Q( also on I'y)
w>0inQ (w>0inD).

Hence

w(z,y) >0, 1—A(z,y) >0, w(l—-Aw)=0inD.

If w is found satisfying (5.16) subject to conditions (5.17), then the following quanti-
ties can be obtained:
= {(z,y) : (z,y) in D, w >0}
graph f = 0Q — 0D = points of 9 not in ID
= Y — wy in § (5.18)
= —w, 1n

q= ¥ (z,0) on [AB].
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Next we use our new scheme to solve this problem. First, decompose D into

subsets D1 = {(z,y) : 0 < 2 < zp,0 <y < afz)} and Dy = {(z,y)

P xp <

z < z¢r,0 < y < yp} with the boundary of D denoted by 0D and the interface

between D) and Dy denoted by I' = {(z,y) : © = 2,0 <y < yr}. If w; denotes the

restriction of w to D; and wy the one to Dy, then we can write down the following

iterative procedure:

1. Let AM) be given on T'. We solve the two Dirichlet subproblems for w,
1 1
{wgn—i_?), an+2)}, n > 1 respectively as follows:
+3 .
Awgn 2) — XQFM_%) mn DQ
(n+3) 2 ,
= (%) +a(zp —z) on [F]B]
1
()" ), = 0on [BO
1 _
W' = omD,—Q
1
wén+2) = A on T
n+ i ntt
A = (@ y)lwy (,y) > 0)
and
1
Aw§n+2) = 1 inDy
1 .
VTV = (%) + alos — o) on [AF])
1 A
(@"">)y =y~ yr on AF
1
§n+2) = A on T.
(n+%) (n+3)

2. Let u(™ = 0« 8w18x +(1—§)*aw%w

for {w£n+1), anﬂ)} and wgnﬂ) respectively as follows:
Aw{ = Xg{m+b) in Dy
wf™ = (%) +glep o) on [F{B]
(w§"™)y = 0on [BO
wénﬂ) = 0in Dy — Q
awg:rl) = p™  onT

it = ()|l (z,y) > 0}

(n+

1
2) and

(5.19)

(5.20)

on I'. Then solve two Neumann subproblems

(5.21)
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and
Awi™™ = 1 in D
W™ = (%) +q(xp — ) on [AF]]
(™), = g on AF (>:22)
awg:l) = p™  on T.

Then let A(*t1) =@ % w&”“) +(1-0)=x wé”“) on I
3. Repeat Step 1 with n + 1 replacing n.

These iterations are stopped when

1 1
max \w;’(l:'] )) _ wé@)j)] <e and max \wg’(l:j)) _ wg?i)jj)\ <€,

where ¢ is some fixed positive constant.

5.3.2 Discretization and results

The flow rate through the flow field, € is also unknown a priori. Thus, in addition
to the inner iteration to solve for w with a given ¢, there is also an outer iteration on
the ¢ to determine the flow rate. A compatibility condition is necessary for the outer
iteration. The condition used herein is similar to that given by Sloss and Bruchl[3],
ie., ,

Fn(@™) = (wy(xp, yr — Ay)) g — ATy’ r=0,1,2,... (5.23)
Then fh(q(T)) = 0 represents a compatibility condition, which if imposed on the set
of solutions (w1)g,n and (w2)qn, permits the determination of a unique g such that
(w1)g,n and (w2)z,, will be the a solution of (5.19), (5.20), (5.21), (5.22).

The numerical example has the following data: a(z) =z  where 0 <z < zp,

yr = 30ft, xp = 30ft, zp = 60ft, & = 0.5, Az = Ay = 2.5ft, with stopping error

estimates:
(n+1) _ (n)
max | (w1) ) 5 — (i) i 5l < en
(n+1) (n)
max | (wa) ) 5 — (wa) oy 51 < e
and

fn(g")] < ez,
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where €; and €9 are preset constants.

The iteration approach presented here is that: the Dirichlet subproblems in both
regions D and D» are solved, then using the average of the normal derivatives on the
interface as input, solve the Neumann subproblems in D; and D9 at the same time.
This forms one step. Then using the average of the function values on the interface
as input, solve the Dirichlet subproblems in both regions as before. The error was
checked after each step, if it meets the criteria, then stop, otherwise move on to next
step.

The old method took 120 steps of iteration before reaching the error criteria, while
the new method only needed 88 steps of iteration to satisfy the error criteria. The
error criteria for these two methods was the same, however, the difference between

the necessary number of iterations shows the advantage of the parallel algorithm.
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Chapter 6

Convergence Analysis of DDM
Schemes for the Concave Profile

Flow Problem

6.1 Introduction

In this chapter we should consider the convergence and existence analysis of the
model problem considered in Chapter 2. The problem of flow past a concave shaped
profile can be transformed into a variational inequality problem on the whole do-
main with mixed boundary conditions. In the following sections, we shall prove the
existence and uniqueness of the solution to our problem as a variational inequality
and then prove the convergence of our numerical solution using the DDM scheme by
assuming some convergence property on the common interface of two subdomains.
The approached used in this Chapter are similar to Bourgat and Duvaut[2] and
Papadopolous|21].
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6.2 Existence and Uniqueness of Solution to Model Prob-

lem

Suppose D = {(0,0)|c > 0,0 < 0 < 6;}, and u is defined

uy(0,0) = <= JXD gm0, Tydr, 00 <0 <6, 61)
U = N . .
U2(97 U) = e(;_: f;o €T’lﬁ(9,7')d7', 0 S 0 S 90
Then as in (2.28), we have
Pu  0%u ~ o .
Au = 202 T 902 = —R(0)e"7xr,, inD, (6.2)

where E(H) =0, 0<0<6y E(H) is defined as before, 6y < 0 < 01, and u satisfies

the boundary conditions(see Figure 3.1)

U+ Uy =0 onI'y Ul
u=20 onI'y

u = h(o) on I'y
u(6,00) =0,

(6.3)

where h(o) = h(e™® —e™7>), 0<o0<o0y; h(c)=0, 0> 0. If wecan prove
there exists a unique u(#,0) satisfying (6.2) and (6.3), then we can find the stream

function in R as

P = —qe(u + ug). (6.4)

Let us introduce the function space V :
V = {w|lw € H(D),w|p, = 0,w(f, ) = 0} (6.6)
which is a Hilbert space when it is supplied with the norm
01
]| = / Y - Vwdfdo + / w?df. (6.7)
D =0
Let the closed convex Kg contained in V' be given by

Kyp={wweV, w>0, wlp,=h(o)}.
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Furthermore, let
a(u,w) = / Vu - Vwdfdo —|—/ uwdf. (6.8)
D I'aUl's
If w € H'(D) and satisfies (6.3), we have

u € Kg.

Notice that R is defined in Chapter 2 as R = R,, U R,, UL';. For any v € Kg, we

have N
Jr —(Au)(v —u)dfdo = [, R(F)e™7 (v — u)dfdo (6.9)
> [, R(0)e=7 (v — u)dfdo '
since R(0) <0, u=0on D — Rand v >0 on D — R. Green’s formula gives
Jr —(Au)(v —u)dbdo = [ —g—Z(v —u)dl' + [ Vu- V(v —u)dfdo
= Jp Vu- V(v —u)dbdo + [, r, u(v —u)do,
where n is the exterior normal of dR. Then (6.9) becomes
a(u,v —u) > / R(0)e (v — u)dfdo, Yve Kp. (6.10)
D

Lemma 2 If the mapping 0 — IBL(H) is square integrable on (0,01), then
v — / R(0)e " vdfdo
D
s a continuous linear form on V.
Proof. Note that
| / R(0)e “vdbdo| < ¢ / v2d0do)
D D

since (0,0) — R(0)e™7 is square integrable from the assumption. From v|p, = 0, we
have
0 9o

’U(Q,O'):— ) %

(&', 0)do’

which implies

1 61 1
o0 ) < 0 =01} ([ (520
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Consequently,
[pv?(6,0)d0do < [p[01 [3" (52)2dn)dbdo
=03 5° [y (22)2dfdo
< 6? [, Vv - Vudfdo

which proves Lemma 2.

Theorem 1 Under the assumptions in Lemma 2, there exists a unique u salisfying

(6.10).

Proof. The bilinear form a(u,v) is coercive. Further it is continuous. From
Lemma 2, we know the second member of (6.9) is a linear continuous form on V. From
the classical existence theorem for variational inequality (Kinderlehrer et al.[14]), the

result follows.

Theorem 2 The wake boundary (z(6),y(0)) is given by

0
2(0) = mo + /0 (4o (1, 0) + o (17, 0)) cos iy

and

0
y(0) =yo + /0 (o (1,0) + oo (1, 0)) sin ndn.
Proof. Derived directly from (3.8) in Chapter 3 and the following fact:

Y = —qc(u +uy) in R.

6.3 Convergence of Numerical Scheme

6.3.1 Variational form of domain decomposition scheme

From the numerical results in Chapter 2, we can see the convergence of (™)
and u(™ towards the exact physical solution ¢ and u. Also in Chapter 3, we see the
convergence of ugn) and ué") towards the exact physical solution u. However, it is very
difficult to prove the convergence of the numerical solution. The very complicated

boundary condition on the common boundary I'; of the two subdomains R,,, and R,,
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makes the convergence analysis even much difficult. How to prove the convergence
of the approximate solutions when the complicated common boundary conditions are
present is our objective. Note that the numerical approach for determining (™ and
u™ taken in Chapter 2 is equivalent to the approach for determining ugn) and ué")
taken in Chapter 3. However in the second approach the heterogeneous model was
used, that is, u; and up are considered to be C! functions, since the equality of
their function value and their normal derivative on the common interface must hold.
Therefore, the second approach can handle the same function in both regions and
on the common boundary, while the first approach has no such advantage. In the
following, we shall try to prove the convergence of our u;-us approach towards the
true solution described in Section 6.2.

When we take iterations on both regions consecutively, we have the following
numerical problem:

(n—1) (n)

Given ug on I'y, solve for uy", R ) inregion D = Ry:
1

pu” = —R(0)e “xr ,, in Dy (6.11)

1

u{™(0,0) + u{"(6,0) = 0 on T's

lo
u{(01,0) =0

ugn) = uénfl) on I'y
R o = {(8.0)[u" (8,0) > 0}.

. oul™ . .
Given 15—16 on I'y, solve for ué") in region Dy = R,,:

AUV =0 in Dy (6.12)

u(9,0) +ud(6,0) = 0 on Ty

uS(0,0) =hle @ —e 7] 0<0 < ou
(n)

uy ' (0,0) =0 0> 04

8ugn) B 8u§n)
09 00

on Fl.
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Now, we consider the variational approach for the above two subproblems:
Subproblem 1
Let g € H%(Fl), g >0 on I'1, and define

UN(g)= {v:veHY D)), v>0inD;, wv(f,00)=0,
1)(91,0') = 07 YU = g on H%(Fl)}7

where o : HY(D1) — H3 (I'y) is the trace function.
Now we can define the strong and variational forms of the free boundary subprob-
lem in region D;.
Strong Form:
Find {uy,Q} such that u; € UM (g) N H2(Dy), Qi ={(0,0) € Dy :u(6,0) >
0}, and
—Auy = fxq, in Dy (6.14a)

uy + duy =0 on I's. (6.14b)
0o

Variational Form:
Find {u;,Q;} such that u; € UM (g), Qi ={(8,0) € Dy : uy(#,0) > 0}, and

a1(ur,v —uy) =< fo—uy > Yo e UD(g), (6.15)
where
< f,v >k:/ fvdldo, k=1,2,
Dy,

ay (u,v) = / Vu - Vodbdo + [ uvdb.
Dy Iy

It is known that equations (6.14) and variational inequality (6.15) are equivalent.
Subproblem 2
Let

UP ={v:ve HY(Dy), v(0,00)=0, v=I(c)only},

where

(o) =hle " —¢ ], 0<0<om; 1(0)=0, 0> 0.

The following formulations are the strong and variational forms of the second sub-

problem.
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Strong Form:

Let h € H*(D;). Find uy € U® N H?(Dy) such that

—Auy = fin Dy (6.16a)
8uQ oh 1
ou
uy + a—; =0on ;. (6.16¢)

Variational Form 1:
Let h € H*(D;). Find uy € U® such that

h
az(uz,v —ug) =< f,v—ug >2+ [ (v— uz)%da Yo e U®), (6.17)
I

where

as(u,v) = / Vu - Vodldo + uvdo.
D2 FS

The equivalence of the strong form equations (6.16) and variational form 1 (6.17)

of the above subproblem 2 can be shown as follows. Suppose (6.16) is true, then for

any v e U@,

— sz Aug(v —ug)dfdo = sz Vuy - V(v — ug)dfdo — faDz (v — uz)%ds

= ag(ug,v — ug) — frl(v — W)%da

= asg(ug,v — ug) — frl(v — uz)%da,
ie.,

az(uz,v —uz) = [p, (=Auz)(v —uz)dfdo + [ (v — up) S do
= [p, f(v —up)dOdo + [, (v — up)Ihdo

which is just (6.17). Notice that the above procedure is invertible, we can also prove
(6.16) assuming (6.17) is true. Therefore the equivalence between (6.16) and (6.17)
is proved.

Furthermore, if h € H?(D;) satisfies
—Ah = fyq, in D (6.18q)

h + ? =0on Ty, h(f,00)=0, h(b,0)=0, (6.18b)
o
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where

Q) ={(0,0) € Dy : h(8,0) > 0},

then the above two equivalent forms are also equivalent to the following variational
form:

Variational Form 2:

Let h € H?(D,) satisfies (6.18). Find uy € U® such that

as(u2,v —ug) = < f,v—uy >9 —ay(h, R1yo(v — us))

(6.19)
+ fo, fR1v0(v — ug)dbdo Vv € U,
where R;(g) satisfies for any g € H%(Fl),
ARyg=01in D, (6.20a)
Rig=0onTy; Rig(f,0)=0; Rig+ % =0onTy Rig=gonly.
o
(6.200)

Let us prove the equivalence between (6.17) and (6.19). Since h is a solution of

the free boundary problem 1, i.e., (6.14), we have
Ah = —fxq, in D;. (6.21)

Therefore, for any v € U2,

—a1(h, Rivo(v — u2)) + Jo, fR1v0(v — u2)dbdo
= —[p, Vh - V(Riv(v — ug))dfdo — [, hRiyo(v — u)d0 + [, fR17v0(v — uz)dfdo
= [p,(Bh)(Rivo(v — ug))dOdo — [5p (Riyo(v — uz))%ds
— Jp, R0 (v — u2)df + [o, fR1v0(v — uz)dbdo
= [p,(=fxa.)(Biyo(v — uz))ddo + [ (v —uz)Spdo + [o, fRivo(v — uz)dfdo

= Jr, (v — u2) Gpdo
(6.22)

which shows the equivalence between (6.17) and (6.19) by comparing the expression
of (6.17) and (6.19).
If we let ¢ = ypus and h = u; in the above subproblems, then we get the following

equivalence theorem.
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Theorem 3 If {uy,us} solves the variational form of subproblems 1 and 2, respec-
tively, with h = u; and g = yyuo and in addition w1 and ug are sufficiently regular,
then

u=wuy n Di; u=mwug in Dy

gives a solution of

Au = fxq in D
u>0andu=0o0nTy, ut+u,=00nT2Uls, u=~h(o)onTy (6.23)
with suitable regqularity assumptions.

Now we are ready to proceed with the iterative scheme that allows us to solve the

above split problem.

6.3.2 Iterative scheme

Let & = H%(I‘l), gV e ®,¢¥ > 0 be given. For n > 1 construct uﬁ”) €
HY(Dy),uS" € H'(D,) by:

Define the convex sets:

UD(g) = {v:veHYD)), wv(#,00)=0, v=0onTy,
Yyv=gonly, v>0on D},

U? ={v:ve HY(Dy), v(0,00)=0, 0<6<6by, v=h(c)on Ty}

First for n = 1, find (ugn), an)) such that ugn) e UMW (g,

al(ugn),v — ugn)) >< f,v— ugn) > Vo e UD (gM) (6.24)

and

Then find vy € U® such that

ag(uén),v — ugn)) = < f,v— ugn) >9 —al(ugn), Rivo(v — uén)))

6.25
+ Jom fR1v0(v — uén))dea Vo € U, (6.25)
1
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Next define
g™ = yo(u" ™) = Buyo(u") + (1 - 6,)9™ (6.26)
with 0 < 6,, < 1. Here all §,, = % Then repeat (6.24) with n replaced by n + 1.
(n) (n)

where uy; . is the value of u; at node 7, j for the nth iteration and similarly for w,; .

These iterations are stopped when

Jud™™ — ™|y < e and o™ — udV)ly < ¢,

where ||u||x, k = 1,2 are the norm defined below and € is preset.

We need to define some norm notation which will be useful later. Let

|v||2 = ag(v,v) for k=1,2 (6.27)
I1]]] == [ Rull? (6.28)
(((ﬁud})) = al(R1¢7 Rﬂ/)) V(,ZS,@/) €. (629)

6.3.3 Convergence of the iterative scheme

Once the initial guess g is given, we shall be able to show that this sequence
of subproblems converges to our original problem as long as the ¢{")’s converge along

I'y as n — oo. In other words:

Theorem 4 If the sequence {g(") = ’yougn)} converges as n tends to oo and g™ >
0 on I'y, then the whole sequence {ugn),uén)} converges to the solution {u1,uz} of the

free boundary problem 1, i.e., (6.15) and boundary value problem 2, i.e., (6.17).

Proof. Define K := {z: 2z € H'(D;), z=0onl; ULy, 2(#,0) =0, z2>
0 in Dl}
Consider the following problem: Find z € K such that:

a(z,w —z) > flw—12), YweK. (6.30)
Dy

We know a solution z exists( Kinderlehrer and Stampacchia[l4]). Define R;(g) as in

(6.20ab), then R;g satisfies

a1 (Rig,w—2)=0 Ywe K,z € K.
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Let z be the solution to (6.30), then
a(z,w —z) > flw—=2)—a(Rig™,w—2) YwekK (6.31)
D,

ie.,

a1(z + Rig™ w—z) > flw—2) YweK. (6.32)
Dy
Since Yw € K, w 4+ R1g™ € UMW (g(™), let ug") = w+ Rig™, then
ul™ e g (gn)y (6.33)

and
w—z =w-— (ugn) — Rig™)

(6.34)
=v— ug") Yo =w+ Rig™ in U (¢("™).
As a result we have
al(ug U — u1 / flv— u1 vo e UM (™) (6.35)
which is problem (6.24).
So Vm,n > 1, 3 solutions ugn),ugm) with respect to ¢(™, g™ such that
ug”) =24 Rig™ e UM (™)
and
A = R € U (). 530
It then follows that:
la™ = wi™ iy = [1R1g™ = Bag™ i p,)- (6.37)
Since fyoug") = ¢ then ||u§n) - ugm)||H1(Dl) — 0 as |||fyug n_ ’yul ||| — 0. This

implies the convergence of {ugn)}, since {ug")} is a Cauchy sequence in the Hilbert

space J, where J ;= {v:v € H*(Q1),v =0on Iy, wv(f,00) =0 }. As a result, the
limit of ug") exists. Assume lim,, ugn) = u;. By (6.26)
bu-1y0uy’ " =g — (1= 6,-1)g" Y

= youi” — (1= 1) you" " (6.38)

= youl™ — youl™™ + 0, 1ypul" Y.
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Therefore,

01 (y0us ) — youl" ) = youl™ — yu{ Y. (6.39)

Divide both sides by 6,1 = 3, then

hrous' ™ — youl ] < 2youl™ — qou" V| = 0 (6.40)
Therefore,
nlgrglo 'yougn) = nlLIgO 'yougn) (6.41)

(n)

and lim,,_, an exists, i.e.,
/ 1dfdo = 0 as m, n — oo.
1 1

From (6.25), we have

||ué") (m)||2 Saz( (n) (m) (n) (m))

—Ug "|l2 Uy " — Uy ",Ug " — Uy
— el ) — o)~ ol ) — ol
= ool — ) — ap (o o — o)

= = Jp, S (05" = )+ Joo fR1v0(5" — )

—ar(u{™, Riyo(u$® —u§™)) = [, Fud? —u$™)

+ fﬂgm fRﬂo(Ugn) - Ugm)) - al(uﬁm), Rl’YO(Uén) - “gm)))

= —a1(ut"” — u{™, Ryyo(us” —uf™))

+ g _qom f Ryyo(us™ — ug")
+ g g f Ryyo(us™ — ug")
< [t = uf™ || R0 (us” — ug™)|
+ Jyor_gom [ R10(uf” = uf™)|
+ Jm g [ R10(uf” = uf™)
—0asn, m — oo.
(6.42)
Since U@ is a closed subspace of a Hilbert space, therefore {ué")} converges to some
function in U®), say us.
If we take the limit in (6.35), we have:

ay (uy,v —uy) > flo—uy) YoeUD(g). (6.43)
D,
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Therefore, the free boundary problem 1 is satisfied by w;. From (6.41), we have

Your = Youz on 7.

Taking the limit in (6.25), the boundary value problem 2 is satisfied by us.
As a result, to assure convergence over the entire region D it is only necessary to
(n)

have convergence of u; ’ along I'1. This iterative scheme allows a simple numerical

implementation with a stopping criteria of convergence on the common boundary.
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Chapter 7

Convergence Analysis of DDM
Schemes for Other Free

Boundary Problems

7.1 Introduction

As we mentioned before, free boundary value problems sometimes are divided into
two non-overlapping problems. In one region the problem is treated as an ordinary
boundary value problem. In the other region, the ”free boundary part” of the problem
is reduced to a variational inequality. By solving these two problems successively, it
is shown numerically that the successive solutions converge to a single function that

gives a solution of the original problem.

Papadopoulos et al.[19], [20], Jiang et al.[13], Bruch et al.[7] used the idea of a non-
overlapping domain decomposition method to handle many free boundary problems
and obtained very good numerical results. However, a mathematical proof of the
convergence of this method has been an open problem. Herein, we use the maximum
principle to consider the non-overlapping DDM applied to the general free boundary
problem and prove the convergence of this non-overlapping DDM, which shows the

coincidence of theory and numerics.
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In the next 2 sections, we shall prove the convergence of 2 different numerical
schemes used for the solution of the two free boundary problems in Chapter 5. In
Section 7.2 we shall show the convergence of the numerical scheme for the free surface
in a steady, two-dimensional seepage through a rectangular dam. In Section 7.3, we
shall show the convergence of the numerical scheme for the free boundary seepage

problem of flow through a porous dam with a toe drain.

7.2 Convergence of Numerical Scheme For Rectangular

Dam Problem

B

Figure 7.1: The Free Boundary Problem

The rectangular dam problem is described by the following free boundary problem:

(Aw—flu=0, Aw—f>0, w>0 onD (7.1)
with the boundary conditions:

w = hl Z 0 on Fl (72)

w = h2 > 0 on ]__‘2 (73)
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w=0o0n OD—T;—T5, (7.4)

where D is an open simply connected region in the (z,y) plane for which D = D; U
Dy UT, Dy and Dj are open sets, D1 N Dy = ¢ (see Figure 7.1). T' = 0Dy N dDy is
the common boundary of Dy and D3 and f(z,y) < 0.

It is assumed that if Q = {(z,y) € D|w(z,y) > 0}, then ', = 0Q2NO(D—-Q) C Dy,
i.e., the free boundary I is in D;.( For many problems we can always split the region
into two parts so that the free boundary will be contained in only one part).

In fact, (7.1)-(7.4) are equivalent to the following variational inequality formula-

tion: find w € K, so that
a(w,v —w) >< fiv—w > VYveK, (7.5)
where
a(u,v) = /D(Z—Zg—i + g—Zg—Z)dxdy
< f,o>= /Df(:r,y)v(:v,y)d:vdy
K={uce HI(D) culp, = hi(z,y), ulr, = ho(z,y), ulop-r,-r, =0, u >0}

The existence, uniqueness of the solution of (7.5) as well as the regularity of I'y
have been shown to hold( Baiocchi and Capelo[1]). As a consequence, (7.1)-(7.4) can
be solved.

First, let us introduce a theorem which will be used in proving the convergence

of the iteration.

Theorem 5 Suppose the width of the right sub-domain Dy, M satisfies 0 < M <
1.732. Then there exists a constant 3 > % such that for any v € HY(Dy),

Bllullgr < lulpe,

where ||u|| 1 is the complete H' norm of u while |u|y1 is the norm of the first deriva-

tives of u.



Proof.
@, y)l =1 L2 1 u(s,y)ds|
< (M1 ds)s(SM, ul(s,y)ds)?
< ME(fM (s, y)ds)?,
therefore,

M
wo,y) <M [ ud(s,y)ds
0

M M
/ u?(z,y)dzx < M2/ u?(s,y)ds
=0 0

JoZo [itgut(z, y)dedy < M2 [ [ u2(s, y)dsdy

< M? fyB:O foM(u;% (z,y) + ui(m, y))dzdy.

Thus,

llullz2 < MPulf,

ie.,

lull 2 < Muf g1
Consider the following equality:
alulfp + (1= ulfp = |ulfp,

where 0 < o« < 1 will be determined later.
From above, we have

(1-a)
M?2

ofulip + JulZe < lulfp.

Let 4% = min(c, glz\;—?z), then

Allullzn < lulfp

To find the range of M so that 5 > %, we must have o > % and (1];[?)

and M < 2v/1 — «. M has a maximum value when o = i and then

MzQ\/l—i: 1.732.

Therefore, when 0 < M < 1.732, we have 3 > %, and

Bllull g < [ulg-

1 .
> i le,a>

67
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This completes the proof of the theorem.
Now let us set up the two different problems in D, and D, and iterate between
them, and try to show these two solutions will converge to the solution of (7.3).
Problem 1. Given g € H? (I'), find a function u; defined on D; and u; € K;(g)
such that
ar(ug,v —uy) >< fyo—ug > Vv € Ki(g),

where
Ki(g)={v:iv=gonl,v=00n0D; —-T'1—T,v=hyon Ty, v >0 vEHl(Dl)}

Oudv Ouodv .
aj(u,v) _/D].(&_x&_erﬁ_y@)dxdy J=12

< fou>= /D [z, y)o(z,y)dzdy j=1,2.
J

Problem 2. Given h € H'(D;) with fyo% € H%(I‘), find a function uy defined
on Dy and ug € K5 such that

oh
as(ug,v —ug) =< f,v —ug >o +/(v—uQ)£dy Vv € Ko,
r

where

Ky={v:v=00nDy—Ty—T,v="hyonly, vc H (D)}

The following iteration scheme for Problem 1 and 2 is used:

Step 1. Guess gV € H%(F) on I'. Extend ¢V to G € HY(Dy), i.e.,

)

Wip = gh.

%GV op,—r =0, G
Set u; = ugl) + G and solve for ugl) € H}(Dy),
al(ugl) + G(l),v — ugl) — G(l)) >< fiv— ugl) ity >1 Yv € Kl(g(l)).
Therefore,
(1) (1) (1) (1)

al(ul y UL — Ug )Z_al(G(1)7vl_u1 )—|—<f,v1—u1 >1,

where v, = v — GW, v, € H{(Dy).
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Step 2. With h = ugl), solve Problem 2, i.e.,
8u§1) B 8ug1)
8r 0 o

onT’

(1) g : ou’ 1
for uy ’ in H* (D), where it has been assumed yo—5L- € H2(I').

Then we go back to Step 1 with g = ’yougl) on I' and check that ¢ >0 on T,
(2)

then solve for u;’. These iterations are stopped when

1l — g pyy < € and [Jud"™ = u$| g1, < €

where € is some fixed positive constant.
We have the following sequence of problems:

Find u{"t) € HY(Dy), such that Vv, € HL(Dy)

a1(ug"+1)7vn+1 _ ugnﬂ)) > _GI(G(RH),%H _ ugnﬂ))_{_ < fyUps1 — ugnﬂ) >

(n) (n)

Since uy"’ € H(Dy), we can choose v,41 = uy " to yield

a1(ugn+1),ugn) _ ugn+1)) > _al(G(n—l—l)’ugn) _ u§n+1))+ < f,ugn) . u§”+” > .

Similarly we can choose ugnﬂ) to yield

al(ugn),ugnﬂ) — ugn)) > —al(G(”),uY‘“) — u%"))+ < f,uﬁ”“) — u%”) >1.

Adding the above two inequalities, we have

al(ug’”l) _ ug’”,ug”“) _ u%")) < —ay (GY G(n)’ugn-‘rl) _ u%"))

ie.,
V(ugnﬂ) —u%”)) -V(ugnﬂ) —u%”) Ydx < — V(G(”'H) — G(")) -V(ugnﬂ) —u%”) Ydx.
D1 Dl

Therefore, by the Cauchy-Schwarz inequality,

jud" ) — ugn)|H1(D1) < |G — G

and we can choose for n > 2, G = u; — ugn) and Gt =y — %(uﬁ") + ugnfl)),

then

n+1)

n ]- n n—
’“g _Ug )‘Hl(Dl) < 5!“% ) —u§ 1)’H1(D1)-
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Under the assumption that the conditions of Theorem 5 hold, we have

Bl oy < ™ = u )
< %’ugn) - ugn_l)’Hl(Dl)
< Y™ - ugnil)HHl(Dl)-
Therefore,
™Y = w0,y < ™ = uf" Vs o),
where 6 = ﬁ < 1. Now, we have
™Y = af sy < Ol = "Vl
S ..
< @Mt = iVl oy-
Therefore,
u{" Y — ugn)HHl(Dl) — 0 as n — oo.
Since ugn) satisfies
(M) 4 W (n) (n), Ouf”
az(uy v —uy ') =< f,v—uy’ >9 +/F(’U — Uy )Q—;dy, Vo € Koy
then by choosing v = uénﬂ), we have
(n)  (n+1) (n) (n+1) (n) (n+1) (n) o
az(uy ' uy  —uy ) =< fiuy T —uy’ >p +/F(U2 — Uy )8—911;dy

Similarly

(n+1) _(n) (n+1) (n) (n+1) (n) (n+1) ‘97‘5”“)
az(uy " uy —uy ) =< foug —uy > +/(U2 — Uy )T
r z
Adding the above two equations, we obtain
(n+1) _  (n)
R L
r ox
Therefore, by the Cauchy-Schwarz inequality,
(n+1) (n)
1 1 8(u —
g™ — i gy < ™ =] 1

dy.
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and then
n+1 n n+1 n 9(u T (0
Hué ) —Ué )H%Il(DZ) < CH“& ) —Ué )HHl(Dz)Hﬂ]Tu]_)HHO(Dl)
n+1 n n+1 n
< Clfus™™ = uS Nl oy " = uf 120
where C depends on the domain D. Hence,
n+1 n n+1 n
[lus™ ™ = w1y < Clt™™ =™ g1y,
ie.,
||ué"+1) — ué")||H1(D2) — 0 as n — oo.

(n)

Since u;" is a Cauchy sequence in H'(D1), then there exists a function u; € H(Dy),
such that lim,,_, o ugn) = uy. Similarly, there exists a function us € H?(D), such that

(n) (n)

lim,_,oo uy ~ = ug2. Since the function values and the normal derivatives of u; ’ and

(n)

uy ~ are equal on the boundary I', then the function values and the normal derivatives

of uy and us should also be equal, then

u:{m@w% (aweDl}

UZ(xay)7 (‘T7y) EDZ

is in H(D). Tt has been shown(Papadopoulos[21]) that such u(z,y) is the solution

to (7.5). Therefore, the sequence ugn) and uén) constructed in our numerical scheme

will converge to the true solution of (7.5).

7.3 Convergence of Numerical Scheme For Porous Dam
With Toe Drain
7.3.1 A PDE problem with Dirichlet condition on I',
First, we consider the following Dirichlet problem:
Au=0inD, (7.6a)

where D is a region whose four boundaries are I';, I'9, I'3 and ['4 shown in Figure 7.2.

The solution u to (7.6) will satisfy the following boundary conditions:

uy =0 on I’
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u = 0 on ]__‘2 U ]__‘3 (76b)

u = h(y) on I'y.

E

&
o

a

Figure 7.2: The PDE Dirichlet Problem

Theorem 6 If u € H?(D) satisfies (7.6a) and (7.6b), and —e < h(y) < € on Iy,
then u will satisfy

—e <u(z,y) <einD.

Proof. First let us show v < e in D. Since u satisfies (7.6a), then the maximum
value of w in D should be on the boundary. Suppose the maximum value of u is ug.

If ug happens on I'1, then from the maximum principle, we have

uy(p) < 07

which contradicts the assumption u, = 0 on I'y. Thus ug can only happen at the

other boundaries, i.e.,

up = max(0, h(y)) <e.
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Next let us show v > —e in D. Define v = —u, then v will still satisfy (7.6a) with

the same boundary conditions except on 'y, which is replaced by
v = —h(y) on I'y.
By repeating the same procedure as before with v = —u, we can prove
v<ein D

ie.,

u > —ein D.

This completes the proof of the theorem.

7.3.2 A PDE problem with Neumann condition on Iy
We consider the following problem:
Au=0in D, (7.7a)

where D is a region whose four boundaries are I';, I'9, I'3 and ['4 shown in Figure 7.3.

The solution u to (7.7) will satisfy the following boundary conditions:
uy =0onI'

u=0o0onTyUT}; (7.7b)

ugy = h(y) on T'y.

Theorem 7 If u € H?(D) satisfies (7.7a) and (7.7b), and —e < h(y) < € on Ty,
then u will satisfy —6 < u(z,y) < 4§ in D, and

d(e) >0 ase—0.

Proof. Let D; be the reflected region of D with respect to the y-axis and define
Dy = D U D; to be the union shown as Figure 7.4. Then we extend u to the whole
region by
u(z,y) = —u(—z,y) = <O0.



74

B

Figure 7.3: The PDE Neumann Problem

Then in Dy, u will satisfy
Au =0 in DO

uy =0 on I’
ugy = —h(y) on T
u =0on I'y
ugy = h(y) on T'y.
Now define w = u, in Dy, then w will satisfy

Aw =0 in Dy

wy = 0 on I'y
w = —h(y) on '
w=0onTI}%

w = h(y) on I'y.
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Figure 7.4: The Extended PDE Neumann Problem

Since —e < h(y) < €, we can repeat the same procedure for w as in Section 7.3.1, and
obtain

—e < w <e€in Dy.
However, u, = w and u(0,y) = 0, we have in D
x
u(e,) = [ w(g.)ds.

Therefore,

—Me<u<Me inD,
where M is the width of D in Figure 7.3. This completes the proof of Theorem 7.
7.3.3 A free boundary problem with Dirichlet condition on the bound-
ary I
We consider the following free boundary problem in D;, shown as in Figure 7.5.
(Au—flu=0, vu>0, Au—f>0 inly (7.8)

uy =0 on I’

u=~honl
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u=0onI'3UTIYy.

Figure 7.5: The Free Boundary Dirichlet Problem

Theorem 8 Suppose uy and uy are solutions to (7.8) with uy > ug on T, then uy > uso

mn Dl.

Proof. Let Q) = {(z,y) € D1 : ui(z,y) > 0} and Q2 = {(z,y) € D1 : ue(z,y) >
0}. Then
Aul == f in Ql

AUQ = f in QQ.
Let w = us — uq, then
ur <0, U’F3UF4 =0, Hy‘Fl =0.

Break up D; into four regions:

D_1:(leQQ)U(Ql—QQ)U(QQ_Ql)UE,

where 7 is the complement in D; of the first three. Clearly w = 0 on .
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% can not take on a positive maximum on D1, except on I'. To see this, observe:
(1) A positive maximum can not occur on 1 — Oy, since @ < 0 there.

(2) A positive maximum can not occur on @, since @ = 0 there.

(3) If a positive maximum occurs on 1 N Oy, and does not occur on I, then since
AT = 0 on £y N Qq, it follows from the maximum principle that the maximum must
occur either at a point P common to the boundary of £; N Qs and to the boundary
of 29 — €)1 or at a point P on I'y. For the former case, since u € CI(D_l) it follows
that %(P) > 0 where N is the direction pointing exterior to £2; Ny and interior to

Qo — 1. Meanwhile, on 29 — Q1, @ = ug > 0 and hence
Ay =Ntz =f <0on Qs — Q.

Again by maximum principle applied to @ = ue on Qs — € it follows that if @ = us
continuous on Qs — €1, is to have a positive maximum it must occur at the same P
as above. However, by the maximum principle %(P) < 0 gives a contradiction since
uy € CY(Dy). For the latter case, since u € C*(D;), the maximum principle gives
g—g(P) > (, which contradicts the assumption of the boundary condition on I';.
Hence @ can not take on a positive maximum on D; except on I'. However, & < 0
on I', which means @ can not be positive on D;. Then @ < 0 in Dy, i.e., u; > us in

D;.

Corollary 1 Suppose uy and us are solutions to (7.8), then
HLI%X‘UI —ug| = mlgxx\ul — ug|.

Proof. By using the same idea as Theorem 8, we can prove
(1) the positive maximum of u; — uy on D can only happen at I' if it has one.
(2) the negative minimum of u; — ug on D; can only happen at I' if it has one.

By combining both statements (1) and (2), it is completed.

Theorem 9 If u satisfies (7.8) with the given boundary conditions, and —e < h(y) <
e on I', then u will satisfy —e < u(z,y) <€ in Dy.
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Proof. Let hi(y) = h(y) and ha(y) = 0 are two functions defined on I' and u;
and ug are the solutions to (7.8) corresponding to h; and hgy, respectively. Then, it is

clear that us = 0 in D;y. From Corollary 1, we have
— = hi — hs| =
Irll)a1X|U1 Uz ml§x| 1 —ho| =€
ie, —e <u(z,y) <ein Dj.
7.3.4 Convergence result for the free boundary problem with mixed
boundary conditions

We consider the following problem:
(Au—flu=0, Au—f>0, uv>0 onD, (7.9)

where D is a region whose four boundaries are I'y, I's, I'3 and I'y shown in Fig 7.6.

The solution « to (7.9) will satisfy the following boundary conditions:

uy =0onI'

u= f(y) on T}y
u=0onI3UTly.

Now let us split the domain into two subdomains Iy and Dy with T' as their
common boundary. We will select I' so that the free boundary will be in D;. Now we
will have 2 subproblems as below, and we will iterate between them, the successive
solutions will converge to the solution to the original problem.

Subproblem 1. Given g(y) on I', solve for u in Dy
(Au—flu=0, vu>0, Au—f>0 inD (7.10)
uy =0 on I’

u=g(y) onl

u=0onI'3UTIYy.
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Figure 7.6: The Free Boundary Problem

Subproblem 2. Given h(y) on I', solve for u in Dy

Au=0in Dy (7.11)

u= f(y) on Ty
u=0on T}
uy = h(y) on T

The iteration scheme is:

Step 1. Choose ¢g{©) = 0 on T', solve Subproblem 1 for ugo) in Dy.

(0)
Step 2. Let A0 = agb}c Ir, solve Subproblem 2 for ug)) in Dy.

Step 3. Let ¢(V) = U,éo)‘r, solve Subproblem 1 for ugl) in Dj.

Generally, for n > 1, let g = ugnfl)hﬂ, solve Subproblem 1 for ugn) in D;. Then

(n)
let A" = agij Ir, solve Subproblem 2 for ué") in Dy. These iterations are stopped

when
(n+1) (n) (n+1) (n)
max ]ul(m.) - ul(i,j)] <e and HZ!S‘-X‘UQ(Z',]') - u2(i,j)] <€,

where € is preset.
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(n) (n)

Theorem 10 Suppose u; ’ and uy ~ are the solutions as above. If g™ converges on
I', then ug") and ugn) will converge to the original solution of (7.9) in Dy and D,

respectively, as n — o0.

Proof. Since g(™ converge to g on I', let u; be the solution of Subproblem 1 in

D; with g as the value on I'. Then from Corollary 1, we have ugn) — wy. Therefore,
(n)
agij , i.e., K" also converges, for example, to h. Let ug be the solution of Subproblem

2 in Dy with h as the partial derivative value on I'; then from Theorem 7 , we have
uén) — U9.

It is clear w1 and wus will form the solution of (7.9). The proof is completed.
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