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Abstract

Non-overlapping Domain Decomposition and Heterogeneous Modeling Used in

Solving Free Boundary Problems

by

Bin Jiang

Doctor of Philosophy in Mathematics

University of California at Santa Barbara

Professor J.C. Bruch, Jr., Chair

Non-overlapping domain decomposition techniques for free boundary problems

are extensively considered in this dissertation. We use a model problem to test the

e�ectiveness of various kinds of DDM schemes.

The problem of 
uid 
ow past a truncated concave shaped pro�le between walls

is solved using conformal mapping techniques. An open wake is formed behind the

pro�le. The problem formulated in a hodograph plane is decomposed into two non-

overlapping domains. We use di�erent modeling techniques to describe the problems.

First, a heterogeneous model is used, i.e., we use di�erent functions in di�erent sub-

domains to describe the problem. In one of these domains, a Baiocchi type transfor-

mation is used to obtain a �xed domain formulation for the part of the transformed

problem containing an unknown boundary. The second method is a heterogeneous

modeled problem where the Baiocchi type transformation is extended into the second

domain. Next, a parallel version of the latter model is considered. Numerical results

show all the methods have good agreement with a published solution. Furthermore,

the parallel version of the DDM method is extended to solve other free boundary

problems.

Finally, the convergence issue from a mathematical point of view is considered.

The existence and convergence properties of the free boundary problems considered
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in this dissertation, (including the problem of 
ow past a concave shaped pro�le, the

rectangular dam problem and the problem of 
ow through a porous dam with a toe

drain), are proved.
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Chapter 1

Introduction

Parallel Programs have been extensively used recently in solving large scale scien-

ti�c and engineering problems with the development of multiple-CPU structure(Cray

T3E and SGI Origin 2000). Domain decomposition methods(DDM) and multigrid

methods also become hot topics since they are highly related to the parallel pro-

grams. The general idea of domain decomposition methods is to split the domain

of the partial di�erential equation(PDE) into two(or more) subdomains and then to

obtain solutions of related PDE problems on each subdomain. The solution on all the

subdomains are then combined to obtain the solution on the whole domain. Domain

decomposition is advantageous in that it allows the e�cient use of parallel processing

in an obvious manner.

There are two types of domain decomposition methods. Let us use two-subdomain

splitting to clarify this. The �rst type is the overlapping domain decomposition

method, where there is a common intersection area of these two subdomains. For

this type of decomposition, we can solve the PDE on each subdomain with Dirichlet

boundary condition.

The second type is the non-overlapping domain decomposition method, where

the intersection of these two subdomains is a common boundary interface. For this

type of decomposition, we can solve one subdomain PDE with the Dirichlet condition

on the common boundary while solving the second subdomain PDE with Neumann
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condition on the common boundary.

In this dissertation, we will use the non-overlapping domain decomposition method

to solve free boundary problems arising from 
uid 
ow problems(such as 
ow past

a concave pro�le and 
ow through porous media). Flow through porous media has

great importance in many facets of engineering practice. In particular such 
ows

with free surfaces make up a signi�cant part of the seepage phenomena that occur in

nature. Some examples of these are seepage through earth dams; seepage from open

channels such as rivers, ponds, irrigation systems and recharge basins.

The 
ow past concave(or convex) pro�le arises from many practical engineering

problems, such as the 
ow past bridge piers and channel constrictions. This will fall

into the category of potential 
ow with a free streamline.

Dormiani et al.[11] considered the 
ow past symmetric convex pro�les with open

wakes. A �xed domain approach and a Baiocchi type transformation in conjunction

with a modi�ed Schwarz alternating scheme are used to solve this problem. The


ow is such that an open wake is formed behind the pro�le. Overlapping domain

decomposition methods are used. Then, Bruch et al.[7] used a non-overlapping domain

decomposition approach to solve the same problem and the numerical results were

in good agreement with Davis[10] and Dormiani et al.[11]. However, it is di�cult

to prove the existence and uniqueness of this problem and the convergence of the

numerical scheme from a mathematical view point, since a di�erent type of function

is de�ned in each subdomain and the interface condition involving these two di�erent

functions is complicated. This became an open problem.

Bruch et al.[8] considered the 
ow past symmetric concave pro�les with open

wakes. The non-overlapping domain decomposition method is used together with

heterogeneous modeling, that is, a di�erent dependent variable is used in each sub-

domain. With this method, we can show the numerical results can approximate a

published solution within 0.6%. However it is still di�cult to prove the convergence

and existence.

Jiang et al.[13] proposed a new non-overlapping DDM scheme with the same

function extended across the interface between the two subdomains to solve the 
ow
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past symmetric concave pro�les with open wakes. In this way, the mathematical

formulation becomes very simple and the proof of existence and uniqueness becomes

possible. Furthermore, the convergence of the numerical scheme can also be proved

due to the simplicity of the interface conditions expressed by the same function from

both sides.

One thing to note is that we can not use this method to handle the 
ow past

symmetric convex pro�les with open wakes.

To speed up the parallel computation of the above problem, we devised another

version of DDM scheme which can execute the computation on both domains at the

same time when more than one CPU is available such as a Cray T3E. The convergence

speed will be twice as fast as before.

We also used this new parallel DDM scheme for problems of 
ow through porous

media. The numerical results showed that this new method is also advantageous on

these problems compared with the traditional DDM.

Finally, we proved the existence and uniqueness of the solution of 
ow past a

concave pro�le with open wake and show the convergence of the numerical scheme to

the true solution.

For the 
ow through porous media problems, we also considered the mathematical

proof of the convergence of the numerical solution to the true solution which is known

to exist and be unique[3].

The remainder of this dissertation is organized as follows. In Chapter 2, the

model problem of 
ow past a concave pro�le with open wake is solved using the non-

overlapping method and heterogeneous modeling along with the original dependent

variable in one subdomain and a Baiocchi type transformation variable in the other

subdomain, which shows excellent performance. In Chapter 3 non-overlapping DDM

and heterogeneous modeling are again used to handle the same problem. This time

the Baiocchi type transformation is extended into the second subdomain. The per-

formance is still as good as before. In Chapter 4, a revised parallel DDM scheme and

heterogeneous modeling for the latter problem is used and it is shown that the new

scheme is almost twice as fast as the old one. In Chapter 5, the new DDM scheme is
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applied to other 
uids problems and there is also speed up. In Chapter 6 and Chap-

ter 7, the uniqueness, existence of the true solution and convergence of the numerical

scheme toward the true solution for the above mentioned 
uids problems are given.
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Chapter 2

Flow Past a Concave Pro�le

With Open Wake in a Channel

2.1 Introduction

The physical problem to be investigated in this chapter is 
ow past a concave

shaped pro�le which is situated in a channel. This type of 
ow falls into the category of

potential 
ow with a free streamline. Figure 2.1 shows such a case where the location

of the free streamline is unknown a priori. This two-dimensional, incompressible and

inviscid 
ow is an approximate model of the basic 
ows that occur in many practical

engineering problems.The objective herein is to provide basic potential-
ow solutions

to the problem and in particular to determine the location of the free streamline.

The physical problem will be formulated in a hodograph plane using conformal

mapping techniques. See Bruch and Dormiani[5] and the references therein for work

done using this approach. The basic technique that will be used to solve this problem

is the �xed domain method in conjunction with the Baiocchi transformation. This

approach has had considerable success in solving a wide variety of free and moving

boundary problems.

Although the �xed domain approach and a Baiocchi type transformation are not

applicable over the entire solution domain, they will be used in conjunction with a
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non-overlapping domain decomposition and a modi�ed alternating iteration scheme.

The numerical results that are obtained herein for 
ow past a pro�le between walls

will be compared with those of Lesnic et al.[15].

2.2 Formulation of the Problem

This study is concerned with Helmholtz motions, de�ned as follows:

(a) the motion takes place in free space, i.e., gravity is neglected.

(b) the motion is steady, i.e., p +

1

2

�u

2

= constant, where p, � and u are the

pressure, the density and the speed of the 
uid, respectively.

The 
ow �eld includes a pair of free streamlines on which the pressure and velocity

are constants, p

c

and q

c

, respectively. The channel height, 2h, the velocity on the

boundary of the cavity, q

c

, and the pro�le shape are assumed to be known. However,

the upstream velocity in the channel, q

1

, and the free streamline locations are to be

found(see Figure 2.1).

Because of symmetry the 
ow region under consideration, R, is bounded between

the axis of symmetry, AB, half of the pro�le, BC, the free streamline, CD, and the

wall of the channel,D

0

A

0

. In this region the stream function,  , identically satis�es the

continuity equation and the irrotationality condition which gives Laplace's equation

as the governing di�erential equation. The boundary ABCD is the  = 0 streamline

and  = q

1

h on the wall D

0

A

0

. The downstream jet half-width, d

c

, is found from the

conservation of mass relation

q

c

d

c

= q

1

h (2:1)

and q

c

may be set to unity without any loss of generality. Therefore, the mathematical

formulation of the problem in the physical plane becomes: �nd  (x; y) such that

4 (x; y) = 0 in R (2:2a)

 (x; y) = 0 on ABCD (2:2b)

 = q

1

h on D'A' (2:2c)

lim

x!1

 (x; y) = yq

1

on AA' (2:2d)
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Figure 2.1: The Physical Problem

lim

x!1

 (x; y) = [y � (h� d

c

)]q

c

on DD' (2:2e)

jr j = q

c

on CD(free surface). (2:2f)

Note that velocity at each point is

!

q

= (q

1

; q

2

) = qe

i�

= q(cos � + i sin �):

We can choose q

1

and q

2

as our variables instead of x and y. We perform the trans-

formation T

1

: (x; y)! (q

1

; q

2

), and we can easily prove

@

2

 

@q

2

1

+

@

2

 

@q

2

2

= 0 (2:3)

in the region R

1

= T

1

(R) on the q

1

� q

2

plane(the hodograph plane) (see Figure 2.2).

Since

d =

@ 

@x

dx+

@ 

@y

dy = �q

2

dx+ q

1

dy = �q sin �dx+ q cos �dy; (2:4a)
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q

-q

C B

E

R

qq
1

C
00

2

1

A, A’ D, D’

Figure 2.2: The Transformed Problem in q

1

-q

2

Plane

d� =

@�

@x

dx+

@�

@y

dy = q

1

dx+ q

2

dy = q cos �dx+ q sin �dy; (2:4b)

we obtain

dx+ idy =

e

i�

q

(d�+ id ): (2:5)

It is convenient to introduce the variable � by

q = q

c

e

��

or � = �ln

q

q

c

: (2:6)

Now the variables are (�; �) instead of (q

1

; q

2

).

The coordinate transformation (x; y) ! (�; �) maps the problem in the physical

plane onto the hodograph plane, where � is the polar angle of velocity and � =
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�ln(q=q

c

). Values of the harmonic function  are unchanged on the boundaries of

the region under the conformal mapping.

Since the pro�le is concave, the coordinates X and Y of the curve in the (�; �)

hodograph plane representing the surface of the pro�le can be expressed in terms of

�, where � is the angle between tangent to the curve and x-axis. Let X(�) and Y (�)

be this parameterization. Then

e

R(�), the algebraic radius of curvature, is

e

R(�) = �

q

X

0

(�)

2

+ Y

0

(�)

2

(2:7)

and bounded.

Now (2.5) can be written as

dx+ idy =

e

�+i�

q

c

(d�+ id ): (2:8)

The left hand side of this equation is the total di�erential so the right hand side must

be too,

e

�+i�

q

c

(d�+ id ) =

e

�+i�

q

c

(

@�

@�

d� +

@�

@�

d� + i

@ 

@�

d� + i

@ 

@�

d�)

=

e

�+i�

q

c

[(

@�

@�

+ i

@ 

@�

)d� + (

@�

@�

+ i

@ 

@�

)d�]:

(2:9)

Now we can write the condition of total di�erentials for the right hand side of (2.9)

namely

@

@�

[

e

�+i�

q

c

(

@�

@�

+ i

@ 

@�

)] =

@

@�

[

e

�+i�

q

c

(

@�

@�

+ i

@ 

@�

)]:

After di�erentiating and simplifying we obtain

@�

@�

=

@ 

@�

;�

@ 

@�

=

@�

@�

: (2:10)

From which we deduce, eliminating �,

@

2

 

@�

2

+

@

2

 

@�

2

= 4 = 0 on R = T (R); (2:11)

where T represents the transformation (x; y)! (�; �) from the physical to the hodo-

graph plane (see Figure 2.3). Note

� = T (P ) (2:12)



10

is the transformation of the pro�le, and

� = l(�) (2:13)

is the curve in the hodograph plane corresponding to the pro�le in the physical plane.

The boundary conditions for  in the hodograph plane are

 (0; �) = 0 on � � �

1

 (0; �) = hq

1

on 0 < � � �

1

(2:14)

 (�; 0) = 0 0 � � � �

1

 (�; �) = 0 on �: (2:15)

On �, the transformation of the pro�le boundary to the hodograph plane, the radius

of curvature is

e

R(�) = �

p

X

0

(�)

2

+ Y

0

(�)

2

= �[(

dX

d�

)

2

+ (

dY

d�

)

2

]

1

2

;

(2:16)

where � is the angle between the tangent to the curve and the x-axis. and we can

write (2.8) along the boundary of pro�le where  = 0 and d = 0. Therefore

dX + idY =

e

�+i�

q

c

(d�+ id ) =

e

�+i�

q

c

(d�)

=

e

�+i�

q

c

(

@�

@�

d� +

@�

@�

d�):

(2:17)

From (2.10) we have

@�

@�

=

@ 

@�

and

@�

@�

= �

@ 

@�

, therefore (2.17) becomes

dX + idY =

e

�+i�

q

c

(�

@ 

@�

d� +

@ 

@�

d�): (2:18)

Also note that on the pro�le d = 0,

d =

@ 

@�

d� +

@ 

@�

d� = 0;

hence

@ 

@�

l

0

(�) = �

@ 

@�

: (2:19)

Therefore (2.18) becomes

dX + idY =

e

�+i�

q

c

(�

@ 

@�

d� �

@ 

@�

l

0

(�)d�)

=

e

�+i�

q

c

(�

@ 

@�

)[1 + l

0

(�)

2

]d�;
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then

dX

d�

+ i

dY

d�

= �

e

�+i�

q

c

(

@ 

@�

)(1 + l

0

(�)

2

):

Consider (2.16) and the fact that

@ 

@�

< 0 on �(since  = 0 on � and  > 0 below �),

we obtain

@ 

@�

=

q

c

e

��

e

R(�)

1 + l

0

(�)

2

on �: (2:20)

From (2.19)

@ 

@�

= �l

0

(�)

@ 

@�

= �

q

c

e

��

e

R(�)l

0

(�)

1 + l

0

(�)

2

on �: (2:21)

Finally, on the wake boundary we have

 (�; 0) = 0 0 � � � �

1

; (2:22)

where �

1

is the polar angle of common tangent to the wake and pro�le at the con-

necting point. Therefore, the governing equation and boundary conditions take the

following form in the hodograph plane:

4 = 0 on R = T (R) (2:23)

 (0; �) = 0 on � � �

1

 (0; �) = hq

1

on 0 < � � �

1

(2:23a)

 (�; �) = 0 on � (2:23b)

@ 

@�

=

q

c

e

��

e

R(�)

1 + l

0

(�)

2

on � (2:23c)

@ 

@�

= �

q

c

e

��

e

R(�)l

0

(�)

1 + l

0

(�)

2

on � (2:23d)

 (�; 0) = 0 0 � � � �

1

: (2:23e)

These equations are identical to (2.11), (2.14), (2.15), (2.20), (2.21) and (2.22), re-

spectively, and R is the image of region R under the transformation and � is the

representation of the pro�le in the hodograph plane (see Figure 2.3). On �, � = l(�).

Note that the location of � and the point (0, �

1

) are unknown a priori.
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The region R of the problem in the hodograph plane is next divided into two

non-overlapping regions R

 

and R

u

1

(see Figure 2.3) such that

R = R

 

[R

u

1

[ �

1

; where R

 

= f(�; �)j0 < � < �

0

; � > 0g;

R

u

1

= f(�; 0)j�

0

< � < �

1

; � < l(�)g; �

1

= f(�; �)j� = �

0

; � > 0g;

in which �

0

is the value of � at the stagnation point and �

1

is the value at the

detachment point of the cavity boundary from the pro�le.

B

D’
D

E C

B

R

R

R

R

A
A’

O =-ln(q/qc)

oo

u

ext

2
3

1

10

O

u
1

Figure 2.3: The Transformed Problem in �-� Plane

De�ne an integrated stream function by using the Baiocchi type transformation

u

1

(�; �) =

e

��

q

c

Z

l(�)

�

e

�

 (�; �)d� (2:24)

on the region R

u

1

. Note that u

1

> 0 in R

u

1

since  > 0 there.

Next, the dependent variable u

1

is continuously extended across the boundary �,

on which u

1

= 0, into

R

ext

= f(�; �)j�

0

< � < �

1

; l(�) < � <1g;

such that u

1

is zero in R

ext

. Let R

u

= R

u

1

[R

ext

[ � and u

1

is de�ned in (2.24) for

the region R

u

1

. Therefore, 8� 2 C

1

0

(R

u

), u

1

(�;1) = 0, u

1�

(�;1) = 0 in the region
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R

ext

, we obtain

RR

R

u

ru

1

� r�d�d� =

RR

R

u

(u

1�

�

�

+ u

1�

�

�

)d�d�

=

RR

R

u

1

(u

1��

+ u

1��

)�d�d�:

Since

u

1�

=

e

��

q

c

R

l(�)

�

e

�

 

�

(�; �)d� +

e

��

q

c

e

l(�)

 (�; l(�))l

0

(�)

=

e

��

q

c

R

l(�)

�

e

�

 

�

(�; �)d�

and

u

1�

= �

e

��

q

c

Z

l(�)

�

e

�

 (�; �)d� �

e

��

q

c

e

�

 (�; �);

then

u

1��

=

e

��

q

c

R

l(�)

�

e

�

 

��

(�; �)d� +

e

��

q

c

e

l(�)

 

�

(�; l(�))l

0

(�)

= �

e

��

q

c

R

l(�)

�

e

�

 

��

(�; �)d� +

e

��

q

c

e

l(�)

 

�

(�; l(�))l

0

(�)

= �

e

��

q

c

e

l(�)

 

�

(�; l(�)) +

e

��

q

c

e

�

 

�

(�; �)

+

e

��

q

c

R

l(�)

�

e

�

 

�

(�; �)d� +

e

��

q

c

e

l(�)

 

�

(�; l(�))l

0

(�)

= �

e

��

q

c

e

l(�)

 

�

(�; l(�)) +

1

q

c

 

�

(�; �) +

e

��

q

c

e

l(�)

 

�

(�; l(�))l

0

(�)

+

e

��

q

c

e

l(�)

 (�; l(�))�

1

q

c

 (�; �) �

e

��

q

c

R

l(�)

�

e

�

 (�; �)d�

(2:25)

and

u

1��

=

e

��

q

c

Z

l(�)

�

e

�

 (�; �)d� +

e

��

q

c

e

�

 (�; �)�

1

q

c

 

�

(�; �); (2:26)

where subscripts � and � denote di�erentiation with respect to that variable. There-

fore,

u

1��

+ u

1��

= �

e

��

q

c

e

l(�)

[ 

�

(�; l(�))�  

�

(�; l(�))l

0

(�)]

= �

e

��

q

c

e

l(�)

[ 

�

(�; l(�)) +  

�

(�; l(�))l

0

(�)

2

]

= �e

��

e

R(�):

Hence,

Z Z

R

u

ru

1

� r�d�d� =

Z Z

R

u

[e

��

e

R(�)]�d�d�: (2:27)

Therefore, we obtain

4u

1

=

@

2

u

1

@�

2

+

@

2

u

1

@�

2

= �

e

R(�)e

��

�

R

u

1

in R

u

; (2:28)

where �

R

u

1

is the characteristic function de�ned by �

R

u

1

= 1 in R

u

1

and �

R

u

1

= 0

otherwise.
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Since u

1

� 0; [�4u

1

(�; �)�

e

R(�)e

��

] � 0; then

u

1

[�4u

1

(�; �)�

e

R(�)e

��

] = 0: (2:29)

In the right region R

u

1

, only u

1

is de�ned, but in the left region R

 

,  is de�ned,

and these unknowns have some interface conditions on �

1

that connect them, therefore

our original problem can be stated using  and u

1

in the two non-overlapping regions

as follows:

4 = 0 in R

 

(2:30a)

 (�; 0) = 0 0 � � � �

0

(2:30b)

 (0; �) = hq

1

0 � � � �

1

= �ln

q

1

q

c

(2:30c)

 (0; �) = 0 � > �

1

 (�;1) = 0 0 � � � �

0

 (�

0

; �) = �q

c

(u

1

+ u

1�

) on �

1

(2:30d)

and

4u

1

= �

e

R(�)e

��

�

R

u

1

in R

u

(2:31a)

u

1

(�

1

; �) = 0 � � 0 (2:31b)

u

1

+ u

1�

= 0 on �

2

(2:31c)

u

1

(�;1) = 0 �

0

� � � �

1

u

1�

(�

0

; �) =

e

��

q

c

Z

1

�

e

�

 

�

(�

0

; �)d� on �

1

; (2:31d)

where �

2

= f(�; �)j�

0

� � � �

1

; � = 0g:

Co-ordinate transformation expressions describing the co-ordinates of the physical

plane in terms of the co-ordinates of the hodograph plane, are needed for calculating

the co-ordinates of the wake boundary x = x(�; �) and y = y(�; �):

Since � = 0 thus d� = 0 on the wake boundary, from (2.18) we obtain

dx = �

1

q

c

@ 

@�

cos �d� and dy = �

1

q

c

@ 

@�

sin �d� on �

2

[ �

3

; (2:32)

where �

3

= f(�; �)j0 � � � �

0

; � = 0g:
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2.3 Numerical Procedure and Results

The problem posed in the hodograph plane by equations (2.30) and (2.31) is

formulated in a region which is unbounded in the positive �- direction. For numerical

computations, the region will be truncated. Toward this end, a �

u

is chosen which is

su�ciently large so that for all practical purposes the values of  and u

1

for � > �

u

are approximately zero.

Note that since the function de�ning � is logarithmic, � = �ln(

q

q

c

), and u

1

is

weighted by an exponential function, the truncation has little or no e�ect on the

numerical results. Hence, �

u

provides an upper bound for R

u

1

[R

 

[�. The solution

algorithm is a �nite di�erence successive over- relaxation scheme for both u

1

and  

with projection for the u

1

-problem only. A grid of mesh points is superimposed on

the bounded region, where each node is speci�ed by row i and column j. Therefore,

the �eld equation for  , equation (2.30a), can be written as the following di�erence

equation:

 

(n+

1

2

)

i;j

=

��(4�)

2

(4�)

2

2[�(4�)

2

+�(4�)

2

]

[

2

(1+�)(4�)

2

 

(n+1)

i;j�1

+

2

�(1+�)(4�)

2

 

(n)

i;j+1

+

2

(1+�)(4�)

2

 

(n+1)

i�1;j

+

2

�(1+�)(4�)

2

 

(n)

i+1;j

]

(2:33a)

and

 

(n+1)

i;j

=  

(n)

i;j

+ !( 

(n+

1

2

)

i;j

�  

(n)

i;j

); (2:33b)

where4� and4� are the spacings in � and �- direction, respectively, � and � provide

for unequal divisions for mesh points, ! is the over-relaxation parameter and  

(n)

i;j

is

the value of  at node i, j for the nth iteration. Similarly, for u

1

in the region R

u

1

(see equation(2.31a)):

u

(n+

1

2

)

1(i;j)

=

��(4�)

2

(4�)

2

2[�(4�)

2

+�(4�)

2

]

[

2

(1+�)(4�)

2

u

(n+1)

1(i;j�1)

+

2

�(1+�)(4�)

2

u

(n)

1(i;j+1)

+

2

(1+�)(4�)

2

u

(n+1)

1(i�1;j)

+

2

�(1+�)(4�)

2

u

(n)

1(i+1;j)

+

e

R(�

j

)e

��

i

]

(2:34a)
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and

u

(n+1)

1(i;j)

= maxf0; u

(n)

1(i;j)

+ !(u

(n+

1

2

)

1(i;j)

� u

(n)

1(i;j)

)g; (2:34b)

where u

(n)

1(i;j)

is the value of u

1

at node i; j for the nth iteration. These iterations are

stopped when

max

i;j

j 

(n+1)

i;j

�  

(n)

i;j

j < � and max

i;j

ju

(n+1)

1(i;j)

� u

(n)

1(i;j)

j < �; (2:35)

where � is some �xed positive constant.

Note that on the boundary �

4

= f(�; �)j0 � � � �

0

; � = �

u

g; which corresponds

to the stagnation point in the physical plane ,  � 0, for the region R

 

. On the

boundary �

5

= f(�; �)j�

0

� � � �

1

; � = �

u

g; u

1

= 0:

The values of  at the mesh points on �

1

are calculated using equation (2.30d), in

which u

1�

is approximated by a central di�erence expression; therefore for �

0

= n

1

4�,

where n

1

is the number of spacings in the �-direction in R

 

,

 

(n+1)

i;n

1

= q

c

[u

(n)

1i;0

+

u

(n)

1i+1;0

� u

(n)

1i�1;0

24�

]: (2:36)

On the other hand, the column of mesh points bounding region R

 

, which are

on the line �

1

, forms the boundary of the region R

u

1

, and equation(2.31d) is used to

calculated the boundary condition. The integral in this equation is approximated by

using a mid-point formula;hence

u

(n+1)

1(i;0)

= u

(n+1)

1(i;2)

� 24�[u

1int

(i4�)]

e

�i4�

q

c

; (2:37)

where

u

1int

(i4�) =

4�

2

[e

(i+1)4�

( 

(n)

i+1;n

1

�2

� 4 

(n)

i+1;n

1

�1

+ 3 

(n)

i+1;n

1

)

+e

i4�

( 

(n)

i;n

1

�2

� 4 

(n)

i;n

1

�1

+ 3 

(n)

i;n

1

)]=(24�) + u

1int

((i+ 1)4�)

and u

1int

(N4�) = 0; where N is the number of divisions in the �-direction.

The iteration sequence is started by setting the boundary conditions for  in the

region R

 

and for u

1

in the region R

u

1

, and a zero initial guess for the interior  

(0)

i;j

and u

(0)

1(i;j)

: Then using equations (2.33), the  

(1)

i;j

are obtained starting from the lower
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left interior point and moving to the right along mesh points and upwards until all

the interior points in R

 

are covered. The next step is to set the boundary conditions

for R

u

1

making use of equation (2.37) and the newly calculated values for  , and

then starting from the upper left point in the region until the entire mesh is covered.

u

1(0;j)

on �

2

will be computed as the last row by using a di�erence scheme derived

from the combination of (2.31a) and (2.31c). This provides new u

1

values for points

on �

1

, and hence new boundary conditions for  in region R

 

using equation (2.36).

This alternating sweeping of the two regions continues until the conditions (2.35)

are satis�ed. Since numerical values for u

1

inside the boundary, �, are nonzero and

those on the boundary and inside of it are zero, the zero points bordering non-zero

points in the R

u

region determine this boundary.

The velocity on the boundary of the cavity, q

c

, is assumed to be known but, as

stated before, the upstream velocity q

1

is,like the boundary �, unknown a priori

and is to be found as part of the solution. Therefore, di�erent values for �

1

, where

�

1

= �ln(q

1

=q

c

); are used until the best one is found. The calculation sequence

assumes mesh points on the boundary �

0

= f(�; �)j� = 0; 0 < � < �

u

g; starting from

the point with minimum � and going upwards. For each assumed �

1

the alternating

iteration sequence described above is performed and coordinates of the wake, using

equation (2.32),are calculated.

In order to calculate co-ordinates of the boundary of the wake, we must �rst

consider �

2

to obtain the location of CE; then consider �

3

= f(�; 0)j0 < � < �

0

g to

obtain the location of ED.

On �

2

,  = �q

c

(u

1

+ u

1�

) and  = 0, then u

1�

= �u

1

and

 

�

= �q

c

(u

1�

+ u

1��

) = �q

c

(u

1��

� u

1

):

Therefore, using (2.32) we have

x

n1+j�1

= x

n1+j

�

4�

2

[t

j

cos �

j

+ t

j�1

cos �

j�1

] on �

2

(2:38a)

and

y

n1+j�1

= y

n1+j

�

4�

2

[t

j

cos �

j

+ t

j�1

cos �

j�1

] on �

2

; (2:38b)
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where x

n1+n2

; y

n1+n2

are the co-ordinates of C, 1 � j � n

2

, n

2

is the number of spacing

in the �-direction in R

u

1

, t

j

is approximated by its forward di�erence expression

t

j

= (2:0 � u

1(0;j)

� 5:0 � u

1(1;j)

+ 4:0 � u

1(2;j)

� u

1(3;j)

)=(4�)

2

� u

1(0;j)

:

On �

3

, equation (2.32) are integrated directly between two adjacent mesh points using

the trapezoidal rule, which yields

x

j�1

= x

j

+

4�

2q

c

[

@ 

@�

j

j

cos �

j

+

@ 

@�

j

j�1

cos �

j�1

] on �

3

(2:39a)

and

y

j�1

= y

j

+

4�

2q

c

[

@ 

@�

j

j

cos �

j

+

@ 

@�

j

j�1

cos �

j�1

] on �

3

; (2:39b)

where 1 � j � n

1

,

@ 

@�

j

j

is approximated by its forward di�erence expression

@ 

@�

j

j

=

1

24�

[�3 

0;j

+ 4 

1;j

�  

2;j

]:

Once the co-ordinates of the wake are determined, the cavity distance d

c

,which is

the distance between the boundary of the cavity and the wall at in�nity (see Figure

2.4) is calculated. Then from equation (2.1) the upstream velocity q

1

or consequently

�

1

, is calculated and is compared to the assumed value of �

1

. The mesh point

corresponding to the minimum di�erence between the calculated upstream velocity

and assumed upstream velocities chosen for the desired value for �

1

. It is evident

that the �ner the mesh points are on boundary �

3

, the better is the accuracy in the

determination of �

1

.

Results obtained are shown below and we can see the coincidence of our results

with another published numerical solution( Lesnic et al.[15]).

2.4 Computational Results

Figure 2.4 shows results for an open pro�le which has the shape of an arc of a

circle(radius = 1.0) and for which the free streamline leaves the pro�le at 180 degrees

(�

1

= 180). The pro�le is located between walls each having a distance h = 10:0

from the axis of symmetry for one case and h = 50:0 for another. These cases are
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shown in Figure 2.4 along with the results given by Lesnic et al.[15] without walls.

As can be seen, the shapes and locations of the free streamlines are in appropriate

agreement. The velocity on the boundary of the cavity was assumed to be q

c

= 1,

the over-relaxation parameter was taken to be ! = 1:6, �

u

= 4:0 and the number of

divisions in the � and �-directions were 150 and 200, respectively, with variable 4�.

The upstream uniform 
uid velocity was computed to be q

1

= 0.68147 for the case

of h = 10:0 with � = 1:3 � 10

�4

and q

1

= 0:84713 for the case when h = 50:0 with

� = 8:0 � 10

�5

. The calculated and assumed upstream velocities in each of the two

cases were in agreement to within 0.6%.

−1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

o   h=50 m

*   h=10 m

+   h=infinity (Lesnic et al.[15])

Figure 2.4: Comparison of Numerical Results
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2.5 Summary and Conclusion

The numerical algorithm presented here is simple and e�cient and, as seen from

the comparison of results, give reasonable solutions. Thus, the solution approach can

be applied to general truncated concave shaped pro�les between walls. Furthermore,

the numerical scheme gives the velocity along the pro�le which is the curve � in the

(�; �)-plane as part of the solution. This is simply the line that separates the region

where u

1

> 0 from that where u

1

= 0. This free boundary type of problem is di�erent

from other such problems in that the free streamline CD is a horizontal line in the

(�; �)-plane, whereas the velocity distribution on BC becomes the unknown �, the

boundary sought in the (�; �)-plane.
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Chapter 3

Domain Decomposition and

Heterogeneous Modeling Used in

Solving a Free Streamline Flow

3.1 Introduction

The physical problem studied herein is again the 
ow past a concave shaped pro�le

in a channel. Figure 2.1 shows the 
ow where the location of the free streamlines are

unknown a priori. The objective is to provide a basic potential-
ow solution to this

problem and in particular the location of the free streamline.

Dormiani et al. [11] use an overlapping domain decomposition approach and

Bruch et al. [7] use a non-overlapping domain decomposition approach in solving a

problem of 
ow past a truncated convex pro�le. Also, Bruch et al. [8] used a non-

overlapping domain decomposition approach to solve a similar problem to the one

studied herein. In the problems solved in [3], [6], [7] and in Chapter 2, the original

dependent variable, the stream function, was the solution variable that was used in the

domain without the unknown boundary. On the boundary between the two solution

domains a relationship between the stream function and the Baiocchi transformation

variable is used. In the approach used herein the Baiocchi type variable transforma-
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tion is extended across the boundary between the two domains. This assures that the

dependent variables and their normal derivatives are continuous along this common

boundary. The numerical results obtained herein will again be compared with those

of Lesnic et al.[15] for a truncated circular arc pro�le.

3.2 Formulation of the Problem

The formulation and the approach to obtain the hodograph plane are given in

Chapter 2. The region R of the problem in the hodograph plane is divided into two

non-overlapping regions R

u

1

and R

u

2

(see Figure 3.1), such that R = R

u

1

[R

u

2

[ �

1

,

where R

u

2

= f(�; �)j0 < � < �

0

; � > 0g; R

u

1

= f(�; �)j�

0

< � < �

1

; 0 < � < l(�)g,

and �

1

= f(�; �)j� = �

0

; � > 0g, in which �

0

is the value of � at the stagnation point

and �

1

is the value at the detachment point of the cavity boundary from the pro�le.

In Chapter 2, we de�ned an integrated stream function u

1

in the right subdo-

main only and still used  in the left domain. The numerical scheme then iterates

between these two subdomains by computing u

1

and  alternatively. The numerical

scheme shows the performance is good. However, it is hard to prove the convergence

of that numerical scheme since the interface condition expressed by u

1

and  is com-

plicated. Next, we propose a new scheme which uses only one function on the whole

domain, then the expression of this problem seems more natural than the �rst scheme

introduced in Chapter 2.

Again de�ne an integrated stream function by using the Baiocchi type transfor-

mation

u

1

(�; �) =

e

��

q

c

Z

l(�)

�

e

�

 (�; �)d� (3:4)

in the region R

u

1

. Note that u

1

> 0 in R

u

1

since  > 0 there.

Let D = f(�; �)j� > 0; 0 � � � �

1

g, and u

1

is de�ned in (3.4) for the region R

u

1

,

but in R

u

2

[ �

1

, u

2

is de�ned as :

u

2

(�; �) =

e

��

q

c

Z

1

�

e

�

 (�; �)d� (3:5)

and u is de�ned in R as follows
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B
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D
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B

R

R

R

A
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O
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3
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2

1

0

4
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Figure 3.1: The Transformed Problem in � � � Plane Expressed by u

1

� u

2

.

u =

8

<

:

u

1

(�; �); (�; �) 2 R

u

1

u

2

(�; �); (�; �) 2 R

u

2

9

=

;

:

We had proven in Chapter 2( see (2.27)) that

Z Z

R

u

1

ru

1

� r�d�d� =

Z Z

R

u

1

[e

��

e

R(�)]�d�d�: (2:27)

Furthermore, we can easily prove 4u

2

(�; �) = 0 in R

u

2

by using Lemma 1 and

repeating the same procedure as in Chapter 2. The proof is skipped.

Lemma 1 Suppose  , �, � have the same meaning as previously given, then

lim

�!1

e

�

 (�; �) = 0 and lim

�!1

e

�

 

�

(�; �) = 0 in R

u

2

:

Proof.

Let us prove the �rst limit. For the variable transformation (�; �) ! (q

1

; q

2

), we

can consider  (�; �) and a function

e

 (q

1

; q

2

). From (2.7), i.e., q = q

c

e

��

where q is
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the scalar velocity, we have

lim

�!1

e

�

 (�; �) = lim

q!0

q

c

q

e

 (q

1

; q

2

)

= lim

q!0

q

c

q

(

e

 (0; 0) +

@

e

 

@q

1

(A)q

1

+

@

e

 

@q

2

(B)q

2

)

= lim

q!0

q

c

q

(

@

e

 

@q

1

(A)q cos(�) +

@

e

 

@q

2

(B)q sin(�)

= lim

q!0

@

e

 

@q

1

(A)q

c

cos(�) + lim

q!0

@

e

 

@q

2

(B)q

c

sin(�)

= 0:

Here we have used the Taylor expansion of  at (0,0), the stream function  (0; 0) = 0,

and the fact that  

x

=  

y

=the components of the velocity at the stagnation point

B =0 gives

e

 

q

1

=

e

 

q

2

= 0 at the stagnation point B, where q

1

and q

2

are the two

components of scalar velocity q. A and B denote some point close enough to (0,0)

from the Taylor theorem.

Now let us prove the second limit. Since variables q and � satisfy � = �ln

q

q

c

,

then

q = q

c

e

��

:

Therefore,

@ 

@�

=

@

e

 

@q

@q

@�

=

@

e

 

@q

(�q

c

e

��

) = �q

@

e

 

@q

;

then

lim

�!1

e

�

 

�

(�; �) = lim

q!0

q

c

q

(�q

@

e

 

@q

)

= lim

q!0

�q

c

@

e

 

@q

= lim

q!0

�q

c

(

e

 

q

1

cos(�) +

e

 

q

2

sin(�))

= �q

c

(

e

 

q

1

(0; 0) cos(�) +

e

 

q

2

(0; 0) sin(�)):

Since the components of the velocity at the stagnation point B are zero, i.e.,

e

 

q

1

(0; 0) =

e

 

q

2

(0; 0) = 0;

therefore, we have

lim

�!1

e

�

 

�

(�; �) = 0:

Now this second approach seems more natural since the only unknown of our

problem is u and on the common interface �

1

the connection conditions are the

continuity of u and

@u

@�

. Then our original problem can be solved using the traditional
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non-overlapping domain decomposition method and the property of convergence can

be proved in the area of DDM. In comparison, the �rst method uses a heterogeneous

modeling using u and  in di�erent regions, the interface condition is not obvious and

the proof of convergence seems impossible due to the complexity of interface condition

and the di�erence of representation of PDE's in each domain.

In fact, u

2

is simply an extension of u

1

since on �

1

, u

1

(�

0

; �) = u

2

(�

0

; �) and

u

1�

(�

0

; �) = u

2�

(�

0

; �). The �rst equality is clear from (3.4) and (3.5). The second

equality can be proved as follows:

From (3.5), we have

u

2�

(�; �) =

e

��

q

c

Z

1

�

e

�

 

�

(�; �)d� in R

u

2

;

therefore,

u

2�

(�

0

; �) =

e

��

q

c

Z

1

�

e

�

 

�

(�

0

; �)d�

while from (3.4)

u

1�

(�; �) =

e

��

q

c

R

l(�)

�

e

�

 

�

(�; �)d� +

e

��

q

c

e

l(�)

 (�; l(�))

=

e

��

q

c

R

l(�)

�

e

�

 

�

(�; �)d� in R

u

1

since  (�; l(�)) = 0 on �

1

. Therefore,

u

1�

(�

0

; �) =

e

��

q

c

Z

1

�

e

�

 

�

(�

0

; �)d�:

Now it is clear that u

1�

(�

0

; �) = u

2�

(�

0

; �) on �

1

.

Therefore, the representation of our problem using u

1

and u

2

can be stated in the

two non-overlapping regions as follows:

4u

1

(�; �) = �

e

R(�)e

��

�

R

u

1

in R

u

(3:6a)

u

1

(�; 0) + u

1�

(�; 0) = 0; �

0

� � � �

1

(3:6b)

u

1

(�

1

; �) = 0; � > 0 (3:6c)

u

1

(�; �) = u

2

(�; �) on �

1

(3:6d)
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and

4u

2

(�; �) = 0 in R

u

2

(3:7a)

u

2

(�; 0) + u

2�

(�; 0) = 0; 0 � � � �

0

(3:7b)

u

2

(0; �) = h[e

��

� e

��

1

]; 0 � � � �

1

; u

2

(0; �) = 0; � > �

1

(3:7c)

u

2�

(�; �) = u

1�

(�; �) on �

1

: (3:7d)

Expressions describing the co-ordinates of the physical plane in terms of the co-

ordinates of the hodograph plane, i.e., x = x(�; �) and y = y(�; �) are needed for

calculating the co-ordinates of the wake boundary. These expressions are:

dx = �

1

q

c

@ 

@�

cos �d� and dy = �

1

q

c

@ 

@�

sin �d� on �

2

[ �

3

: (3:8)

3.3 Numerical Procedure

The problem posed in the hodograph plane by equations(3.6) and (3.7) is for-

mulated in a region which is unbounded in the positive �- direction. For numerical

computations, the region will be truncated. Toward this end, a �

u

is chosen which is

su�ciently large so that for all practical purposes the values of  and u

1

for � > �

u

are approximately zero. The solution algorithm is a �nite di�erence successive over-

relaxation scheme for both u

1

and u

2

with projection for the u

1

-problem only. A grid

of mesh points is superimposed on the bounded region, where each node is speci�ed

by row i and column j. Therefore, the �eld equation for u

2

, (3.7a), is:

u

(n+

1

2

)

2(i;j)

=

��(4�)

2

(4�)

2

2[�(4�)

2

+�(4�)

2

]

[

2

(1+�)(4�)

2

u

(n+1)

2(i;j�1)

+

2

�(1+�)(4�)

2

u

(n)

2(i;j+1)

+

2

(1+�)(4�)

2

u

(n+1)

2(i�1;j)

+

2

�(1+�)(4�)

2

u

(n)

2(i+1;j)

]

(3:9a)

and

u

(n+1)

2(i;j)

= u

(n)

2(i;j)

+ !(u

(n+

1

2

)

2(i;j)

� u

(n)

2(i;j)

); (3:9b)

where4� and4� are the spacings in � and �- direction, respectively, � and � provide

for unequal divisions for mesh points, ! is the over-relaxation parameter and u

(n)

2(i;j)



27

is the value of u

2

at node i, j for the nth iteration. Similarly, for u

1

in the region R

u

1

(see equation(3.6a)):

u

(n+

1

2

)

1(i;j)

=

��(4�)

2

(4�)

2

2[�(4�)

2

+�(4�)

2

]

[

2

(1+�)(4�)

2

u

(n+1)

1(i;j�1)

+

2

�(1+�)(4�)

2

u

(n)

1(i;j+1)

+

2

(1+�)(4�)

2

u

(n+1)

1(i�1;j)

+

2

�(1+�)(4�)

2

u

(n)

1(i+1;j)

+

e

R(�

j

)e

��

i

]

(3:10a)

and

u

(n+1)

1(i;j)

= maxf0; u

(n)

1(i;j)

+ !(u

(n+

1

2

)

1(i;j)

� u

(n)

1(i;j)

)g; (3:10b)

where u

(n)

1(i;j)

is the value of u

1

at node i; j for the nth iteration. These iterations are

stopped when

max

i;j

ju

(n+1)

2(i;j)

� u

(n)

2(i;j)

j < � and max

i;j

ju

(n+1)

1(i;j)

� u

(n)

1(i;j)

j < �; (3:11)

where � is some �xed positive constant.

Note that on the boundary f(�; �)j0 � � � �

0

; � = �

u

g; which corresponds to the

stagnation point in the physical plane , u

2

� 0, for the region R

u

2

. On the boundary

f(�; �)j�

0

� � � �

1

; � = �

u

g, u

1

� 0, which provides the appropriate boundary

condition.

The iteration sequence is started by setting the known boundary conditions for

u

2

for the region R

u

2

, and a zero initial guess for the interior u

(0)

2(i;j)

and on �

1

. Then

using equations (3.7b). Using equations (3.9), the u

(1)

2(i;j)

are obtained starting in

the �rst row from the lower right interior point and moving to the left along mesh

points and upwards until all the interior points in R

u

are covered. The next step is

to set the boundary conditions for R

u

making use of equation (3.6c) and the newly

calculated values for u

2

and set a zero initial guess for the interior u

0

1(i;j)

. Then using

equations (3.10) starting from the upper left point in the region R

u

and move to the

right and downward until the entire mesh is covered and �nally use equation (3.6b).

This provides new values for u

1

in R

u

, and hence new boundary conditions for u

2

for

region R

u

2

are set using equation (3.7d). This alternating sweeping of the two regions

continues until the conditions (3.11) are satis�ed. Since numerical values for u

1

inside
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the boundary, �, are nonzero and those on the boundary and inside of it are zero, the

zero points bordering non-zero points in the R

u

region determine this boundary.

The velocity on the boundary of the cavity, q

c

, is assumed to be known but, as

stated before, the upstream velocity q

1

is, like the boundary �, unknown a priori

and is to be found as part of the solution. Therefore, di�erent values for �

1

, where

�

1

= �ln(q

1

=q

c

); are used until the best one is found. The calculation sequence

assumes mesh points on the boundary

�

0

= f(�; �)j� = 0; 0 < � < �

u

g

starting from the point with minimum � and going upwards. For each assumed �

1

the alternating iteration sequence described above is performed and coordinates of

the wake, using equation (2.32), are calculated.

For calculating co-ordinates of the boundary of the wake, see equations (2.38)

and (2.39). Once the co-ordinates of the wake are determined, the cavity distance

d

c

, which is the distance between the boundary of the cavity and the wall at in�nity

is calculated. Then from equation (2.1) the upstream velocity q

1

or consequently

�

1

, is calculated and is compared to the assumed value of �

1

. The mesh point

corresponding to the minimum di�erence between the calculated upstream velocity

and assumed upstream velocities chosen for the desired value for �

1

. It is evident

that the �ner the mesh points are on boundary �

0

, the better is the accuracy in the

determination of �

1

.

3.4 Computational Results

Figure 3.2 shows results for an open pro�le which has the shape of an arc of a

circle(radius = 1.0) and for which the free streamline leaves the pro�le at 180 degrees

(�

1

= 180). The pro�le is located between walls each having a distance h = 10:0

from the axis of symmetry for one case and h = 50:0 for another. These cases are

shown in Figure 3.2 along with the results given by Lesnic et al.[15] without walls.

As can be seen, the shapes and locations of the free streamlines are in appropriate

agreement. The velocity on the boundary of the cavity was assumed to be q

c

= 1,
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the over-relaxation parameter was taken to be ! = 1:6, �

u

= 4:0 and the number of

divisions in the � and �-directions were 150 and 200, respectively, with variable 4�.

The upstream uniform 
uid velocity was computed to be q

1

= 0.69037 for the case

of h = 10:0 with � = 1:0 � 10

�5

and q

1

= 0:85419 for the case when h = 50:0 with

� = 1:0 � 10

�4

. The calculated and assumed upstream velocities in each of the two

cases were in agreement to within 0.24%.

−1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

o   h=50 m

*   h=10 m

+   h=infinity (Lesnic et al.[15])

Figure 3.2: Comparison of Numerical Results
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Chapter 4

A Parallel Domain

Decomposition Iteration Scheme

For a Heterogeneously Modeled

Free Boundary Problem

4.1 Introduction

A new domain decomposition technique for the free boundary problems is consid-

ered. We propose a parallel iterative scheme that reduced the original free boundary

problem to a sequence of problems on both subdomains, one of which includes the

free boundary and is described by a variational inequality and the other includes the

remainder of the problem and is described by a second order PDE. At each step of the

iteration, we solve these two subproblems simultaneously either by using a Dirichlet

condition on the interface or using a Neumann condition on the interface. Since these

two subproblems can be solved simultaneously in this parallel scheme, the conver-

gence speed is faster than the old scheme which can only iterate one subproblem at

one time. Furthermore, this new parallel scheme can be extended to multi-subdomain

problems very easily.
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Many problems, involving free boundaries, can be reduced to the study of vari-

ational inequalities. The 
ow past the concave-shaped problem considered in the

previous two chapters belongs to this type. There are some other problems which

also involve free boundaries and will be considered in Chapter 5. In Papadopolous et

al.[19], [20], the authors proposed several domain decomposition methods, trying to

split the domain into two or more subdomains, one of which includes the free bound-

ary and is described by a variational inequality and the others will be described by the

PDE. Then by iterating between these subdomains we can solve the whole problem

and �nd the free boundary. However, the above schemes solve one subproblem at

one time. Now we propose a new DDM scheme which can solve these two or more

subproblems simultaneously.

In this chapter, we will use this new parallel scheme to solve the model problem,

i.e., 
ow past a concave-shaped pro�le. This new scheme is based on the domain

decomposition scheme derived in Chapter 3.

A successive over-relaxation approach is applied over the whole problem domain

with use of a projection-operation over only the �xed domain formulated part(the

part containing the unknown boundary). The scheme starts by assuming Dirichlet

data on the boundary between the two domains for both domains in the �rst iteration.

Neumann data is then obtained from each domain on this boundary, averaged and

used as the boundary data for the next iteration. The iterations in each domain are

done in parallel on di�erent processors and continued until the preset error criteria

are satis�ed. Numerical results are given for the case of a truncated circular pro�le.

These results are again compared with other published results and are found to be in

good agreement.

4.2 Formulation of the Problem

We will use u

1

and u

2

as before. The problem can be stated in the two non-

overlapping regions as follows:

4u

1

(�; �) = �

e

R(�)e

��

�

R

u

1

in R

u

(4:1a)
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u

1

(�; 0) + u

1�

(�; 0) = 0; �

0

� � � �

1

(4:1b)

u

1

(�

1

; �) = 0; � > 0 (4:1c)

u

1

(�; �) = u

2

(�; �) on �

1

(4:1d)

and

4u

2

(�; �) = 0 in R

u

2

(4:2a)

u

2

(�; 0) + u

2�

(�; 0) = 0; 0 � � � �

0

(4:2b)

u

2

(0; �) = h[e

��

� e

��

1

]; 0 � � � �

1

; u

2

(0; �) = 0; � > �

1

(4:2c)

u

2�

(�; �) = u

1�

(�; �) on �

1

: (4:2d)

Expressions describing the co-ordinates of the physical plane in terms of the co-

ordinates of the hodograph plane, i.e., x = x(�; �) and y = y(�; �) are needed for

calculating the co-ordinates of the wake boundary. These expressions are (2.32).

4.3 Numerical Procedure

The problem posed in the hodograph plane by equations (4.1) and (4.2) is for-

mulated in a region which is unbounded in the positive �- direction. For numerical

computations, the region will be truncated. Toward this end, a �

u

is chosen which is

su�ciently large so that for all practical purposes the values of u

1

and u

2

for � > �

u

are approximately zero. The solution algorithm is a �nite di�erence successive over-

relaxation scheme for both u

1

and u

2

with projection for the u

1

-problem only. A grid

of mesh points is superimposed on the bounded region. The new numerical iteration

procedure is shown below:

1. Let �

(0)

= 0 be given on �

1

. We consider the two functions u

(n+

1

2

)

2

and u

(n+

1

2

)

1

, n � 0 satisfying, respectively, the problems:

4u

(n+

1

2

)

1

= �

e

R(�)e

��

�

R

u

(n+

1

2

)

1

in R

u

u

(n+

1

2

)

1

(�; 0) + u

(n+

1

2

)

1�

(�; 0) = 0
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u

(n+

1

2

)

1

(�

1

; �) = 0

u

(n+

1

2

)

1

= �

(n)

on �

1

(4:3a)

R

u

(n+

1

2

)

1

= f(�; �)ju

(n+

1

2

)

1

(�; �) > 0g

and

4u

(n+

1

2

)

2

= 0 in R

u

2

u

(n+

1

2

)

2

(�; 0) + u

(n+

1

2

)

2�

(�; 0) = 0

u

(n+

1

2

)

2

(0; �) = preassigned as in (4.2c)

u

(n+

1

2

)

2

= �

(n)

on �

1

: (4:3b)

2. Let �

(n)

= 0:5 �

@u

(n+

1

2

)

1

@�

+0:5 �

@u

(n+

1

2

)

2

@�

on �

1

: Then solve for u

(n+1)

1

and u

(n+1)

2

as follows:

4u

(n+1)

1

= �

e

R(�)e

��

�

R

u

(n+1)

1

in R

u

u

(n+1)

1

(�; 0) + u

(n+1)

1�

(�; 0) = 0

u

(n+1)

1

(�

1

; �) = 0

@u

(n+1)

1

@�

= �

(n)

on �

1

(4:4a)

R

u

(n+1)

1

= f(�; �)ju

(n+1)

1

(�; �) > 0g

and

4u

(n+1)

2

= 0 in R

u

2

u

(n+1)

2

(�; 0) + u

(n+1)

2�

(�; 0) = 0

u

(n+1)

2

(0; �) = preassigned as in (4.2c)

@u

(n+1)

2

@�

= �

(n)

on �

1

: (4:4b)

Then let �

(n+1)

= 0:5 � u

(n+1)

1

+ 0:5 � u

(n+1)

2

on �

1

:

3. Repeat Step 1 with n+ 1 replacing n.
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These iterations are stopped when

max

i;j

ju

(n+1)

2(i;j)

� u

(n)

2(i;j)

j < � and max

i;j

ju

(n+1)

1(i;j)

� u

(n)

1(i;j)

j < �; (4:5)

where � is some �xed positive constant.

Note that on the boundary f(�; �)j0 � � � �

0

; � = �

u

g; which corresponds to the

stagnation point in the physical plane , u

2

� 0, for the region R

u

2

. On the boundary

f(�; �)j�

0

� � � �

1

; � = �

u

g; u

1

� 0, which provides the appropriate boundary

condition.

The iteration sequence is started by setting the known Dirichlet boundary con-

ditions for u

2

in the region R

u

2

and u

1

in the region R

u

, and a zero initial guess

for the interior u

(0)

2(i;j)

and u

(0)

1(i;j)

. Then using equations (4.2b) and (4.3), the u

(1)

2(i;j)

are obtained starting in the �rst row from the lower right interior and moving to

the left along the mesh points and upwards until all the interior in R

u

2

are covered,

while at the same time, using (4.4) u

(1)

1(i;j)

are obtained starting from the upper left

point in R

u

and move to the right and downwards in this region until the entire

mesh is covered and �nally use boundary condition (4.1b). The next step is to set

the Neumann boundary conditions for both R

u

and R

u

2

making use of (4.2d) and

taking the average of normal derivative of the newly computed u

1

and u

2

. Then we

can use (4.2ab) to compute u

2

and (4.4) and (4.1b) to compute u

1

simultaneously

as before, but on the common boundary �

1

, the averaged normal derivative is used.

This provides new values for u

1

in R

u

1

and for u

2

in R

u

2

. Then we repeat the step

of using a Dirichlet BC on �

1

and using the average of u

1

and u

2

as the boundary

condition on �

1

. Repeat alternating in this way, until conditions (4.5) are satis�ed.

Since numerical values for u

1

inside the boundary, �, are nonzero and those on the

boundary and outside of it are zero, the zero points bordering non-zero points in the

R

u

region determine this boundary.

The velocity on the boundary of the cavity, q

c

, is assumed to be known but, as

stated before, the upstream velocity q

1

is, like the boundary �, unknown a priori

and is to be found as part of the solution. Therefore, di�erent values for �

1

, where

�

1

= �ln(q

1

=q

c

); are used until the best one is found. The calculation sequence
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assumes mesh points on the boundary

�

0

= f(�; �)j� = 0; 0 < � < �

u

g;

starting from the point with minimum � and going upwards. For each assumed �

1

the alternating iteration sequence described above is performed and coordinates of

the wake, using equation (2.32), are calculated.

For calculating co-ordinates of the boundary of the wake, see equations (2.38)

and (2.39). Once the co-ordinates of the wake are determined, the cavity distance

d

c

, which is the distance between the boundary of the cavity and the wall at in�nity

is calculated. Then from equation (2.1) the upstream velocity q

1

or consequently

�

1

, is calculated and is compared to the assumed value of �

1

. The mesh point

corresponding to the minimum di�erence between the calculated upstream velocity

and assumed upstream velocities is chosen for the desired value for �

1

. It is evident

that the �ner the mesh points are on the boundary �

0

, the better is the accuracy in

the determination of �

1

.

4.4 Computational Results

Figure 4.1 shows results for an open pro�le which has the shape of an arc of a

circle (radius = 1.0) and for which the free streamline leaves the pro�le at 180 degrees

(�

1

= 180). The pro�le is located between walls each having a distance h = 10:0 from

the axis of symmetry for one case and h = 50:0 for another. These cases are shown in

Figure 4.1 along with the results given by Lesnic et al.[15] without walls. As can be

seen, the shapes and locations of the free streamlines are in appropriate agreement.

The velocity on the boundary of the cavity was assumed to be q

c

= 1, the over-

relaxation parameter was taken to be ! = 1:6, �

u

= 4:0 and the number of divisions

in the � and �-directions were 150 and 200, respectively, with variable 4�. The

upstream uniform 
uid velocity was computed to be q

1

= 0.69040 for the case of

h = 10:0 with � = 2:0 � 10

�5

and q

1

= 0:85420 for the case when h = 50:0 with

� = 1:0 � 10

�4

. The calculated and assumed upstream velocities in each of the two

cases were in agreement to within 0.24%.
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The new parallel version in this chapter uses less time for convergence than the

traditional DDM methods used in Chapter 3. The required iteration number for

convergence of the new parallel method when h = 10:0 is 4603 while the iteration

number for the traditional method in Chapter 3 is 8872. Therefore, the parallel

version saved almost half of the time for convergence.

−1.1 −1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

o   h=50 m

*   h=10 m

+   h=infinity (Lesnic et al.[15])

Figure 4.1: Comparison of Parallel Numerical Result with Lesnic et al.[15]
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Chapter 5

Application of the New Parallel

Version Scheme to Other Free

Boundary Problems.

5.1 Introduction

From the last Chapter, we can see that the new parallel scheme based on non-

overlapping shows good performance for the 
ow past a concave pro�le problem. In

fact, we can extend this new idea to some other free boundary problems that have been

considered. In this Chapter, we will reconsider two of these problems and show that

the performance of the parallel version is better than the traditional DDM method.

The �rst example is to �nd the free surface in a steady, two-dimensional seepage

through a rectangular dam. The second example is a free boundary seepage problem

of 
ow through a porous dam with a toe drain.

Before we consider these problems, we propose the general idea of our parallel

scheme applied to a general free boundary problem as follows:

Consider the following free boundary value problem on the open bounded con-

nected set D in R

2

:

Find fw;
g; w(x

1

; x

2

) 2 H

1

(D); 
 � D such that
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Lw = f(x

1

; x

2

)�




in D;

w = g on @D


 = f(x

1

; x

2

) 2 D : w(x

1

; x

2

) > 0g

with

Lw = �

2

X

i;j=1

@

@x

i

(a

ij

(x

1

; x

2

)

@w

@x

j

) + �w; � > 0

f > 0 in D; g � 0 on @D;

where fa

ij

g are symmetric, bounded, smooth and satisfying

1

X

i;j=1

a

ij

x

i

x

j

�M(x

2

1

+ x

2

2

); M > 0

for all x = (x

1

; x

2

) 2 R

2

, a; b are piecewise smooth and

�




= 1 on 
; �




= 0 on D � 
:

Examples of this arise in the �ltration of a liquid through a porous dam, convex and

concave pro�le wake problems, etc.

Before we introduce the new parallel scheme, let us take a look at an earlier

scheme proposed by Papadopoulos et al.[19]. The following non-overlapping domain

decomposition scheme is widely used to solve free boundary problems:

Split the domain D into two subdomains D

1

and D

2

. � is the interface between

D

1

and D

2

. The free boundary problem is stated above. We iterate between these

two subdomains as follows:

Choose �(x) � 0 on �. Let �

(1)

= �(x) and for n = 1 :

1. Solve the following Dirichlet subproblem for fu

(n)

1

;


(n)

1

g in D

1

:

Lu

(n)

1

= f�




(n)

1

on D

1

u

(n)

1

= g on @D

1

� �

u

(n)

1

= �

(n)

on �




(n)

1

= f(x

1

; x

2

)ju

(n)

1

(x

1

; x

2

) > 0g:

Then let �

(n)

=

@u

(n)

1

@n

1

on �; where n

1

is the exterior normal of �.
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2. Solve the following Neumann subproblem u

n

2

in D

2

:

Lu

(n)

2

= f on D

2

u

(n)

2

= g on @D

2

� �

@u

(n)

2

@n

1

= �

(n)

on �:

Then let �

(n+1)

= � � �

(n)

+ (1� �) � u

(n)

2

, where 0 < � < 1.

3. Repeat step 1 with n+ 1 replacing n. These iterations are stopped when

max

i;j

ju

(n+1)

2(i;j)

� u

(n)

2(i;j)

j < � and max

i;j

ju

(n+1)

1(i;j)

� u

(n)

1(i;j)

j < �;

where � is some �xed positive constant.

There are some other variants of the above method which show good performance

in numerical computation. However, in order to solve these problems, we must solve

only one subproblem at one time while the other is waiting. With the advent of

parallel computers, the demands for parallel computing are increasing. Therefore, we

devised a new parallel scheme based on the above scheme as follows:

Choose �(x) on �, let �

(1)

= �(x). (�(x) = 0 is acceptable)

1. Solve the following two Dirichlet subproblems for fu

(n+

1

2

)

1

;


(n+

1

2

)

1

g and u

(n+

1

2

)

2

simultaneously:

Lu

(n+

1

2

)

1

= f�




(n+

1

2

)

1

in D

1

u

(n+

1

2

)

1

= g on @D

1

� �

u

(n+

1

2

)

1

= �

(n)

on �




(n+

1

2

)

1

= f(x

1

; x

2

)ju

(n+

1

2

)

1

(x

1

; x

2

) > 0g

and

Lu

(n+

1

2

)

2

= f in D

2

u

(n+

1

2

)

2

= g on @D

2

� �

u

(n+

1

2

)

2

= �

(n)

on �:

Then let �

(n)

= � �

@u

(n+

1

2

)

1

@n

1

+ (1 � �) �

@u

(n+

1

2

)

2

@n

1

on �; where n

1

is the exterior

normal on �.
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2. Solve the following two Neumann subproblems for fu

(n+1)

1

;


(n+1)

1

g and u

(n+1)

2

simultaneously:

Lu

(n+1)

1

= f�




(n+1)

1

in D

1

u

(n+1)

1

= g on @D

1

� �

@u

(n+1)

1

@n

1

= �

(n)

on �




(n+1)

1

= f(x

1

; x

2

)ju

(n+1)

1

(x

1

; x

2

) > 0g

and

Lu

(n+1)

2

= f in D

2

u

(n+1)

2

= g on @D

2

� �

@u

(n+1)

2

@n

1

= �

(n)

on �:

Then let �

(n+1)

= � � u

(n+1)

1

+ (1� �) � u

(n+1)

2

on �:

3. Repeat Step 1 with n+ 1 replacing n.

These iterations are stopped when

max

i;j

ju

(n+1)

2(i;j)

� u

(n)

2(i;j)

j < � and max

i;j

ju

(n+1)

1(i;j)

� u

(n)

1(i;j)

j < �;

where � is some �xed positive constant.

Numerical results show that the parallel scheme is better than the old one since it

makes use of the parallel properties of the problem and solves these two subproblems

at one time by using two processors on parallel machines. Thus the speed is increased.

It is not hard to see that the new scheme can be easily extended to a problem split

into more subdomains.

5.2 Example Problem 1

5.2.1 Numerical scheme

Consider the following free boundary value problem: Find the free surface in a

steady, two-dimensional seepage through a rectangular dam. For simplicity, the soil

in the 
ow �eld is assumed to be homogeneous and isotropic, and the capillary and

evaporation e�ects are neglected. In addition, the 
ow follows Darcy's Law:

�!

q = �krh = �kr[(

p

�g

) + y]; (5:1)
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where

�!

q is the velocity vector, p is the pressure, k is the permeability of the soil,

� is the density of the soil, g is the gravitational acceleration, y is the vertical coor-

dinate(positive upward), and h is the piezometric head. The seepage velocity has a

potential:

� = k[(

p

�g

) + y]: (5:2)

In this example, the free surface, whose position is not known a priori, is to be found.

On the free surface two boundary conditions have to be satis�ed:

� = ky (5:3)

and

�

�

= 0; (5:4)

where � is the outward normal direction. Either Neumann or Dirichlet data are given

on the remainder of the boundaries. The location of the free surface y = f(x) and

the seepage domain 
 need to be found. As shown in Figure 5.1, the seepage region

is de�ned as:


 = f(x; y) : 0 < x < x

1

; 0 < y < f(x))g; (5:5)

where x

1

is the horizontal distance from point a to b.

In the domain 
, setting k = 1 for simplicity, the following conditions must hold:

4� = 0 in 


� = y

1

on [af ]

� = y

2

on [bc]

� = y on [cd]

� = y on

c

fd

�

�

= 0 on

c

fd

�

�

� 0 on [cd];

where y

1

and y

2

is the height of the water on the left and right side, respectively. The


ow domain is not known a priori since the location of the free surface is unknown.

A new known region D is de�ned as:

D = f(x; y) : 0 < x < x

1

; 0 < y < y

1

g: (5:6)
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hg

a b

f
e

c
d

x

y

D 2

D 1

Figure 5.1: The First Example Problem.

A new variable � is de�ned:

� =

8

<

:

�(x; y) in 


y in D � 
 = 


ext

:

which extends �(x; y) into D. It follows that

�4� =

@(�




)

@y

: (5:7)

By using a Baiocchi transformation, a new dependent variable w is de�ned as:

w(x; y) =

Z

y

1

y

[�(x; �)� �]d�: (5:8)

Then w satis�es:

4w = �




in D

w(0; y) =

1

2

(y

1

� y)

2

on [af ]

w(x; 0) =

y

2

1

2

�

y

2

1

�y

2

2

2x

1

x on [ab]

w(x

1

; y) =

1

2

(y

2

� y)

2

on [bc]

w = 0 in D � 
:
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Once we obtain w satisfying the above, then


 = f(x; y) : (x; y) 2 D;w(x; y) > 0g

graph f = @
� @D = points of @
 not in @D

� = y � w

y

in 
:

Next we use our new scheme to solve this problem. Decompose D into two non-

overlapping regions D

1

and D

2

with common boundary � such that D

2

is the region

not containing the free surface(Figure 5.1). Now consider the following scheme:

Choose �(x) on �, let �

(1)

= �(x). (�(x) = 0 is acceptable)

1. Solve for n = 1 the following two Dirichlet subproblems for fw

(n+

1

2

)

1

;


(n+

1

2

)

1

g

and w

(n+

1

2

)

2

simultaneously:

4w

(n+

1

2

)

1

= �




(n+

1

2

)

1

in D

1

w

(n+

1

2

)

1

=

1

2

(y

1

� y)

2

on [gf ]

w

(n+

1

2

)

1

=

1

2

(y

2

� y)

2

on [hc]

w

(n+

1

2

)

1

= 0 on [fe] on [ce]

w

(n+

1

2

)

1

= �

(n)

on �




(n+

1

2

)

1

= f(x; y)jw

(n+

1

2

)

1

(x; y) > 0g

and

4w

(n+

1

2

)

2

= 1 in D

2

w

(n+

1

2

)

2

=

1

2

(y

1

� y)

2

on [ag]

w

(n+

1

2

)

2

=

1

2

(y

2

� y)

2

on [bh]

w

(n+

1

2

)

2

=

y

2

1

2

�

y

2

1

�y

2

2

2x

1

x on [ab]

w

(n+

1

2

)

2

= �

(n)

on �:

Then let �

(n)

= � �

@w

(n+

1

2

)

1

@y

+ (1� �) �

@w

(n+

1

2

)

2

@y

on �:

2. Solve the following two Neumann subproblems for fw

(n+1)

1

;


(n+1)

1

g and w

(n+1)

2

simultaneously:

4w

(n+1)

1

= �




(n+1)

1

in D

1

w

(n+1)

1

=

1

2

(y

1

� y)

2

on [gf ]
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w

(n+1)

1

=

1

2

(y

2

� y)

2

on [hc]

w

(n+1)

1

= 0 on [fe] and [ce]

@w

(n+1)

1

@y

= �

(n)

on �




(n+1)

1

= f(x; y)jw

(n+1)

1

(x; y) > 0g

and

4w

(n+1)

2

= 1 in D

2

w

(n+1)

2

=

1

2

(y

1

� y)

2

on [ag]

w

(n+1)

2

=

1

2

(y

2

� y)

2

on [bh]

w

(n+1)

2

=

y

2

1

2

�

y

2

1

�y

2

2

2x

1

x on [ab]

@w

(n+1)

2

@y

= �

(n)

on �:

Then let �

(n+1)

= � � w

(n+1)

1

+ (1� �) � w

(n+1)

2

on �:

3. Repeat Step 1 with n+ 1 replacing n.

These iterations are stopped when

max

i;j

jw

(n+1)

2(i;j)

� w

(n)

2(i;j)

j < � and max

i;j

jw

(n+1)

1(i;j)

� w

(n)

1(i;j)

j < �;

where � is some �xed positive constant.

5.2.2 Discretization and results

This numerical example uses the following data: y

1

= 20:0; y

2

= 10:0; x

1

=

15:0; ! = 1:85; � = 0:001; 4x = 4y = 0:3333 and � = 0:5: D = f(x; y) : 0 < x <

15:0; 0 < y < 20:0g is subdivided as shown with D

1

= f(x; y) : 0 < x < 15:0; 10:0 <

y < 20:0g,D

2

= f(x; y) : 0 < x < 15:0; 0 < y < 10:0g. To determine a point (x

0

; y

0

) of

the free surface, choose the smallest y

0

so that 0 < w(x

0

; y

0

) < 0:01. The numerical

scheme proceeds by solving the two Dirichlet subproblems simultaneously using 2

CPU. These two solutions produce input data for the two Neumann subproblems

which we solve simultaneously using the same 2 CPU. The process continues until

convergence.
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The new parallel version converged in 4 loops with total number of iterations

being 368, while the old version needed 8 loops to converge with the total number of

iterations being 4639. Most of the iterations occurred in the �rst 2 loops for the old

method. The �nal error of the old method is 7� 10

�4

and the �nal error of the new

method is 9 � 10

�4

. The new parallel method reduces the number of iterations by

running the program on two CPU.

5.3 Example Problem 2

5.3.1 Numerical scheme

The second example is a free boundary seepage problem of 
ow through a porous

dam with a toe drain. For simplicity, the soil in the 
ow �eld is again assumed to be

homogeneous and isotropic, and the capillary and evaporation e�ects are neglected.

In addition, the 
ow follows Darcy's law:

�!

q = �krh = �kr[(

p

�g

) + y]; (5:9)

where

�!

q is the velocity vector, p is the pressure, k is the permeability of the soil, �

is the density of the 
uid, g is the gravitational acceleration, y is the vertical coor-

dinate(positive upward), and h is the piezometric head. For homogeneous, isotropic

soil, the permeability k is constant. The seepage velocity has a potential:

� = k[(

p

�g

) + y]: (5:10)

In this study, the free surface, whose position is not known a priori, is to be found.

On the free surface, the boundary condition is

� = ky (5:11)

while on the other boundaries, either Neumann or Dirichlet data are given. The

location of the free surface �

1

= fx; f(x)gy and the seepage domain 
 need to be

found, see Figure 5.2. The seepage region is de�ned as:


 = f(x; y) : 0 < x � x

F

; 0 < y < �(x); x

F

< x < x

C

; 0 < y < f(x))g; (5:12)
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1

y

xA

F

y=o (x)

F’

C’CBF’
1

Figure 5.2: The Second Example Problem.

where �(x) is the shape function of the dam pro�le.

The functions �(x; y) and  (x; y) are de�ned on 
 and are to be inH

1

(
)\C

0

(
):

Further, for the problem shown in Figure 5.2:


 = f(x; y) : 0 < x � x

F

0

1

; 0 < y < �(x); x

F

0

1

< x < x

C

; 0 < y < f(x))g

�

x

�  

y

= 0 in 


�

y

+  

x

= 0 in 


� = y

F

on

d

AF

� = 0 on [BC]

 = q on [AB]

 = 0 on �

1

� = y on �

1

; (5:13)

where y

F

is the height at F , �(x) is the shape function of the dam pro�le, and q is the


ow rate through the 
ow�eld. Let the solution domain 
 be extended to the known

region D = f(x; y) : 0 < x � x

F

0

1

; 0 < y < �(x); x

F

0

1

< x < x

C

0

; 0 < y < y

F

g in

Figure 5.2. Then extend � and  continuously to be de�ned on D by setting
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�(x; y) =

8

<

:

�(x; y) in 


y in D � 


and

 (x; y) =

8

<

:

 (x; y) in 


0 in D � 
:

This yields

�

x

�  

y

= 0 in D

�

y

+  

x

= �

D�


in D

(5:14)

in the sense of distributions where �

D�


= 1 in D � 
, �

D�


= 0 in 
.

Next de�ne a new dependent variable w using the Baiocchi transformation

w(P ) =

Z

FP

� dx+ (y � �)dy; (5:15)

where FP is a smooth path in D joining F to P in D in Figure 5.2. The integration

is independent of the path due to (5.14). Then for all w in H

2

(D)

T

C

1

(D) (See [3]):

4w = �




in D (5:16)

w

y

= y � y

F

on

d

AF

w = (

q

2

6

) + q(x

B

� x) on [AB]

w

y

= 0 on [BC] (5:17)

w = 0 in D � 
( also on �

1

)

w > 0 in 
 (w � 0 in D):

Hence

w(x; y) � 0; 1�4(x; y) � 0; w(1�4w) = 0 in D.

If w is found satisfying (5.16) subject to conditions (5.17), then the following quanti-

ties can be obtained:


 = f(x; y) : (x; y) in D; w > 0g

graph f = @
� @D = points of @
 not in @D

� = y � w

y

in 


 = �w

x

in 


q =  (x; 0) on [AB]:

(5:18)
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Next we use our new scheme to solve this problem. First, decompose D into

subsets D

1

= f(x; y) : 0 < x < x

F

0

1

; 0 < y < �(x)g and D

2

= f(x; y) : x

F

0

1

<

x < x

C

0

; 0 < y < y

F

g with the boundary of D denoted by @D and the interface

between D

1

and D

2

denoted by � = f(x; y) : x = x

F

; 0 < y < y

F

g: If w

1

denotes the

restriction of w to D

1

and w

2

the one to D

2

, then we can write down the following

iterative procedure:

1. Let �

(1)

be given on �. We solve the two Dirichlet subproblems for w

(n+

1

2

)

1

and

fw

(n+

1

2

)

2

;


(n+

1

2

)

2

g, n � 1 respectively as follows:

4w

(n+

1

2

)

2

= �




(n+

1

2

)

2

in D

2

w

(n+

1

2

)

2

= (

q

2

6

) + q(x

B

� x) on [F

0

1

B]

(w

(n+

1

2

)

2

)

y

= 0 on [BC

0

]

w

(n+

1

2

)

2

= 0 in D

2

� 


w

(n+

1

2

)

2

= �

(n)

on �




(n+

1

2

)

1

= f(x; y)jw

(n+

1

2

)

2

(x; y) > 0g

(5:19)

and

4w

(n+

1

2

)

1

= 1 in D

1

w

(n+

1

2

)

1

= (

q

2

6

) + q(x

B

� x) on [AF

0

1

]

(w

(n+

1

2

)

1

)

y

= y � y

F

on

d

AF

w

(n+

1

2

)

1

= �

(n)

on �:

(5:20)

2. Let �

(n)

= ��

@w

(n+

1

2

)

1

@x

+(1��)�

@w

(n+

1

2

)

2

@x

on �: Then solve two Neumann subproblems

for fw

(n+1)

2

;


(n+1)

2

g and w

(n+1)

1

respectively as follows:

4w

(n+1)

2

= �




(n+1)

2

in D

2

w

(n+1)

2

= (

q

2

6

) + q(x

B

� x) on [F

0

1

B]

(w

(n+1)

2

)

y

= 0 on [BC

0

]

w

(n+1)

2

= 0 in D

2

�


@w

(n+1)

2

@x

= �

(n)

on �




(n+1)

2

= f(x; y)jw

(n+1)

2

(x; y) > 0g

(5:21)
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and

4w

(n+1)

1

= 1 in D

1

w

(n+1)

1

= (

q

2

6

) + q(x

B

� x) on [AF

0

1

]

(w

(n+1)

1

)

y

= y � y

F

on

d

AF

@w

(n+1)

1

@x

= �

(n)

on �:

(5:22)

Then let �

(n+1)

= � � w

(n+1)

1

+ (1� �) � w

(n+1)

2

on �:

3. Repeat Step 1 with n+ 1 replacing n.

These iterations are stopped when

max

i;j

jw

(n+1)

2(i;j)

� w

(n)

2(i;j)

j < � and max

i;j

jw

(n+1)

1(i;j)

� w

(n)

1(i;j)

j < �;

where � is some �xed positive constant.

5.3.2 Discretization and results

The 
ow rate through the 
ow �eld, 
 is also unknown a priori. Thus, in addition

to the inner iteration to solve for w with a given q, there is also an outer iteration on

the q to determine the 
ow rate. A compatibility condition is necessary for the outer

iteration. The condition used herein is similar to that given by Sloss and Bruch[3],

i.e.,

f

h

(q

(r)

) = (w

2

(x

F

; y

F

�4y))

q

(r)

�

4y

2

2

; r = 0; 1; 2; : : : (5:23)

Then f

h

(q

(r)

) = 0 represents a compatibility condition, which if imposed on the set

of solutions (w

1

)

q;h

and (w

2

)

q;h

, permits the determination of a unique q such that

(w

1

)

q;h

and (w

2

)

q;h

will be the a solution of (5.19), (5.20), (5.21), (5.22).

The numerical example has the following data: �(x) = x where 0 < x < x

F

0

1

,

y

F

= 30ft, x

F

= 30ft, x

B

= 60ft, � = 0:5, 4x = 4y = 2:5ft, with stopping error

estimates:

max

i;j

j(w

1

)

(n+1)

q

(r)

;i;j

� (w

1

)

(n)

q

(r)

;i;j

j < �

1

max

i;j

j(w

2

)

(n+1)

q

(r)

;i;j

� (w

2

)

(n)

q

(r)

;i;j

j < �

1

and

jf

h

(q

(r)

)j < �

2

;
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where �

1

and �

2

are preset constants.

The iteration approach presented here is that: the Dirichlet subproblems in both

regions D

1

and D

2

are solved, then using the average of the normal derivatives on the

interface as input, solve the Neumann subproblems in D

1

and D

2

at the same time.

This forms one step. Then using the average of the function values on the interface

as input, solve the Dirichlet subproblems in both regions as before. The error was

checked after each step, if it meets the criteria, then stop, otherwise move on to next

step.

The old method took 120 steps of iteration before reaching the error criteria, while

the new method only needed 88 steps of iteration to satisfy the error criteria. The

error criteria for these two methods was the same, however, the di�erence between

the necessary number of iterations shows the advantage of the parallel algorithm.
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Chapter 6

Convergence Analysis of DDM

Schemes for the Concave Pro�le

Flow Problem

6.1 Introduction

In this chapter we should consider the convergence and existence analysis of the

model problem considered in Chapter 2. The problem of 
ow past a concave shaped

pro�le can be transformed into a variational inequality problem on the whole do-

main with mixed boundary conditions. In the following sections, we shall prove the

existence and uniqueness of the solution to our problem as a variational inequality

and then prove the convergence of our numerical solution using the DDM scheme by

assuming some convergence property on the common interface of two subdomains.

The approached used in this Chapter are similar to Bourgat and Duvaut[2] and

Papadopolous[21].
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6.2 Existence and Uniqueness of Solution to Model Prob-

lem

Suppose D = f(�; �)j� > 0; 0 � � � �

1

g, and u is de�ned

u =

8

<

:

u

1

(�; �) =

e

��

q

c

R

l(�)

�

e

�

 (�; �)d�; �

0

� � � �

1

u

2

(�; �) =

e

��

q

c

R

1

�

e

�

 (�; �)d�; 0 � � � �

0

9

=

;

: (6:1)

Then as in (2.28), we have

4u =

@

2

u

@�

2

+

@

2

u

@�

2

= �

e

R(�)e

��

�

R

u

1

in D; (6:2)

where

e

R(�) = 0; 0 � � � �

0

;

e

R(�) is de�ned as before, �

0

� � � �

1

, and u satis�es

the boundary conditions(see Figure 3.1)

u+ u

�

= 0 on �

2

[ �

3

u = 0 on �

4

u = h(�) on �

0

u(�;1) = 0;

(6:3)

where h(�) = h(e

��

� e

��

1

); 0 � � � �

1

; h(�) = 0; � � �

1

. If we can prove

there exists a unique u(�; �) satisfying (6.2) and (6.3), then we can �nd the stream

function in R as

 = �q

c

(u+ u

�

): (6:4)

Let us introduce the function space V :

V = fwjw 2 H

1

(D); wj

�

4

= 0; w(�;1) = 0g (6:6)

which is a Hilbert space when it is supplied with the norm

jjwjj =

Z

D

rw � rwd�d� +

Z

�

1

�=0

w

2

d�: (6:7)

Let the closed convex K

H

contained in V be given by

K

H

= fwjw 2 V; w � 0; wj

�

0

= h(�)g:
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Furthermore, let

a(u;w) =

Z

D

ru � rwd�d� +

Z

�

2

[�

3

uwd�: (6:8)

If u 2 H

1

(D) and satis�es (6.3), we have

u 2 K

H

:

Notice that R is de�ned in Chapter 2 as R = R

u

1

[ R

u

2

[ �

1

. For any v 2 K

H

, we

have

R

R

�(4u)(v � u)d�d� =

R

R

e

R(�)e

��

(v � u)d�d�

�

R

D

e

R(�)e

��

(v � u)d�d�

(6:9)

since

e

R(�) < 0, u = 0 on D �R and v � 0 on D �R. Green's formula gives

R

R

�(4u)(v � u)d�d� =

R

@R

�

@u

@n

(v � u)d� +

R

R

ru � r(v � u)d�d�

=

R

R

ru � r(v � u)d�d� +

R

�

2

[�

3

u(v � u)d�;

where n is the exterior normal of @R. Then (6.9) becomes

a(u; v � u) �

Z

D

e

R(�)e

��

(v � u)d�d�; 8v 2 K

H

: (6:10)

Lemma 2 If the mapping �!

e

R(�) is square integrable on (0; �

1

), then

v !

Z

D

e

R(�)e

��

vd�d�

is a continuous linear form on V .

Proof. Note that

j

Z

D

e

R(�)e

��

vd�d�j � c(

Z

D

v

2

d�d�)

1

2

since (�; �)!

e

R(�)e

��

is square integrable from the assumption. From vj

�

4

= 0, we

have

v(�; �) = �

Z

�

1

�

@v

@�

0

(�

0

; �)d�

0

which implies

jv(�; �)j � j�

1

� �j

1

2

(

Z

�

1

�

(

@v

@�

0

)

2

d�

0

)

1

2

:
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Consequently,

R

D

v

2

(�; �)d�d� �

R

D

[�

1

R

�

1

0

(

@v

@�

)

2

d�]d�d�

= �

2

1

R

1

0

R

�

1

0

(

@v

@�

)

2

d�d�

� �

2

1

R

D

rv � rvd�d�

which proves Lemma 2.

Theorem 1 Under the assumptions in Lemma 2, there exists a unique u satisfying

(6.10).

Proof. The bilinear form a(u; v) is coercive. Further it is continuous. From

Lemma 2, we know the second member of (6.9) is a linear continuous form on V . From

the classical existence theorem for variational inequality(Kinderlehrer et al.[14]), the

result follows.

Theorem 2 The wake boundary (x(�); y(�)) is given by

x(�) = x

0

+

Z

�

0

(u

�

(�; 0) + u

��

(�; 0)) cos �d�

and

y(�) = y

0

+

Z

�

0

(u

�

(�; 0) + u

��

(�; 0)) sin �d�:

Proof. Derived directly from (3.8) in Chapter 3 and the following fact:

 = �q

c

(u+ u

�

) in R:

6.3 Convergence of Numerical Scheme

6.3.1 Variational form of domain decomposition scheme

From the numerical results in Chapter 2, we can see the convergence of  

(n)

and u

(n)

towards the exact physical solution  and u. Also in Chapter 3, we see the

convergence of u

(n)

1

and u

(n)

2

towards the exact physical solution u. However, it is very

di�cult to prove the convergence of the numerical solution. The very complicated

boundary condition on the common boundary �

1

of the two subdomains R

u

1

and R

u

2
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makes the convergence analysis even much di�cult. How to prove the convergence

of the approximate solutions when the complicated common boundary conditions are

present is our objective. Note that the numerical approach for determining  

(n)

and

u

(n)

taken in Chapter 2 is equivalent to the approach for determining u

(n)

1

and u

(n)

2

taken in Chapter 3. However in the second approach the heterogeneous model was

used, that is, u

1

and u

2

are considered to be C

1

functions, since the equality of

their function value and their normal derivative on the common interface must hold.

Therefore, the second approach can handle the same function in both regions and

on the common boundary, while the �rst approach has no such advantage. In the

following, we shall try to prove the convergence of our u

1

-u

2

approach towards the

true solution described in Section 6.2.

When we take iterations on both regions consecutively, we have the following

numerical problem:

Given u

(n�1)

2

on �

1

, solve for u

(n)

1

; R

u

(n)

1

in region D

1

= R

u

:

4u

(n)

1

= �

e

R(�)e

��

�

R

u

(n)

1

in D

1

(6:11)

u

(n)

1

(�; 0) + u

(n)

1�

(�; 0) = 0 on �

3

u

(n)

1

(�

1

; �) = 0

u

(n)

1

= u

(n�1)

2

on �

1

R

u

(n)

1

= f(�; �)ju

(n)

1

(�; �) > 0g:

Given

@u

(n)

1

@�

on �

1

, solve for u

(n)

2

in region D

2

= R

u

2

:

4u

(n)

2

= 0 in D

2

(6:12)

u

(n)

2

(�; 0) + u

(n)

2�

(�; 0) = 0 on �

2

u

(n)

2

(0; �) = h[e

��

� e

��

1

] 0 � � � �

1

u

(n)

2

(0; �) = 0 � > �

1

@u

(n)

2

@�

=

@u

(n)

1

@�

on �

1

:
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Now, we consider the variational approach for the above two subproblems:

Subproblem 1

Let g 2 H

1

2

(�

1

), g > 0 on �

1

, and de�ne

U

(1)

(g) = fv : v 2 H

1

(D

1

); v � 0 in D

1

; v(�;1) = 0;

v(�

1

; �) = 0; 


0

v = g on H

1

2

(�

1

)g;

(6:13)

where 


0

: H

1

(D

1

)! H

1

2

(�

1

) is the trace function.

Now we can de�ne the strong and variational forms of the free boundary subprob-

lem in region D

1

.

Strong Form:

Find fu

1

;


1

g such that u

1

2 U

(1)

(g) \H

2

(D

1

); 


1

= f(�; �) 2 D

1

: u

1

(�; �) >

0g, and

�4u

1

= f�




1

in D

1

(6:14a)

u

1

+

@u

1

@�

= 0 on �

2

: (6:14b)

Variational Form:

Find fu

1

;


1

g such that u

1

2 U

(1)

(g); 


1

= f(�; �) 2 D

1

: u

1

(�; �) > 0g, and

a

1

(u

1

; v � u

1

) �< f; v � u

1

>

1

8v 2 U

(1)

(g); (6:15)

where

< f; v >

k

=

Z

D

k

fvd�d�; k = 1; 2;

a

1

(u; v) =

Z

D

1

ru � rvd�d� +

Z

�

2

uvd�:

It is known that equations (6.14) and variational inequality (6.15) are equivalent.

Subproblem 2

Let

U

(2)

= fv : v 2 H

1

(D

2

); v(�;1) = 0; v = l(�) on �

0

g;

where

l(�) = h[e

��

� e

��

1

]; 0 � � � �

1

; l(�) = 0; � > �

1

:

The following formulations are the strong and variational forms of the second sub-

problem.
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Strong Form:

Let h 2 H

2

(D

1

). Find u

2

2 U

(2)

\H

2

(D

2

) such that

�4u

2

= f in D

2

(6:16a)

@u

2

@�

=

@h

@�

2 H

1

2

(�

1

) (6:16b)

u

2

+

@u

2

@�

= 0 on �

3

: (6:16c)

Variational Form 1:

Let h 2 H

2

(D

1

). Find u

2

2 U

(2)

such that

a

2

(u

2

; v � u

2

) =< f; v � u

2

>

2

+

Z

�

1

(v � u

2

)

@h

@�

d� 8v 2 U

(2)

; (6:17)

where

a

2

(u; v) =

Z

D

2

ru � rvd�d� +

Z

�

3

uvd�:

The equivalence of the strong form equations (6.16) and variational form 1 (6.17)

of the above subproblem 2 can be shown as follows. Suppose (6.16) is true, then for

any v 2 U

(2)

,

�

R

D

2

4u

2

(v � u

2

)d�d� =

R

D

2

ru

2

� r(v � u

2

)d�d� �

R

@D

2

(v � u

2

)

@u

2

@n

ds

= a

2

(u

2

; v � u

2

)�

R

�

1

(v � u

2

)

@u

2

@�

d�

= a

2

(u

2

; v � u

2

)�

R

�

1

(v � u

2

)

@h

@�

d�;

i.e.,

a

2

(u

2

; v � u

2

) =

R

D

2

(�4u

2

)(v � u

2

)d�d� +

R

�

1

(v � u

2

)

@h

@�

d�

=

R

D

2

f(v � u

2

)d�d� +

R

�

1

(v � u

2

)

@h

@�

d�

which is just (6.17). Notice that the above procedure is invertible, we can also prove

(6.16) assuming (6.17) is true. Therefore the equivalence between (6.16) and (6.17)

is proved.

Furthermore, if h 2 H

2

(D

1

) satis�es

�4h = f�




1

in D

1

(6:18a)

h+

@h

@�

= 0 on �

2

; h(�;1) = 0; h(�

1

; �) = 0; (6:18b)
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where




1

= f(�; �) 2 D

1

: h(�; �) > 0g;

then the above two equivalent forms are also equivalent to the following variational

form:

Variational Form 2:

Let h 2 H

2

(D

1

) satis�es (6.18). Find u

2

2 U

(2)

such that

a

2

(u

2

; v � u

2

) = < f; v � u

2

>

2

�a

1

(h;R

1




0

(v � u

2

))

+

R




1

fR

1




0

(v � u

2

)d�d� 8v 2 U

(2)

;

(6:19)

where R

1

(g) satis�es for any g 2 H

1

2

(�

1

),

4R

1

g = 0 in D

1

(6:20a)

R

1

g = 0 on �

4

; R

1

g(�;1) = 0; R

1

g +

@R

1

g

@�

= 0 on �

2

; R

1

g = g on �

1

:

(6:20b)

Let us prove the equivalence between (6.17) and (6.19). Since h is a solution of

the free boundary problem 1, i.e., (6.14), we have

4h = �f�




1

in D

1

: (6:21)

Therefore, for any v 2 U

(2)

,

�a

1

(h;R

1




0

(v � u

2

)) +

R




1

fR

1




0

(v � u

2

)d�d�

= �

R

D

1

rh � r(R

1




0

(v � u

2

))d�d� �

R

�

2

hR

1




0

(v � u

2

)d� +

R




1

fR

1




0

(v � u

2

)d�d�

=

R

D

1

(4h)(R

1




0

(v � u

2

))d�d� �

R

@D

1

(R

1




0

(v � u

2

))

@h

@n

ds

�

R

�

2

hR

1




0

(v � u

2

)d� +

R




1

fR

1




0

(v � u

2

)d�d�

=

R

D

1

(�f�




1

)(R

1




0

(v � u

2

))d�d� +

R

�

1

(v � u

2

)

@h

@�

d� +

R




1

fR

1




0

(v � u

2

)d�d�

=

R

�

1

(v � u

2

)

@h

@�

d�

(6:22)

which shows the equivalence between (6.17) and (6.19) by comparing the expression

of (6.17) and (6.19).

If we let g = 


0

u

2

and h = u

1

in the above subproblems, then we get the following

equivalence theorem.
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Theorem 3 If fu

1

; u

2

g solves the variational form of subproblems 1 and 2, respec-

tively, with h = u

1

and g = 


0

u

2

and in addition u

1

and u

2

are su�ciently regular,

then

u = u

1

in D

1

; u = u

2

in D

2

gives a solution of

4u = f�




in D

u � 0 and u = 0 on �

4

; u+ u

�

= 0 on �

2

[ �

3

; u = h(�) on �

0

(6:23)

with suitable regularity assumptions.

Now we are ready to proceed with the iterative scheme that allows us to solve the

above split problem.

6.3.2 Iterative scheme

Let � = H

1

2

(�

1

), g

(1)

2 �; g

(1)

� 0 be given. For n � 1 construct u

(n)

1

2

H

1

(D

1

); u

(n)

2

2 H

1

(D

2

) by:

De�ne the convex sets:

U

(1)

(g) = fv : v 2 H

1

(D

1

); v(�;1) = 0; v = 0 on �

4

;




0

v = g on �

1

; v � 0 on D

1

g;

U

(2)

= fv : v 2 H

1

(D

2

); v(�;1) = 0; 0 < � < �

0

; v = h(�)on �

0

g

First for n = 1, �nd (u

(n)

1

;


(n)

1

) such that u

(n)

1

2 U

(1)

(g

(n)

),

a

1

(u

(n)

1

; v � u

(n)

1

) �< f; v � u

(n)

1

>

1

8v 2 U

(1)

(g

(n)

) (6:24)

and




(n)

1

= f(�; �) : u

(n)

1

(�; �) > 0g:

Then �nd u

(n)

2

2 U

(2)

such that

a

2

(u

(n)

2

; v � u

(n)

2

) = < f; v � u

(n)

2

>

2

�a

1

(u

(n)

1

; R

1




0

(v � u

(n)

2

))

+

R




(n)

1

fR

1




0

(v � u

(n)

2

)d�d� 8v 2 U

(2)

:

(6:25)
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Next de�ne

g

(n+1)

= 


0

(u

(n+1)

1

) = �

n




0

(u

(n)

2

) + (1� �

n

)g

(n)

(6:26)

with 0 < �

n

< 1. Here all �

n

=

1

2

. Then repeat (6.24) with n replaced by n + 1.

where u

(n)

1(i;j)

is the value of u

1

at node i; j for the nth iteration and similarly for u

(n)

2(i;j)

.

These iterations are stopped when

jju

(n+1)

1

� u

(n)

1

jj

1

< � and jju

(n+1)

2

� u

(n)

2

jj

2

< �;

where jjujj

k

; k = 1; 2 are the norm de�ned below and � is preset.

We need to de�ne some norm notation which will be useful later. Let

jjvjj

2

k

= a

k

(v; v) for k = 1; 2 (6:27)

jjj jjj := jjR

1

 jj

2

1

(6:28)

((�;  )) := a

1

(R

1

�;R

1

 ) 8�;  2 �: (6:29)

6.3.3 Convergence of the iterative scheme

Once the initial guess g

(1)

is given, we shall be able to show that this sequence

of subproblems converges to our original problem as long as the g

(n)

's converge along

�

1

as n!1. In other words:

Theorem 4 If the sequence fg

(n)

= 


0

u

(n)

1

g converges as n tends to 1 and g

(n)

�

0 on �

1

, then the whole sequence fu

(n)

1

; u

(n)

2

g converges to the solution fu

1

; u

2

g of the

free boundary problem 1, i.e., (6.15) and boundary value problem 2, i.e., (6.17).

Proof. De�ne K := fz : z 2 H

1

(D

1

); z = 0 on �

1

[ �

4

; z(�;1) = 0; z �

0 in D

1

g:

Consider the following problem: Find z 2 K such that:

a

1

(z; w � z) �

Z

D

1

f(w � z); 8w 2 K: (6:30)

We know a solution z exists( Kinderlehrer and Stampacchia[14]). De�ne R

1

(g) as in

(6.20ab), then R

1

g satis�es

a

1

(R

1

g; w � z) = 0 8w 2 K; z 2 K:
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Let z be the solution to (6.30), then

a

1

(z; w � z) �

Z

D

1

f(w � z)� a

1

(R

1

g

(n)

; w � z) 8w 2 K (6:31)

i.e.,

a

1

(z +R

1

g

(n)

; w � z) �

Z

D

1

f(w � z) 8w 2 K: (6:32)

Since 8w 2 K;w +R

1

g

(n)

2 U

(1)

(g

(n)

), let u

(n)

1

= w +R

1

g

(n)

, then

u

(n)

1

2 U

(1)

(g

(n)

) (6:33)

and

w � z = w � (u

(n)

1

�R

1

g

(n)

)

= v � u

(n)

1

8v = w +R

1

g

(n)

in U

1

(g

(n)

):

(6:34)

As a result we have

a

1

(u

(n)

1

; v � u

(n)

1

) �

Z

D

1

f(v � u

(n)

1

) 8v 2 U

(1)

(g

(n)

) (6:35)

which is problem (6.24).

So 8m;n � 1; 9 solutions u

(n)

1

; u

(m)

1

with respect to g

(n)

; g

(m)

such that

u

(n)

1

= z +R

1

g

(n)

2 U

(1)

(g

(n)

)

and

u

(m)

1

= z +R

1

g

(m)

2 U

(1)

(g

(m)

): (6:36)

It then follows that:

jju

(n)

1

� u

(m)

1

jj

H

1

(D

1

)

= jjR

1

g

(n)

�R

1

g

(m)

jj

H

1

(D

1

)

: (6:37)

Since 


0

u

(n)

1

= g

(n)

, then jju

(n)

1

� u

(m)

1

jj

H

1

(D

1

)

! 0 as jjj
u

(n)

1

� 
u

(m)

1

jjj ! 0. This

implies the convergence of fu

(n)

1

g, since fu

(n)

1

g is a Cauchy sequence in the Hilbert

space J , where J := fv : v 2 H

1

(


1

); v = 0 on �

4

; v(�;1) = 0 g. As a result, the

limit of u

(n)

1

exists. Assume lim

n!1

u

(n)

1

= u

1

. By (6.26)

�

n�1




0

u

(n�1)

2

= g

(n)

� (1� �

n�1

)g

(n�1)

= 


0

u

(n)

1

� (1� �

n�1

)


0

u

(n�1)

1

= 


0

u

(n)

1

� 


0

u

(n�1)

1

+ �

n�1




0

u

(n�1)

1

:

(6:38)
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Therefore,

�

n�1

(


0

u

(n�1)

2

� 


0

u

(n�1)

1

) = 


0

u

(n)

1

� 


0

u

(n�1)

1

: (6:39)

Divide both sides by �

n�1

=

1

2

, then

j


0

u

(n�1)

2

� 


0

u

(n�1)

1

j � 2j


0

u

(n)

1

� 


0

u

(n�1)

1

j ! 0 (6:40)

Therefore,

lim

n!1




0

u

(n)

2

= lim

n!1




0

u

(n)

1

(6:41)

and lim

n!1




(n)

1

exists, i.e.,

Z




(m)

1

�


(n)

1

1d�d� = 0 as m, n!1:

From (6.25), we have

jju

(n)

2

� u

(m)

2

jj

2

2

� a

2

(u

(n)

2

� u

(m)

2

; u

(n)

2

� u

(m)

2

)

= a

2

(u

(n)

2

; u

(n)

2

� u

(m)

2

)� a

2

(u

(m)

2

; u

(n)

2

� u

(m)

2

)

= �a

2

(u

(n)

2

; u

(m)

2

� u

(n)

2

)� a

2

(u

(m)

2

; u

(n)

2

� u

(m)

2

)

= �

R

D

2

f(u

(m)

2

� u

(n)

2

) +

R




(n)

1

fR

1




0

(u

(m)

2

� u

(n)

2

)

�a

1

(u

(n)

1

; R

1




0

(u

(n)

2

� u

(m)

2

))�

R

D

2

f(u

(n)

2

� u

(m)

2

)

+

R




(m)

1

fR

1




0

(u

(n)

2

� u

(m)

2

)� a

1

(u

(m)

1

; R

1




0

(u

(n)

2

� u

(m)

2

))

= �a

1

(u

(n)

1

� u

(m)

1

; R

1




0

(u

(n)

2

� u

(m)

2

))

+

R




(n)

1

�


(m)

1

fR

1




0

(u

(m)

2

� u

(n)

2

)

+

R




(m)

1

�


(n)

1

fR

1




0

(u

(m)

2

� u

(n)

2

)

� jju

(n)

1

� u

(m)

1

jj jjR

1




0

(u

(n)

2

� u

(m)

2

)jj

+

R




(n)

1

�


(m)

1

jfR

1




0

(u

(n)

2

� u

(m)

2

)j

+

R




(m)

1

�


(n)

1

jfR

1




0

(u

(n)

2

� u

(m)

2

)j

! 0 as n, m !1:

(6:42)

Since U

(2)

is a closed subspace of a Hilbert space, therefore fu

(n)

2

g converges to some

function in U

(2)

, say u

2

.

If we take the limit in (6.35), we have:

a

1

(u

1

; v � u

1

) �

Z

D

1

f(v � u

1

) 8v 2 U

(1)

(g): (6:43)
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Therefore, the free boundary problem 1 is satis�ed by u

1

. From (6.41), we have




0

u

1

= 


0

u

2

on �

1

:

Taking the limit in (6.25), the boundary value problem 2 is satis�ed by u

2

.

As a result, to assure convergence over the entire region D it is only necessary to

have convergence of u

(n)

1

along �

1

. This iterative scheme allows a simple numerical

implementation with a stopping criteria of convergence on the common boundary.
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Chapter 7

Convergence Analysis of DDM

Schemes for Other Free

Boundary Problems

7.1 Introduction

As we mentioned before, free boundary value problems sometimes are divided into

two non-overlapping problems. In one region the problem is treated as an ordinary

boundary value problem. In the other region, the "free boundary part" of the problem

is reduced to a variational inequality. By solving these two problems successively, it

is shown numerically that the successive solutions converge to a single function that

gives a solution of the original problem.

Papadopoulos et al.[19], [20], Jiang et al.[13], Bruch et al.[7] used the idea of a non-

overlapping domain decomposition method to handle many free boundary problems

and obtained very good numerical results. However, a mathematical proof of the

convergence of this method has been an open problem. Herein, we use the maximum

principle to consider the non-overlapping DDM applied to the general free boundary

problem and prove the convergence of this non-overlapping DDM, which shows the

coincidence of theory and numerics.
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In the next 2 sections, we shall prove the convergence of 2 di�erent numerical

schemes used for the solution of the two free boundary problems in Chapter 5. In

Section 7.2 we shall show the convergence of the numerical scheme for the free surface

in a steady, two-dimensional seepage through a rectangular dam. In Section 7.3, we

shall show the convergence of the numerical scheme for the free boundary seepage

problem of 
ow through a porous dam with a toe drain.

7.2 Convergence of Numerical Scheme For Rectangular

Dam Problem

y

x

1

2

4

3

D D

D

12

0

Figure 7.1: The Free Boundary Problem

The rectangular dam problem is described by the following free boundary problem:

(4w � f)w = 0; 4w � f � 0; w � 0 on D (7:1)

with the boundary conditions:

w = h

1

� 0 on �

1

(7:2)

w = h

2

� 0 on �

2

(7:3)
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w = 0 on @D � �

1

� �

2

; (7:4)

where D is an open simply connected region in the (x; y) plane for which D = D

1

[

D

2

[ �, D

1

and D

2

are open sets, D

1

\D

2

= � (see Figure 7.1). � = @D

1

\ @D

2

is

the common boundary of D

1

and D

2

and f(x; y) � 0.

It is assumed that if 
 = f(x; y) 2 Djw(x; y) > 0g, then �

0

= @
\@(D�
) � D

1

,

i.e., the free boundary �

0

is in D

1

.( For many problems we can always split the region

into two parts so that the free boundary will be contained in only one part).

In fact, (7.1)-(7.4) are equivalent to the following variational inequality formula-

tion: �nd w 2 K, so that

a(w; v � w) �< f; v � w > 8v 2 K; (7:5)

where

a(u; v) =

Z

D

(

@u

@x

@v

@x

+

@u

@y

@v

@y

)dxdy

< f; v >=

Z

D

f(x; y)v(x; y)dxdy

K = fu 2 H

1

(D) : uj

�

1

= h

1

(x; y); uj

�

2

= h

2

(x; y); uj

@D��

1

��

2

= 0; u � 0g:

The existence, uniqueness of the solution of (7.5) as well as the regularity of �

0

have been shown to hold( Baiocchi and Capelo[1]). As a consequence, (7.1)-(7.4) can

be solved.

First, let us introduce a theorem which will be used in proving the convergence

of the iteration.

Theorem 5 Suppose the width of the right sub-domain D

1

, M satis�es 0 < M <

1:732. Then there exists a constant � >

1

2

such that for any u 2 H

1

(D

1

),

�jjujj

H

1
� juj

H

1
;

where jjujj

H

1 is the complete H

1

norm of u while juj

H

1 is the norm of the �rst deriva-

tives of u.
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Proof.

ju(x; y)j = j

R

s=M

s=x

1 u

s

(s; y)dsj

� (

R

M

s=x

1 ds)

1

2

(

R

M

s=x

u

2

s

(s; y)ds)

1

2

�M

1

2

(

R

M

0

u

2

s

(s; y)ds)

1

2

;

therefore,

u

2

(x; y) �M

Z

M

0

u

2

s

(s; y)ds

Z

M

x=0

u

2

(x; y)dx �M

2

Z

M

0

u

2

s

(s; y)ds

R

M

y=0

R

M

x=0

u

2

(x; y)dxdy �M

2

R

B

y=0

R

M

0

u

2

s

(s; y)dsdy

�M

2

R

B

y=0

R

M

0

(u

2

x

(x; y) + u

2

y

(x; y))dxdy:

Thus,

jjujj

2

L

2

�M

2

juj

2

H

1

;

i.e.,

jjujj

L

2
�M juj

H

1
:

Consider the following equality:

�juj

2

H

1

+ (1� �)juj

2

H

1

= juj

2

H

1

;

where 0 < � < 1 will be determined later.

From above, we have

�juj

2

H

1

+

(1� �)

M

2

juj

2

L

2

� juj

2

H

1

:

Let �

2

= min(�;

(1��)

M

2

), then

�

2

jjujj

2

H

1

< juj

2

H

1

:

To �nd the range of M so that � >

1

2

, we must have � >

1

4

and

(1��)

M

2

>

1

4

, i.e., � >

1

4

and M < 2

p

1� �. M has a maximum value when � =

1

4

and then

M = 2

r

1�

1

4

= 1:732:

Therefore, when 0 < M < 1:732, we have � >

1

2

, and

�jjujj

H

1
� juj

H

1
:
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This completes the proof of the theorem.

Now let us set up the two di�erent problems in D

1

and D

2

and iterate between

them, and try to show these two solutions will converge to the solution of (7.3).

Problem 1. Given g 2 H

1

2

(�), �nd a function u

1

de�ned on D

1

and u

1

2 K

1

(g)

such that

a

1

(u

1

; v � u

1

) �< f; v � u

1

>

1

8v 2 K

1

(g);

where

K

1

(g) = fv : v = g on �; v = 0 on @D

1

� �

1

� �; v = h

1

on �

1

; v � 0; v 2 H

1

(D

1

)g

a

j

(u; v) =

Z

D

j

(

@u

@x

@v

@x

+

@u

@y

@v

@y

)dxdy j = 1; 2

< f; v >

j

=

Z

D

j

f(x; y)v(x; y)dxdy j = 1; 2:

Problem 2. Given h 2 H

1

(D

1

) with 


0

@h

@x

2 H

1

2

(�), �nd a function u

2

de�ned

on D

2

and u

2

2 K

2

such that

a

2

(u

2

; v � u

2

) =< f; v � u

2

>

2

+

Z

�

(v � u

2

)

@h

@x

dy 8v 2 K

2

;

where

K

2

= fv : v = 0 on D

2

� �

2

� �; v = h

2

on �

2

; v 2 H

1

(D

2

)g:

The following iteration scheme for Problem 1 and 2 is used:

Step 1. Guess g

(1)

2 H

1

2

(�) on �. Extend g

(1)

to G

(1)

2 H

1

(D

1

), i.e.,




0

G

(1)

j

@D

1

��

= 0; 


0

G

(1)

j

�

= g

(1)

:

Set u

1

= u

(1)

1

+G

(1)

, and solve for u

(1)

1

2 H

1

0

(D

1

),

a

1

(u

(1)

1

+G

(1)

; v � u

(1)

1

�G

(1)

) �< f; v � u

(1)

1

�G

(1)

>

1

8v 2 K

1

(g

(1)

):

Therefore,

a

1

(u

(1)

1

; v

1

� u

(1)

1

) � �a

1

(G

(1)

; v

1

� u

(1)

1

)+ < f; v

1

� u

(1)

1

>

1

;

where v

1

= v �G

(1)

, v

1

2 H

1

0

(D

1

):
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Step 2. With h = u

(1)

1

, solve Problem 2, i.e.,

@u

(1)

2

@x

= 


0

@u

(1)

1

@x

on �

for u

(1)

2

in H

1

(D

2

), where it has been assumed 


0

@u

(1)

1

@x

2 H

1

2

(�).

Then we go back to Step 1 with g

(2)

= 


0

u

(1)

2

on � and check that g

(2)

� 0 on �,

then solve for u

(2)

1

. These iterations are stopped when

jju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

< � and jju

(n+1)

2

� u

(n)

2

jj

H

1

(D

2

)

< �;

where � is some �xed positive constant.

We have the following sequence of problems:

Find u

(n+1)

1

2 H

1

0

(D

1

), such that 8v

n+1

2 H

1

0

(D

1

)

a

1

(u

(n+1)

1

; v

n+1

� u

(n+1)

1

) � �a

1

(G

(n+1)

; v

n+1

� u

(n+1)

1

)+ < f; v

n+1

� u

(n+1)

1

>

1

:

Since u

(n)

1

2 H

1

0

(D

1

), we can choose v

n+1

= u

(n)

1

to yield

a

1

(u

(n+1)

1

; u

(n)

1

� u

(n+1)

1

) � �a

1

(G

(n+1)

; u

(n)

1

� u

(n+1)

1

)+ < f; u

(n)

1

� u

(n+1)

1

>

1

:

Similarly we can choose u

(n+1)

1

to yield

a

1

(u

(n)

1

; u

(n+1)

1

� u

(n)

1

) � �a

1

(G

(n)

; u

(n+1)

1

� u

(n)

1

)+ < f; u

(n+1)

1

� u

(n)

1

>

1

:

Adding the above two inequalities, we have

a

1

(u

(n+1)

1

� u

(n)

1

; u

(n+1)

1

� u

(n)

1

) � �a

1

(G

(n+1)

�G

(n)

; u

(n+1)

1

� u

(n)

1

)

i.e.,

Z

D

1

r(u

(n+1)

1

�u

(n)

1

)�r(u

(n+1)

1

�u

(n)

1

)dx � �

Z

D

1

r(G

(n+1)

�G

(n)

)�r(u

(n+1)

1

�u

(n)

1

)dx:

Therefore, by the Cauchy-Schwarz inequality,

ju

(n+1)

1

� u

(n)

1

j

H

1

(D

1

)

� jG

(n+1)

�G

(n)

j

H

1

(D

1

)

and we can choose for n > 2, G

(n)

= u

1

� u

(n)

1

and G

(n+1)

= u

1

�

1

2

(u

(n)

1

+ u

(n�1)

1

),

then

ju

(n+1)

1

� u

(n)

1

j

H

1

(D

1

)

�

1

2

ju

(n)

1

� u

(n�1)

1

j

H

1

(D

1

)

:
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Under the assumption that the conditions of Theorem 5 hold, we have

�jju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

� ju

(n+1)

1

� u

(n)

1

j

H

1

(D

1

)

�

1

2

ju

(n)

1

� u

(n�1)

1

j

H

1

(D

1

)

�

1

2

jju

(n)

1

� u

(n�1)

1

jj

H

1

(D

1

)

:

Therefore,

jju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

�

e

�jju

(n)

1

� u

(n�1)

1

jj

H

1

(D

1

)

;

where

e

� =

1

2�

< 1. Now, we have

jju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

�

e

�jju

(n)

1

� u

(n�1)

1

jj

H

1

(D

1

)

� � � �

� (

e

�)

n�1

jju

(2)

1

� u

(1)

1

jj

H

1

(D

1

)

:

Therefore,

jju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

! 0 as n!1:

Since u

(n)

2

satis�es

a

2

(u

(n)

2

; v � u

(n)

2

) =< f; v � u

(n)

2

>

2

+

Z

�

(v � u

(n)

2

)

@u

(n)

1

@x

dy; 8v 2 K

2

then by choosing v = u

(n+1)

2

, we have

a

2

(u

(n)

2

; u

(n+1)

2

� u

(n)

2

) =< f; u

(n+1)

2

� u

(n)

2

>

2

+

Z

�

(u

(n+1)

2

� u

(n)

2

)

@u

(n)

1

@x

dy:

Similarly

a

2

(u

(n+1)

2

; u

(n)

2

� u

(n+1)

2

) =< f; u

(n)

2

� u

(n+1)

2

>

2

+

Z

�

(u

(n)

2

� u

(n+1)

2

)

@u

(n+1)

1

@x

dy:

Adding the above two equations, we obtain

a

2

(u

(n+1)

2

� u

(n)

2

; u

(n+1)

2

� u

(n)

2

) =

Z

�

(u

(n+1)

2

� u

(n)

2

)(

@(u

(n+1)

1

� u

(n)

1

)

@x

dy:

Therefore, by the Cauchy-Schwarz inequality,

ju

(n+1)

2

� u

(n)

2

j

2

H

1

(D

2

)

� jju

(n+1)

2

� u

(n)

2

jj

H

1

2

(�)

jj

@(u

(n+1)

1

� u

(n)

1

)

@x

jj

H

�

1

2

(�)
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and then

jju

(n+1)

2

� u

(n)

2

jj

2

H

1

(D

2

)

� Cjju

(n+1)

2

� u

(n)

2

jj

H

1

(D

2

)

jj

@(u

(n+1)

1

�u

(n)

1

)

@x

jj

H

0

(D

1

)

� Cjju

(n+1)

2

� u

(n)

2

jj

H

1

(D

2

)

jju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

;

where C depends on the domain D. Hence,

jju

(n+1)

2

� u

(n)

2

jj

H

1

(D

2

)

� Cjju

(n+1)

1

� u

(n)

1

jj

H

1

(D

1

)

;

i.e.,

jju

(n+1)

2

� u

(n)

2

jj

H

1

(D

2

)

! 0 as n!1:

Since u

(n)

1

is a Cauchy sequence in H

1

(D

1

), then there exists a function u

1

2 H

1

(D

1

),

such that lim

n!1

u

(n)

1

= u

1

. Similarly, there exists a function u

2

2 H

2

(D

1

), such that

lim

n!1

u

(n)

2

= u

2

. Since the function values and the normal derivatives of u

(n)

1

and

u

(n)

2

are equal on the boundary �, then the function values and the normal derivatives

of u

1

and u

2

should also be equal, then

u =

8

<

:

u

1

(x; y); (x; y) 2 D

1

u

2

(x; y); (x; y) 2 D

2

9

=

;

is in H

1

(D). It has been shown(Papadopoulos[21]) that such u(x; y) is the solution

to (7.5). Therefore, the sequence u

(n)

1

and u

(n)

2

constructed in our numerical scheme

will converge to the true solution of (7.5).

7.3 Convergence of Numerical Scheme For Porous Dam

With Toe Drain

7.3.1 A PDE problem with Dirichlet condition on �

4

First, we consider the following Dirichlet problem:

4u = 0 in D, (7:6a)

where D is a region whose four boundaries are �

1

, �

2

, �

3

and �

4

shown in Figure 7.2.

The solution u to (7.6) will satisfy the following boundary conditions:

u

y

= 0 on �

1
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u = 0 on �

2

[ �

3

(7:6b)

u = h(y) on �

4

:

1

2

3

4

D

Figure 7.2: The PDE Dirichlet Problem

Theorem 6 If u 2 H

2

(D) satis�es (7.6a) and (7.6b), and �� � h(y) � � on �

4

,

then u will satisfy

�� � u(x; y) � � in D:

Proof. First let us show u � � in D. Since u satis�es (7.6a), then the maximum

value of u in D should be on the boundary. Suppose the maximum value of u is u

0

.

If u

0

happens on �

1

, then from the maximum principle, we have

u

y

(p) < 0;

which contradicts the assumption u

y

= 0 on �

1

. Thus u

0

can only happen at the

other boundaries, i.e.,

u

0

= max(0; h(y)) � �:
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Next let us show u � �� in D. De�ne v = �u, then v will still satisfy (7.6a) with

the same boundary conditions except on �

4

, which is replaced by

v = �h(y) on �

4

:

By repeating the same procedure as before with v = �u, we can prove

v � � in D

i.e.,

u � �� in D:

This completes the proof of the theorem.

7.3.2 A PDE problem with Neumann condition on �

4

We consider the following problem:

4u = 0 in D, (7:7a)

where D is a region whose four boundaries are �

1

, �

2

, �

3

and �

4

shown in Figure 7.3.

The solution u to (7.7) will satisfy the following boundary conditions:

u

y

= 0 on �

1

u = 0 on �

2

[ �

3

(7:7b)

u

x

= h(y) on �

4

:

Theorem 7 If u 2 H

2

(D) satis�es (7.7a) and (7.7b), and �� � h(y) � � on �

4

,

then u will satisfy �� � u(x; y) � � in D, and

�(�)! 0 as �! 0:

Proof. Let D

1

be the re
ected region of D with respect to the y-axis and de�ne

D

0

= D [D

1

to be the union shown as Figure 7.4. Then we extend u to the whole

region by

u(x; y) = �u(�x; y) x < 0:
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x

y

1

3

D

2

4

Figure 7.3: The PDE Neumann Problem

Then in D

0

, u will satisfy

4u = 0 in D

0

u

y

= 0 on �

1

u

x

= �h(y) on �

0

4

u = 0 on �

3

u

x

= h(y) on �

4

:

Now de�ne w = u

x

in D

0

, then w will satisfy

4w = 0 in D

0

w

y

= 0 on �

1

w = �h(y) on �

0

4

w = 0 on �

3

w = h(y) on �

4

:
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x

2

y

4

3

D D

D

1

0

4

1

Figure 7.4: The Extended PDE Neumann Problem

Since �� � h(y) � �, we can repeat the same procedure for w as in Section 7.3.1, and

obtain

�� � w � � in D

0

:

However, u

x

= w and u(0; y) = 0, we have in D

u(x; y) =

Z

x

0

w(�; y)d�:

Therefore,

�M� � u �M� in D;

where M is the width of D in Figure 7.3. This completes the proof of Theorem 7.

7.3.3 A free boundary problem with Dirichlet condition on the bound-

ary �

We consider the following free boundary problem in D

1

, shown as in Figure 7.5.

(4u� f)u = 0; u � 0; 4u� f � 0 in D

1

(7:8)

u

y

= 0 on �

1

u = h on �
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u = 0 on �

3

[ �

4

:

1

3

D

4

1

12

Figure 7.5: The Free Boundary Dirichlet Problem

Theorem 8 Suppose u

1

and u

2

are solutions to (7.8) with u

1

� u

2

on �, then u

1

� u

2

in D

1

.

Proof. Let 


1

= f(x; y) 2 D

1

: u

1

(x; y) > 0g and 


2

= f(x; y) 2 D

1

: u

2

(x; y) >

0g. Then

4u

1

= f in 


1

4u

2

= f in 


2

:

Let u = u

2

� u

1

; then

u

�

� 0; uj

�

3

[�

4

= 0; u

y

j

�

1

= 0:

Break up D

1

into four regions:

D

1

= (


1

\ 


2

) [ (


1

� 


2

) [ (


2

� 


1

) [ �;

where � is the complement in D

1

of the �rst three. Clearly u = 0 on �.
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u can not take on a positive maximum on D

1

, except on �. To see this, observe:

(1) A positive maximum can not occur on 


1

� 


2

, since u � 0 there.

(2) A positive maximum can not occur on �, since u = 0 there.

(3) If a positive maximum occurs on 


1

\ 


2

, and does not occur on �, then since

4u = 0 on 


1

\ 


2

, it follows from the maximum principle that the maximum must

occur either at a point P common to the boundary of 


1

\ 


2

and to the boundary

of 


2

� 


1

or at a point P on �

1

. For the former case, since u 2 C

1

(D

1

) it follows

that

@u

@N

(P ) > 0 where N is the direction pointing exterior to 


1

\


2

and interior to




2

� 


1

. Meanwhile, on 


2

� 


1

, u = u

2

� 0 and hence

4u = 4u

2

= f � 0 on 


2

�


1

:

Again by maximum principle applied to u = u

2

on 


2

� 


1

it follows that if u = u

2

continuous on 


2

� 


1

, is to have a positive maximum it must occur at the same P

as above. However, by the maximum principle

@u

2

@N

(P ) < 0 gives a contradiction since

u

2

2 C

1

(D

1

): For the latter case, since u 2 C

1

(D

1

), the maximum principle gives

@u

@y

(P ) > 0, which contradicts the assumption of the boundary condition on �

1

:

Hence u can not take on a positive maximum on D

1

except on �. However, u � 0

on �, which means u can not be positive on D

1

. Then u � 0 in D

1

, i.e., u

1

� u

2

in

D

1

.

Corollary 1 Suppose u

1

and u

2

are solutions to (7.8), then

max

D

1

ju

1

� u

2

j = max

�

ju

1

� u

2

j:

Proof. By using the same idea as Theorem 8, we can prove

(1) the positive maximum of u

1

� u

2

on D

1

can only happen at � if it has one.

(2) the negative minimum of u

1

� u

2

on D

1

can only happen at � if it has one.

By combining both statements (1) and (2), it is completed.

Theorem 9 If u satis�es (7.8) with the given boundary conditions, and �� � h(y) �

� on �, then u will satisfy �� � u(x; y) � � in D

1

.
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Proof. Let h

1

(y) = h(y) and h

2

(y) = 0 are two functions de�ned on � and u

1

and u

2

are the solutions to (7.8) corresponding to h

1

and h

2

, respectively. Then, it is

clear that u

2

= 0 in D

1

. From Corollary 1, we have

max

D

1

ju

1

� u

2

j = max

�

jh

1

� h

2

j = �

i.e., �� � u(x; y) � � in D

1

.

7.3.4 Convergence result for the free boundary problem with mixed

boundary conditions

We consider the following problem:

(4u� f)u = 0; 4u� f � 0; u � 0 on D, (7:9)

where D is a region whose four boundaries are �

1

, �

2

, �

3

and �

4

shown in Fig 7.6.

The solution u to (7.9) will satisfy the following boundary conditions:

u

y

= 0 on �

1

u =

e

f(y) on �

2

u = 0 on �

3

[ �

4

:

Now let us split the domain into two subdomains D

1

and D

2

with � as their

common boundary. We will select � so that the free boundary will be in D

1

. Now we

will have 2 subproblems as below, and we will iterate between them, the successive

solutions will converge to the solution to the original problem.

Subproblem 1. Given g(y) on �, solve for u in D

1

(4u� f)u = 0; u � 0; 4u� f � 0 in D

1

(7:10)

u

y

= 0 on �

1

u = g(y) on �

u = 0 on �

3

[ �

4

:
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1

2

4

3

O

o

D D

D

12

Figure 7.6: The Free Boundary Problem

Subproblem 2. Given h(y) on �, solve for u in D

2

4u = 0 in D

2

(7:11)

u =

e

f(y) on �

2

u = 0 on �

3

u

x

= h(y) on �:

The iteration scheme is:

Step 1. Choose g

(0)

= 0 on �, solve Subproblem 1 for u

(0)

1

in D

1

.

Step 2. Let h

(0)

=

@u

(0)

1

@x

j

�

, solve Subproblem 2 for u

(0)

2

in D

2

.

Step 3. Let g

(1)

= u

(0)

2

j

�

, solve Subproblem 1 for u

(1)

1

in D

1

.

Generally, for n > 1, let g

(n)

= u

(n�1)

2

j

�

, solve Subproblem 1 for u

(n)

1

in D

1

. Then

let h

(n)

=

@u

(n)

1

@x

j

�

, solve Subproblem 2 for u

(n)

2

in D

2

. These iterations are stopped

when

max

i;j

ju

(n+1)

1(i;j)

� u

(n)

1(i;j)

j < � and max

i;j

ju

(n+1)

2(i;j)

� u

(n)

2(i;j)

j < �;

where � is preset.
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Theorem 10 Suppose u

(n)

1

and u

(n)

2

are the solutions as above. If g

(n)

converges on

�, then u

(n)

1

and u

(n)

2

will converge to the original solution of (7.9) in D

1

and D

2

,

respectively, as n!1:

Proof. Since g

(n)

converge to g on �, let u

1

be the solution of Subproblem 1 in

D

1

with g as the value on �. Then from Corollary 1, we have u

(n)

1

! u

1

. Therefore,

@u

(n)

1

@x

, i.e., h

(n)

also converges, for example, to h. Let u

2

be the solution of Subproblem

2 in D

2

with h as the partial derivative value on �, then from Theorem 7 , we have

u

(n)

2

! u

2

.

It is clear u

1

and u

2

will form the solution of (7.9). The proof is completed.
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