
E�cient Sparse Gaussian Elimination with Lazy

Space Allocation

by

Bin Jiang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at SANTA BARBARA

Committee in charge:

Professor Tao Yang, Chair

Professor Linda Petzold

Professor John Bruch

June 1999

1

Abstract

E�cient Sparse Gaussian Elimination with Lazy Space Allocation

by

Bin Jiang

Master of Science in Computer Science

University of California at Santa Barbara

Professor Tao Yang, Chair

A parallel algorithm is implemented for sparse Gaussian elimination on dis-

tributed memory machines. At First, we utilize the minimum degree ordering

algorithm and transversal algorithm to reorder the columns and rows of the

matrix. Next, we implement the LU factorization of the reordered matrix by

combining various techniques, such as static symbolic factorization, 2D supern-

ode partitioning, asynchronous computation scheduling and the new lazy space

allocation strategy. This lazy space allocation strategy can e�ectively control

memory usage, especially when static symbolic factorization overestimates �ll-

ins excessively. Our experiments show that the new LU code using this strategy

has sequential time and space cost competitive with SuperLU, and can deliver

up to 10 GFLOPS when running on 128 Cray 450Mhz T3E nodes. At last, we

implement the triangle solve phase of Gaussian Elimination by using the same

data mapping scheme as in LU factorization. The software implementing this GE

algorithm is released to public and can be ported to Cray T3E and SGI Origin

2000 systems.

iii

Contents

1 Introduction 1

2 Ordering and Transversal of Sparse Matrix 4

2.1 Transversal Algorithm by Du� 4

2.2 Approximate Transversal Algorithm in S

+

. 6

3 Sparse LU factorization with Lazy Allocation 9

3.1 Strategies of S

+

Implementation 9

3.1.1 Static symbolic factorization. 9

3.1.2 Elimination forests. 11

3.1.3 2D L=U supernode partitioning and amalgamation. 12

3.1.4 2D data mapping and asynchronous parallelism ex-

ploitation. 15

3.2 Space Optimization Techniques 16

3.2.1 Delayed space allocation 16

3.2.2 Space reclamation . 18

3.3 Performance Comparison of new S

+

with old code and SuperLU . 19

3.3.1 Experimental Studies on Sequential Performance 19

3.3.2 Experimental Studies on Parallel Performance 21

4 Parallel Triangular Solves 24

4.1 Introduction . 24

4.2 Parallel Triangular Solve . 26

4.3 Performance of Parallel Triangle Solves 27

5 Implementation of MPI S

+

software and Comparison with SHMEM 30

5.1 Implementation of S

+

MPI code 31

5.2 Comparison of MPI with SHMEM 32

iv

6 Conclusions and Future Directions 34

6.1 Summary of contributions . 34

6.2 Future research directions . 35

Bibliography 36

v

Acknowledgements

I would like to thank every one who has helped me during my graduate study

at UCSB. In particular, I would like to thank my advisor Tao Yang, who has

always been available for discussions and insightful comments, so I could pursue

research in the right direction. I thank Prof. Linda Petzold and Prof. John

Bruch for serving on my thesis committee. I also own thanks to Kai Shen and

Steve Richman, who have been working with me for a long time and helped me

a lot for this paper, and Xiangmin Jiao and Cong Fu, who are the past members

of our project but they still provided me with some good advice for this thesis.

Finally I would like to thank my wife Jinhua for her support and much good

advise towards my future career.

This work was supported in part by NSF CAREER CCR-9702640 and by

DARPA through UMD (ONR Contract Number N6600197C8534). We would like

to thank Horst Simon for providing access to the Cray 450Mhz T3E at NERSC.

1

Chapter 1

Introduction

A time and space e�cient parallelization for sparse Gaussian elimination with

pivoting is the key to solving large sparse non-symmetric linear systems. Such

linear systems arise from a wide range of areas, such as computational
uid

dynamics, structural engineering and device simulation etc., and many of the

systems involve tens of thousands of unknowns. Solving these large linear systems

may involve tens of billions of
oating point operations and require gigabytes of

memory. A high performance sequential computer may not be powerful enough

to solve the problems. It is very important to design a parallel algorithm which

can aggregate computational power and memory of multiprocessors to e�ciently

solve large sparse linear systems.

As far as we know, there is no published result for parallel sparse LU on

current commercially available distributed memory machines such as Cray-T3D,

Intel Paragon, IBM SP/2, TMC CM-5 and Meiko CS-2. One di�culty in the

parallelization of sparse LU on these machines is how to utilize the sophisticated

uni-processor architecture. The design of a sequential algorithmmust take advan-

tage of caching, which makes some previously proposed techniques less e�ective.

On the other hand, a parallel implementation must utilize the fast communi-

cation mechanisms available on these machines. It is easy to get speedups by

2

comparing a parallel code to a sequential code which does not fully exploit the

uni-processor capability, but it is not as easy to parallelize a highly optimized

sequential code. One such sequential code is SuperLU [7] which uses a supernode

approach to conduct sequential sparse LU with column partial pivoting. The su-

pernode partitioning makes it possible to perform most of the numerical updates

using BLAS-2 level dense matrix-vector multiplications, and therefore to better

exploit memory hierarchies. They perform symbolic factorization and generate

supernodes on the
y as the factorization proceeds. Their code delivers impres-

sive performance and is among the best sequential codes for sparse LU with

partial pivoting [7, 3]. However it is challenging to parallelize their code to get

scalable performance and so far we have not seen any published results on the

parallelization of their method on distributed memory machines.

In [15] we presented a novel approach that considers three key optimization

strategies together in parallelizing the sparse LU algorithm: 1) adopt a static

symbolic factorization scheme to eliminate the data structure variation caused by

dynamic pivoting; 2) identify data regularity from the sparse structure obtained

by the symbolic factorization scheme so that e�cient dense operations can be used

to perform most of the computation; 3) make use of graph scheduling techniques

and e�cient run-time support to exploit irregular parallelism. We observe that on

most current commodity processors with memory hierarchies, a highly optimized

BLAS-3 subroutine usually outperforms a BLAS-2 subroutine in implementing

the same numerical operations [6, 8]. We can a�ord to introduce some extra

BLAS-3 operations in re-designing the LU algorithm so that the new algorithm is

easily parallelized but the sequential performance of this code is still competitive

to the current best sequential code. We use the static symbolic factorization

technique �rst proposed in [16, 17] to predict the worst possible structures of the

L and U factors without knowing the actual numerical values, then we develop

a non-symmetric L/U supernode partitioning technique to identify the dense

structures in both the L and U factors, and maximize the use of BLAS-3 level

3

subroutines (matrix-matrix multiplication) for these dense structures. We also

incorporate a supernode amalgamation technique to increase the granularity of

the computation.

Recently [23] we have further studied the properties of elimination forests to

guide supernode partitioning/amalgamation and execution scheduling. The new

code with 2D mapping, called S

+

, e�ectively clusters dense structures without

introducing too many zeros in the BLAS computation, and uses supernodal ma-

trix multiplication to retain the BLAS-3 level e�ciency and avoid unnecessary

arithmetic operations. The experiments show that S

+

improves our previous

code substantially and can achieve up to 11.04GFLOPS on 128 Cray 450MHz

T3E nodes.

Our previous evaluation shows that for most of the tested matrices, static

symbolic factorization provides fairly accurate prediction of nonzero patterns and

only creates 10% to 50% more �ll-ins compared to dynamic symbolic factoriza-

tion used in SuperLU. However, for some matrices static symbolic factorization

creates too many �ll-ins and our previous solution does not provide a smooth

adaptation in handling such cases. For these cases, we �nd that the predic-

tion can contain a signi�cant number of �ll-ins that remain zero throughout the

numerical factorization. This indicates that space allocated to those �ll-ins is

unnecessary.

Thus our �rst space-saving strategy is to delay the space allocation decision

and acquire memory only when a submatrix block becomes truly nonzero during

numerical computation. Such a dynamic space allocation strategy can lead to

a relatively small space requirement even if static factorization excessively over-

predicts nonzero �ll-ins.

Another strategy we have proposed is to examine if space recycling for some

nonzero submatrices is possible since a nonzero submatrix may become zero dur-

ing numerical factorization due to pivoting and number subtraction. This has

the potential to save signi�cantly more space since the early identi�cation of zero

4

blocks prevents their propagation in the update phase of the factorization.

Since our S

+

method with lazy space allocation shows a great deal of advan-

tages over other software for the sparse matrix LU factorization on distributed

memory machines, such as Cray T3E, SGI Origin 2000, we implemented this S

+

software utilizing all the methods we will talk about in this thesis to the solve

sparse matrix equation AX = B on the distributed memory machines. This

software is implemented by the widely used Message Passing Interface(MPI).

Since MPI code can be run under almost all parallel system, our software can be

applicable to all machines where MPI library is installed.

Generally speaking, sparse Gaussian elimination consists of three steps: ana-

lyze, factorize and solve [2, 10], compared to the dense elimination which has

only the last two steps. The concepts of factorize and solve of the sparse Gaus-

sian elimination are the same as those of the dense elimination, whereas there

exist some minor di�erences between them. The rest of this paper is organized

as follows. Chapter 2 concerns the analyze phase of our S

+

, and presents the

ordering and a new transversal technique for the matrices before Gaussian elimi-

nation. Chapter 3 presents the factorize phase of our S

+

code and introduces two

Space Optimization methods for S

+

. The experimental results on a Sun Ultra-1

Sparcstation and Cray T3E show that our new code uses less space than our old

code and is faster than the SuperLU method. Chapter 4 concerns the solve phase

and presents a parallel forward substitution algorithm and a parallel backward

substitution algorithm for the triangular solving with the same data mapping

scheme to avoid data shu�ing between processors. Chapter 5 introduces the S

+

software implemented by MPI. A comparison of time performance of MPI code

with SHMEM code is also provided, showing that MPI code is comparable to

SHMEM code under Cray T3E and therefore can be used in practice. Chapter 6

concludes the paper and proposes some future research directions.

5

Chapter 2

Ordering and Transversal of

Sparse Matrix

The analyze phase is the preprocessing step for sparse Gaussian elimination.

The key features of the analyze phase are to preserve sparsity by using some

ordering algorithms.

Ordering is an important issue in sparse matrix computation, because di�erent

ordering of equations and variables can have a signi�cant impact on �ll, which

determines the memory requirements, number of
oating-point operations and

caching performance.

To �nd an optimal ordering for a given matrix is an NP-hard problem [24].

Some heuristic ordering algorithms have been extensively discussed in [18], and

better algorithms are still under investigation [5].

In this thesis, we use the column minimum degree ordering implemented by

J.W.Liu [18]. It has been veri�ed that the minimum column degree ordering can

reduce the nonzero �ll-ins during the step of symbolic factorization in our S

+

.

6

2.1 Transversal Algorithm by Du�

However, after the ordering of columns, the diagonal of the matrix may con-

tain many zeros due to the permutation of columns. This will introduce extra

nonzeros into the structure of the L and U factors and bring more burden to

the LU factorization, because Symbolic factorization determines the upper bound

of the structures of the L and U factors without actually computing the factors

numerically as follows:

\At each step k (1 � k < n), each row i � k which has a nonzero element

in column k consists candidate pivot rows for row k. As the static symbolic

factorization proceeds, at step k the nonzero structures of each candidate pivot

row for k is replaced by the union of the structures of all these candidate pivot

rows and the kth row(no matter whether or not a

kk

is zero) except the �rst k� 1

columns."

Since the kth row will always be taken into the union at step k even though

its diagonal element a

kk

is zero, but this row won't be taken into the union at

step k if it is not the kth row based on the above principle, therefore we should

keep all (or as many as we can) the diagonal elements as nonzeros, then reduce

the possibility of rows with zero diagonal being taken into the union while in fact

it won't be considered for the union if it is not the kth row at step k. In this way

we can decrease the number of candidate rows at each step.

Therefore a transversal algorithm to transverse the rows to produce a zero-free

diagonal is necessary for the matrix being ordered by minimum degree ordering.

The most popular transversal algorithm is Du�'s algorithm [9] which ensures the

transverse matrix will have a zero-free diagonal.

First let's describe the basic techniques of the algorithm, making use of some

terminology from graph theory.

The transversal is constructed in n major steps, after the kth of which we

have a transversal for a submatrix of order k. After the kth step, we associated

7

with the matrix an unconventional directed graph(which usually changes from

step to step). Each vertex of the graph corresponds to a row of the matrix, and

there is an edge from vertex i

0

to vertex i

1

if there exists a column of the matrix,

j

1

say, such that nonzero (i

1

, j

1

) is a current transversal element and element

(i

0

, j

1

) is nonzero. We say we can reach vertex i

1

from vertex i

0

and de�ne a

path to be a sequence of edges of this kind. It is helpful to consider a path,

from i

0

to i

k

, say, as a sequence of nonzero (i

0

; j

1

); (i

1

; j

2

); : : : ; (i

k�1

; j

k

) where

the present transversal includes the nonzeros (i

1

; j

1

); (i

2

; j

2

); : : : ; (i

k

; j

k

). Now if

there is a nonzero in position (i

k

; j

k+1

), and if no nonzero in row i

0

or column

j

k+1

is currently on the transversal, then the length of the transversal can be

increased by 1 by removing nonzeros (i

r

; j

r

); r = 1; : : : ; k, from the transversal

and adding nonzeros (i

r

; j

r+1

); r = 0; 1; : : : ; k to it. In Figure 2.1, we illustrate

this reassignment chain on the matrix representation.

i

i

i

i

0

2

1

3

j j j j4213

Figure 2.1: Reassignment Chain

The reassignment is shown by directed lines in Figure 2.1, the vertical lines

from nonzeros (i

r

; j

r+1

) to (i

r

; j

r

), and horizontal lines from (i

r

; j

r

) to (i

r

; j

r+1

).

The reassignment corresponds to replacing the three underlined transversal ele-

ments by the circled nonzeros.

We use a depth �rst search technique to �nd the reassignment chain. We

search edges from the current vertex and add to our path the �rst vertex en-

8

countered that we have not revisited. This becomes the current vertex and we

proceed from it as before. If all the vertices that can be reached from the current

one at the end of the path are already visited, we retrace our steps to the vertex

added to the path immediately before this present one, make that the current

vertex, and proceed as before. We de�ne our edges, as before, to be the form of

(i

1

; i

2

) where (i

1

; j

2

), say, is a nonzero and (i

2

; j

2

) a present assignment. We start

from any unassigned vertex(row) i

0

and trace a path using a DFS technique until

a vertex i

k

is reached where the path terminates because nonzero (i

k

; j

k+1

) exists

and j

k+1

is an unassigned column.

In practice this algorithm is very ine�cient because the DFS scheme does not

specify which unvisited vertex reached from the present current vertex should be

added to the path and such a choice could be quite critical.

The complexity of the algorithm is O(n�), where n is the order of the matrix

and � is the number of nonzeros of the matrix. Therefore, for a large matrix, the

transversal algorithm is very time consuming(You will see it from Table 2.1), and

it will be very ine�cient to use the original Du�'s algorithm to handle transversal

in our code. In Section 2.2 we propose a new approximation transversal algorithm

which is much faster than Du�'s algorithm.

2.2 Approximate Transversal Algorithm in S

+

Notice that the transversal algorithm is used to eliminate zeros on the diago-

nal of a matrix, to produce a sparser L and U structure in the step of symbolic

factorization. The optimal transversal algorithm is of order O(n�). We imple-

mented an approximate algorithm which is of order only O(�) and will produce

an almost zero-free diagonal for the matrix(the proportion of nonzeros on the

diagonal is less than 1%) and therefore the symbolic factorization will produce

almost the same sparser L and U structure for symbolic factorization but the

time saving for transversal is signi�cant.

9

We propose a new approximation transversal algorithm as follows:

Suppose the matrix has n rows. Each row contains some nonzero elements.

We use the array LeftOver[i] to denote the number of nonzeros in row i, where

1 � i � n.

At step 1, we go through all the nonzero elements of the 1st column. For

each element whose row number is i, the corresponding LeftOver[i] stands for the

number of nonzeros in row i. We choose the row whose LeftOver[i] is minimum

and then interchange row 1 with row i. At the same time, we decrease all the

LeftOver[i] by 1 for all nonzeros i in the 1st column and mark this row i so that it

won't be picked up in later steps. The row whose LeftOver[i] is minimum at this

step has the least possibility to be picked up as a candidate row for exchange in

later steps, therefore we choose it to be the candidate at this step. We decrease

LeftOver[i] by 1 for those i appearing in the �rst column since LeftOver[i] stands

for the remaining nonzero elements in row i at present. At each step k, we only

care about how many nonzero leftovers a row still owns from column k to column

n, therefore the LeftOver value will be decreased by 1 at the end of the current

step.

Generally, at step k, we go through all nonzeros in column k which are not

marked(The marked rows have been picked up as candidate row for prior steps

so they can not be used here). Choose the row i whose LeftOver[i] is minimum.

Then we interchange row i with row k and mark row i correspondingly. In this

way, we can transverse all the rows of the matrix and will make the matrix almost

zero diagonal free by interchange rows according to the LeftOver[i] value.

It is easy to see that we avoid the depth �rst search algorithm which is very

time consuming and ine�cient. We will see from the following table that our

approximate algorithm is very fast, but the trade-o� is that there may exist

some zeros on the diagonal but the percentage is very very small, less than 1%,

therefore it won't a�ect the time performance for symbolic factorization.

We can prove that the complexity of the above algorithm is O(�), where �

10

is the number of nonzeros of the matrix. Recalling the complexity of Du�'s

algorithm is O(n�), we can see, for a matrix whose row number n is large, the

time saving of our approximate algorithm is signi�cant over Du�'s Algorithm

from a theoretical point of view.

Table 2.1 compares the time used by the original Du� method applied to the

benchmark matrices after mmd ordering and that of our approximation algo-

rithm for the same matrices. The time for mmd ordering for those matrices is

also provided for clarity. We can see that the time of our algorithm is less than

1% of that spent by the Du� method on average, and can be ignored compared

with the time for mmd ordering. The last column shows the proportion of the

nonzero elements on the diagonal after using mmd and the approximate transver-

sal. It is usually less than 0.5% and will bring no negative e�ect for the symbolic

factorization.

Table 2.1: Comparison of Time Performance of Du� Transversal Method and our

Approximate method. Time is in seconds.

Matrix MMD Du� method Approximate method

zeros on the Diagonal

Matrix Order

OLAF1 9.82 98.18 0.25 220/16146

ex11 12.90 121.91 0.29 197/16614

goodwin 2.82 1.783 0.09 0/7320

jpwh991 0.087 0.114 0.003 12/991

memplus 111.98 1.88 0.09 78/17758

orsreg1 0.43 0.41 0.69 64/2205

raefsky4 13.91 178.65 0.359 343/19779

saylr4 0.47 5.53 0.02 76/3564

sherman3 0.25 0.66 0.02 62/5005

sherman5 0.15 0.27 0.01 23/3312

11

Chapter 3

Sparse LU factorization with

Lazy Allocation

3.1 Strategies of S

+

Implementation

3.1.1 Static symbolic factorization.

After ordering, the data structures are prepared for runtime execution. The

data structures of sparse computation are much more complicated than those

of dense computation. One important data structure of sparse code is matrix

structure, which stores the sparsity pattern of the matrix. In Gaussian elimi-

nation with partial pivoting, the matrix structures of the factors are unknown

before factorization, because the pivoting sequence is unknown until the factorize

phase. A straightforward method is to dynamically construct the data structure

during runtime. This method keeps track of the �ll during runtime and allo-

cates space for new �ll dynamically. The method has the advantage of precise

manipulation of �ll. However the disadvantages of this method are that it in-

troduces high overhead of memory management, one has to parallelize symbolic

factorization and numerical factorization interleavingly, and it is very di�cult to

12

implement on a distributed memory architecture. Another method is to do sym-

bolic factorization statically, i.e., to predict all possible �ll-ins and allocate space

for them before actual numerical computation. This method overestimates �ll-

ins and allocates memory space to avoid dynamic memory management. It has

been shown that the static approach is competitive with the dynamic approach

in terms of performance as well as memory requirements for a broad range of lin-

ear systems [7, 11, 13, 17] and it is much easier to be parallelized on distributed

memory machines.

Static symbolic factorization is proposed in [17] to identify the worst case

nonzero patterns without knowing numerical values of elements. The basic idea

is to statically consider all the possible pivoting choices at each elimination step

and the space is allocated for all the possible nonzero entries. The symbolic

factorization for an n� n matrix can be outlined as follows:

\At each step k(1 � k < n), each row i � k which has a nonzero element in

column k is a candidate pivot row for row k. As the static symbolic factorization

proceeds, at step k the nonzero structure of each candidate pivot row is replaced

by the union of the structures of all these candidate pivot rows except the elements

in the �rst k � 1 columns."

It is easy to see that this algorithm guarantees that L and U structures are

contained in the resulting matrix structure regardless of pivoting sequences. The

symbolic factorization process of the sample matrix in Figure 3.1 is shown in

Figure 3.2.

Using an e�cient implementation of the symbolic factorization algorithm [19],

this preprocessing step can be very fast. For example, it costs less than one second

for most of our tested matrices, at worst it costs 2 seconds on a single node of Cray

T3E, and the memory requirement is relatively small. The dynamic factorization,

which is used in the sequential and share-memory versions of SuperLU [7, 20],

provides more accurate data structure prediction on the
y, but it is challenging

to parallelize SuperLU with low runtime control overhead on distributed memory

13

A

Figure 3.1: A sample sparse matrix.

Nonzero

Fill-in

k=1 k=2 k=3

Figure 3.2: The �rst 3 steps of the symbolic factorization on a sample 5�5 sparse

matrix. The structure remains unchanged at step 4.

machines. In [14, 15], we show that static factorization does not produce too

many �ll-ins for most of the tested matrices, even for large matrices using a

simple matrix ordering strategy (minimum degree ordering). For a few tested

matrices, static factorization generates an excessive amount of �ll-ins and future

work is needed to study re-ordering strategies to reduce over-estimation ratios.

14

3.1.2 Elimination forests.

Considering an n�n sparse matrix A, we assume that every diagonal element

of A is nonzero. Notice that for any nonsingular matrix which does not have

a zero-free diagonal, it is always possible to permute the rows of the matrix so

that the permuted matrix has a zero-free diagonal [9]. We will use the following

notations in the rest of this section. We will still call the matrix after symbolic

factorization as A since this paper assumes the symbolic factorization is con-

ducted �rst. Let a

i;j

be the element of row i and column j in A and a

i:j;s:t

be the

submatrix of A from row i to row j and column s to t. Let L

k

denote column

k of the L factor, which is a

k:n;k:k

. Let U

k

denote row k of the U factor, which

is a

k:k;k:n

. Also let jL

k

j and jU

k

j be the total number of nonzeros and �ll-ins in

those structures.

De�nition 1 An LU Elimination forest for an n � n matrix A has n nodes

numbered from 1 to n. For any two numbers k and j (k < j), there is an edge

from vertex j to vertex k in the forest if and only if a

kj

is the �rst o�-diagonal

nonzero in U

k

and jL

k

j > 1. Vertex j is called the parent of vertex k, and vertex

k is called a child of vertex j.

An elimination forest for a given matrix can be generated in a time complexity

of O(n) and it can actually be a byproduct of the symbolic factorization. Fig-

ure 3.3 illustrates a sparse matrix after symbolic factorization and its elimination

forest.

The following property 1 below demonstrates the structural properties of an

elimination forest.

Property 1. If vertex j is an ancestor of vertex k in an elimination forest,

then L

k

� fk; k + 1; � � � ; j � 1g � L

j

and U

k

� fk; k + 1; � � � ; j � 1g � U

j

.

De�nition 2 Let j > k, L

k

directly updates L

j

if task Update(k; j) is per-

formed in LU factorization, i.e. a

k

kj

6= 0 and jL

k

j > 1. L

k

indirectly updates

15

Nonzeros in the original matrix

Elimination Forest

5

2

1

Fill-in entries generated by symbolic factorization

1

8

2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

7

6

4

3

Figure 3.3: A sparse matrix and its elimination forest.

L

j

if there is a sequence s

1

; s

2

; � � � ; s

p

such that: s

1

= k, s

p

= j and L

s

q

directly

updates L

s

q+1

for each 1 � q � p� 1.

Property 2 below identi�es the dependency information in the elimination

forest.

Property 2. Let k < j, L

k

is used to directly or indirectly update L

j

in LU

factorization if and only if vertex j is an ancestor of vertex k.

Property 1 captures the structural containment between two columns in L

and two rows in U , which will be used for designing supernode partitioning with

amalgamation in the next subsection. Property 2 indicates dependency infor-

mation in the numerical elimination, which can guide our parallel scheduling of

asynchronous parallelism.

3.1.3 2D L=U supernode partitioning and amalgamation.

Given a nonsymmetric matrix A after symbolic factorization, in [15] we have

described a 2D L=U supernode partitioning in which two stage partitioning is

applied. Stage 1: A group of consecutive columns that have the same structure

16

in the L factor is considered as one supernode column block. Then the L factor

is sliced as a set of consecutive column blocks. Stage 2: After an L supernode

partition has been obtained, the same partition is applied to the rows of the

matrix to further break each supernode column block into submatrices.

We examine how elimination forests can be used to guide and improve the 2D

L=U supernode partitioning. The following corollary is a straightforward result

of Property 1 and it shows that we can easily traverse an elimination forest to

identify supernodes. Notice that each element in a dense structure can be a

nonzero or a �ll-in due to static symbolic factorization.

Corollary 1 If for each i 2 fs+ 1; s+ 2; � � � ; tg, vertex i is the parent of vertex

i� 1 and jL

i

j = jL

i�1

j � 1, then 1) the diagonal block a

s:t; s:t

is completely dense,

2) a

t+1:n;s:t

contains only dense subrows, and 3) a

s:t;t+1:n

contains only dense

subcolumns.

The partitioning algorithm using the above corollary can be brie
y summa-

rized as follows. For each pair of two consecutively numbered vertices with the

parent/child relationship in the elimination forest, we check the size di�erence

between the two corresponding columns in the L part. If the di�erence is one, we

assign these two columns into an L supernode. Since if a submatrix in a supern-

ode is too large, it won't �t into the cache and also large grain partitioning reduces

available parallelism, we usually enforce an upper bound on the supernode size.

Notice that U partitioning is applied after the L partitioning is completed. We

do not need to check any constraint on U because as long as a child-parent pair

(i; i � 1) satis�es jL

i

j = jL

i�1

j � 1, we can show that jU

i

j = jU

i�1

j � 1 based on

Theorem 1 in [15] and hence the structures of U

i

and U

i�1

are identical. Fig-

ure 3.4(a) illustrates supernode partitioning of the sparse matrix in Figure 3.3.

There are 6 L=U supernodes and from the L partitioning point of view, columns

from 1 to 5 are not grouped but columns 6, 7 and 8 are clustered together.

17

Fill-in entries generated by supernode amalgamationNonzeros in original matrix

Fill-in entries generated by symbolic factorization

3 4 5 6 7 82 2 3 4 5 6 7 81

8

1

2

3

4

5

6

7

1

8

1

2

3

4

5

6

7

(b)(a)

R(1:2)

R(3:4)

R(5:5)

R(6:8)

Figure 3.4: (a) Supernode partitioning for the matrix in Figure 3.3; (b) The result

of supernode amalgamation.

For most of the tested sparse matrices in our experiments, the average supern-

ode size after the above partitioning strategy is very small, about 1.5 to 2 columns.

This leads to relatively �ne grained computation. In practice, amalgamation is

commonly adopted to increase the average supernode size by introducing some

extra zero entries in dense structures of supernodes. In this way, caching per-

formance can be improved and interprocessor communication overhead may be

reduced. For sparse Cholesky (e.g. [22]), the basic idea of amalgamation is to

relax the restriction that all the columns in a supernode must have exactly the

same o�-diagonal nonzero structure. In a Cholesky elimination tree, a parent

could be merged with its children if merging does not introduce too many extra

zero entries into a supernode. Row and column permutations are needed if the

parent is not consecutive with its children. For sparse LU, such a permutation

may alter the symbolic factorization result. In our previous approach [15], we

simply compare the consecutive columns of the L factor, and make a decision

on merging if the total number of di�erence is under a pre-set threshold. This

approach is simple, resulting in a bounded number of extra zero entries included

in the dense structure of L supernode. However, the result of partitioning may

lead to too many extra zero entries in the dense structure of U supernode. Using

18

the elimination forest properties, we can remedy this problem by partitioning L

and U factors simultaneously as follows.

We call our supernodes after amalgamation as relaxed L=U supernodes and

each of them includes elements from both the L part and the U part.

De�nition 3 A relaxed L=U supernode R(s:t) contains three parts: the diagonal

block a

s:t;s:t

, the L supernode part a

s+1:n;s:t

and the U supernode part a

s:t;t+1:n

.

The following corollary, which is also a straightforward result of Property 1,

can be used to bound the nonzero structure of a relaxed L=U supernode.

Corollary 2 If for each i where s+1 � i � t, vertex i is the parent of vertex i�1

in an elimination forest, then the nonzero structure of each column in a

s+1:n; s:t

is

a subset of the structure in L

t

, and the nonzero structure of each row in a

s:t; t+1:n

is a subset of the structure in U

t

.

Using Corollary 2, in R(s : t) the ratio of extra �ll-ins introduced by amalga-

mation compared with the actual nonzeros can be computed as:

z =

(t� s+ 1)

2

+ (t� s+ 1)� (nz(L

t

) + nz(U

t

)� 2)

nz(R(s : t))

� 1

where nz() gives the number of nonzero elements in the corresponding structure

including �ll-ins created by symbolic factorization. Also notice that both L

t

and

U

t

include the diagonal element.

Thus our heuristic for 2D partitioning is to traverse the elimination forest and

�nd relaxed supernodes R(s : t) satisfying the following conditions:

1. for each i where s + 1 � i � t, vertex i is the parent of vertex i� 1 in the

elimination forest,

2. the extra �ll-in ratio, z, is less than the pre-de�ned threshold, and

3. t� s+ 1 � the pre-de�ned upper bound for supernode sizes.

19

Our experiments show that the above strategy is very e�ective and the complexity

of the partitioning algorithm with amalgamation is O(n), which is very low and

is made possible by Corollary 2. Our experiments show that the number of total

extra �ll-ins doesn't change much when the upper bound for z is in the range of

10�100% and it seldom exceeds 2% of the total nonzeros in the whole matrix. In

terms of upper bound for supernode size, 25 gives the best caching and parallel

performance on T3E.

Figure 3.4(b) illustrates the result of supernode amalgamation for the sparse

matrix in Figure 3.3. Condition z � 30% is applied during the amalgamation.

There are four relaxed L=U supernodes: R(1 : 2), R(3 : 4), R(5 : 5), and R(6 : 8).

3.1.4 2D data mapping and asynchronous parallelism ex-

ploitation.

Given an n � n matrix A, assume that after the matrix partitioning it has

N � N submatrix blocks. Let A

i;j

denote a submatrix of A with row block in-

dex i and column block index j. We use 2D block-cyclic mapping: processors

are viewed as a 2D grid, and a column block of A is assigned to a column of

processors. 2D sparse LU Factorization is more scalable than the 1D data map-

ping [12]. However 2D mapping introduces more overhead for pivoting and row

swapping. Each column block k is associated with two types of tasks: Factor(k)

and Update(k; j) for 1 � k < j � N . 1) Task Factor(k) factorizes all the columns

in the k-th column block, including �nding the pivoting sequence associated with

those columns and updating the lower triangular portion of column block k.

The pivoting sequence is held until the factorization of the k-th column block

is completed. Then the pivoting sequence is applied to the rest of the matrix.

This is called \delayed pivoting" [6]. 2) Task Update(k; j) uses column block k

(A

k;k

; A

k+1;k

; � � � ; A

N;k

) to modify column block j. That includes \row swapping"

using the result of pivoting derived by Factor(k), \scaling" which uses the fac-

20

torized submatrix A

k;k

to scale A

k;j

, and \updating" which uses submatrices A

i;k

and A

k;j

to modify A

i;j

for k + 1 � i � N . Figure 3.5 outlines the partitioned

LU factorization algorithm with partial pivoting.

for k = 1 to N

Perform task Factor(k);

for j = k + 1 to N with A

kj

6= 0

Perform task Update(k; j);

endfor

endfor

Figure 3.5: Partitioned sparse LU factorization with partial pivoting.

In [23], we have proposed an asynchronous scheduling guided by the elimi-

nation forest. This strategy enables the parallelism exploitation among Factor()

tasks which used to be serialized by previous scheduling strategies.

3.2 Space Optimization Techniques

As we mentioned in Chapter 1, static symbolic factorization may produce

excessive amount of �ll-ins for some test matrices. This makes our S

+

LU factor-

ization very space and time consuming for these matrices. How to save space and

speed up LU for these matrices becomes a very serious problem for us. In this

section, we introduce two techniques to solve this problem. The �rst technique,

called delayed space allocation, delays the allocation of space for a block until

some of its elements truly become nonzero. The second technique, called space

reclamation, deallocates space for previously nonzero blocks which become zero

at some step of the factorization.

21

3.2.1 Delayed space allocation

Since symbolic factorization can introduce many more �ll-ins than the nonze-

ros of the original matrix, the blocks produced during L/U supernode partitioning

basically are of the following three types:

1. Some elements in a block are nonzeros in the original matrix. For this type

of block, we should allocate the space for it in advance.

2. All the elements in a block are zeros in the original matrix during the

initialization, but some elements become nonzeros during the numerical

factorization. For this type of block, we don't allocate space at �rst and

will allocate space when nonzero elements are produced later on.

3. All the elements in the block are zeros in the original matrix during the

initialization, and remain zeros throughout the numerical factorization. For

this type of block, we should not allocate space.

Our experiments showed that the matrices on which S

+

code didn't run well

(i.e., S

+

needed a lot of space and time) contain 10 � 24% of type 3 blocks,

i.e., blocks which always remain zero from beginning to end. In S

+

, these blocks

occupied space and were involved in the numerical factorization even though they

did nothing, thereby wasting a lot of time and space.

Therefore we use di�erent space allocation policies for di�erent types of blocks

in the matrices. The general idea is to delay the space allocation decision and

acquire memory only when a block becomes truly nonzero during numerical com-

putation. Such a dynamic space allocation strategy can lead to a relatively small

space requirement even if static factorization excessively over-predicts nonzero

�ll-ins. We discuss the impact of this strategy in the following aspects:

� For relatively dense matrices, this strategy has almost no e�ect since almost

all the blocks produced at the step of supernode partitioning contain at least

22

some nonzeros or will have some nonzeros during numerical factorization,

the number of blocks of type 3 is very small. Thus lazy allocation won't

save a lot of space for those matrices.

� However for the relatively sparse matrices which contain many blocks of

type 3, the lazy allocation technique will never allocate the space for those

blocks of type 3. The space saving is obvious.

� Further savings can be reaped in another part of our code: numerical fac-

torization. First of all, each Factor task in numerical factorization needs

to factorize one column block. And all zero blocks are unnecessary to get

involved into this task. But as long as a block is recognized as a nonzero

block in numerical factorization, S

+

still ran it even though it may be ac-

tually a zero block during numerical factorization. However, in LazyS

+

with delayed space allocation, those actually zero blocks are not allocated

space throughout the numerical factorization and they will be treated as

zero blocks without getting involved into the numerical factorization. The

Update tasks are the most time consuming part of numerical factoriza-

tion. Update(k; j) uses blocks A

i;k

and A

k;j

to update block A

i;j

for every

k < i � N . If either A

i;k

or A

k;j

is a zero block, it is unnecessary to up-

date block A

i;j

in this task (see Figure 3.6). However, S

+

code updated

every A

i;j

if both A

i;k

and A

k;j

are recognized as nonzero blocks by sym-

bolic factorization even though one of them is a zero block during numeric

factorization. Therefore a lot of time was wasted in unnecessary updat-

ing. LazyS

+

with delayed space allocation gets rid of this shortcoming. It

�rst checks block A

k;j

. If it is a zero block, the whole Update(k; j) task is

skipped (see Figure 3.7(a)). Otherwise, it picks up the nonzero blocks A

i;k

in column k, and updates the corresponding blocks A

i;j

(see Figure 3.7(b)).

23

k j

A A

A A

A A

A A

kk kj

ik ij

ik ij

ik ij

Figure 3.6: Illustration of Update(k; j) task.

3.2.2 Space reclamation

Our experiments also show that some nonzero blocks which have been assigned

space will become zero blocks later on due to pivoting. Since zero blocks don't

need space any more, we can collect the space of these blocks. Therefore we

can save the space they occupied. Furthermore, these blocks won't appear in

future Factor(k) and Update(k; j) tasks which saves unnecessary computation

time. This is our second strategy of space optimization.

The execution of task Update(k; j) uses blocks A

i;k

and A

k;j

to update block

A

i;j

for every k < i � N . If block A

i;k

has been allocated space earlier due

to some nonzero elements in it but at this time contains only zeros due to piv-

oting, the bene�ts of this space reclamation strategy are considerable in several

ways. Without this strategy, A

i;k

would still be treated as a nonzero block, and it

would still get involved in task Update(k; j) which is actually unnecessary. Fur-

thermore, if the block A

i;j

has not been allocated space before, this unnecessary

update would enforce a space allocation for A

i;j

which is again unnecessary. In the

worst case, this situation would propagate along with the factorization process

and produce a considerable amount of wasted space and unnecessary computa-

tion. The space reclamation strategy gets rid of this problem by checking if some

formerly-nonzero blocks on column block k or A

k;j

have become zero in the be-

24

(b)

k j

A A

A A

A A

A A

kk kj

ik ij

ik ij

ik ij

k j

A A

A A

A A

A A

kk kj

ik ij

ik ij

ik ij

(a)

nonzero blocks in numeric factorization

nonzero blocks recognized by symbolic factotization,
but are actually zero blocks in numeric factorization

Figure 3.7: Illustration of Update(k; j) task with delayed space allocation.

ginning of task Update(k; j). If they have, their space will be deallocated and

those blocks will also be excluded from future computation.

3.3 Performance Comparison of new S

+

with

old code and SuperLU

3.3.1 Experimental Studies on Sequential Performance

The sequential machine we use is a SUN 167MHZ Ultra-1 with 320MB mem-

ory, 16KB L1 data cache and 512KB L2 cache. We have compared our sequential

code with SuperLU, but not UMFPACK [4] because SuperLU has been shown

competitive to UMFPACK [7]. The following benchmark matrices are used from

various application domains: af23560, e40r0100, �dap011, goodwin, memplus,

orsreg1, raefsky4, saylr4, sherman3, sherman5, TIa, TIb, TId and wang3. All

matrices are ordered using the minimum degree algorithm. In computing giga
op

rates, we use operation counts reported by SuperLU for the tested matrices, which

25

excludes the extra computation introduced by static symbolic factorization.

Comparison of S

+

, LazyS

+

and SuperLU

We compare the sequential performance of S

+

, SuperLU and LazyS

+

on all

the matrices. From Table 3.1, we can see the LazyS

+

code will run a little bit

faster than the S

+

and SuperLU, while the space saving is not obvious. The

reason is that these matrices do not have enough zero blocks for lazy allocation

to be very advantageous. On average, for these non circuit simulation matrices,

LazyS

+

will use 4:1% less space and 7:2% less time than S

+

, while LazyS

+

will

use 0:8% less space and 15:8% less time than SuperLU.

From Table 3.1, we can see obvious savings of space and time when LazyS

+

is compared with S

+

and SuperLU. The reason is twofold: �rst, these matrices

contain a lot of zero blocks which aren't allocated space and involved in the com-

putation when lazy allocation is used; second, S

+

and SuperLU cause paging on

matrices TIb and wang3 due to the large amount of space needed. By excluding

the paging e�ects, i.e. only considering the other three matrices when calculating

the savings on time, LazyS

+

uses 41:7% less space and 62:5% less time than S

+

and it uses 9:6% less space and 60:7% less time than SuperLU.

Sensitiveness on block size limit

The above experiments use the block size limit 25. Table 3.2 shows the per-

formance of LazyS

+

under di�erent block size limits. For most matrices where

�ll-in overestimation is not excessive,, when we reduce this limit to 15, 10, and 5,

changes in space saving are insigni�cant while processing time increases gradually

due to degradation of caching performance.

For matrices with high �ll-in overestimation, space saving is more e�ective

when the block size is reduced. The reason is that when the block size becomes

smaller, the probability of a block being zero block is higher. Therefore the lazy

26

Table 3.1: Sequential performance. A \-" implies the data is not available due

to insu�cient memory. Time is in seconds and space is in MBytes.

Matrix S

+

SuperLU LazyS

+

Exec. Time Ratio

Time Space Time Space Time Space

LazyS

+

SuperLU

LazyS

+

S

+

sherman5 0.97 3.061 1.09 3.305 0.93 2.964 0.853 0.959

sherman3 2.33 5.713 2.15 5.412 2.20 5.536 1.023 0.944

orsreg1 2.37 5.077 2.12 4.555 1.95 4.730 0.920 0.823

saylr4 4.02 8.509 3.63 7.386 3.50 8.014 0.964 0.870

goodwin 15.02 29.192 22.71 35.555 14.91 28.995 0.657 0.993

e40r0100 52.87 79.086 77.89 93.214 54.78 78.568 0.703 1.036

raefsky4 658.89 303.617 857.67 272.947 606.72 285.920 0.707 0.921

af23560 159.62 170.166 180.65 147.307 157.04 162.839 0.869 0.984

�dap011 357.26 221.074 683.64 271.423 360.62 219.208 0.528 1.009

TIa 6.31 8.541 5.88 6.265 3.97 7.321 0.675 0.629

TId 30.03 29.647 30.08 18.741 11.00 19.655 0.366 0.366

memplus 344.64 138.218 322.36 75.194 44.21 68.467 0.137 0.128

TIb 1325.29 341.418 1360.58 221.285 73.97 107.711 0.054 0.056

wang3 1431.91 430.817 - - 645.15 347.505 - 0.451

allocation strategy in LazyS

+

will become more e�ective.

E�ectiveness of each individual lazy allocation strategy used in LazyS

+

We also conducted experiments concerning the e�ectiveness of each individual

lazy allocation strategy. We are more interested in the circuit simulation matrices

because they are the matrices in which LazyS

+

shows great advantages.

Table 3.3 shows the time and space performance on circuit simulation matrices

by using S

+

, LazyS

+

and LazyS

+

without space reclamation. We can see that

the space reclamation plays a more important role than delayed allocation in the

overall improvement. And on average, the delayed allocation saves 6:6% in time

and 3:8% in space while the space reclamation saves 59:1% in time and 34:9%

in space. Note that we exclude the paging e�ect in this calculation, i.e., only

27

Table 3.2: Sequential performance of LazyS

+

with di�erent block size limits.

Time is in seconds and space is in MBytes.

Matrix 25 15 10 5

Time Space Time Space Time Space Time Space

sherman5 0.93 2.964 1.12 2.939 1.37 2.953 3.06 3.119

sherman3 2.20 5.536 2.79 5.545 3.52 5.600 7.92 5.988

orsreg1 1.95 4.730 2.23 4.558 2.31 4.308 3.34 4.128

saylr4 3.50 8.014 4.09 7.834 4.41 7.498 6.80 7.119

goodwin 14.91 28.995 0.89 29.168 28.02 29.725 79.10 32.760

e40r0100 54.78 78.568 76.45 79.170 102.39 80.373 334.93 88.968

raefsky4 606.72 285.920 809.11 279.931 997.88 278.565 2605.30 289.890

af23560 157.04 162.839 195.16 158.626 233.53 155.907 594.58 159.475

�dap011 360.62 219.208 513.05 220.791 688.81 225.337 2082.15 251.426

TIa 3.97 7.321 3.60 6.668 3.38 5.912 3.88 5.248

TId 11.00 19.655 8.29 15.090 7.50 12.641 7.77 12.410

memplus 44.21 68.467 29.19 62.752 19.35 56.590 17.98 41.666

TIb 73.97 107.711 62.29 79.032 70.74 66.089 185.74 84.377

wang3 645.15 347.505 627.20 310.836 602.84 282.690 952.76 270.136

counting matrices TIa, TId and memplus when calculating savings on time.

3.3.2 Experimental Studies on Parallel Performance

Our experiments on Cray T3E show that the parallel time performance of

LazyS

+

is still competitive to S

+

. It is shown in Table 3.4 that LazyS

+

can

achieve 10.004 GFLOPS on matrix vavasis, which is not much less than the

highest 11.04 GFLOPS achieved by S

+

on 128 450MHz T3E nodes. Table 3.5

is the performance on 300Mhz T3E nodes. Our study focuses on relatively large

matrices.

Table 3.4 lists the parallel performance on 450MHz T3E nodes, and the per-

formance data of LazyS

+

for some matrices is not available due to the insu�cient

28

Table 3.3: E�ectiveness of individual lazy strategy on circuit simulation matrices.

Time is in second s and space is in MBytes.

Matrix LazyS

+

LazyS

+

without space reclamation S

+

Time Space Time Space Time Space

sherman5 0.93 2.964 0.99 3.018 0.97 3.061

sherman3 2.20 5.536 2.36 5.657 2.33 5.713

orsreg1 1.95 4.730 2.33 5.038 2.37 5.077

saylr4 3.50 8.014 4.03 8.418 4.02 8.509

goodwin 14.91 28.995 15.42 29.070 15.02 29.192

e40r0100 54.78 78.568 55.07 78.761 52.87 79.086

raefsky4 606.72 285.920 672.02 300.094 658.89 303.617

af23560 157.04 162.839 163.45 167.710 159.62 170.166

�dap011 360.62 219.208 364.65 219.422 357.26 221.074

TIa 3.97 7.321 5.67 8.133 6.31 8.541

TId 11.00 19.655 27.73 27.682 30.03 29.647

memplus 44.21 68.467 338.22 138.633 344.64 138.218

TIb 73.97 107.711 1213.47 315.412 1325.29 341.418

wang3 645.15 347.505 1417.70 428.741 1431.91 430.817

CPU quota on this machine

1

. Nevertheless, data on 300MHz T3E nodes in Ta-

ble 3.4 actually indicates that LazyS

+

is competitive with S

+

for these matrices.

For the matrices with high �ll-in overestimation ratios, we observe that LazyS

+

with dynamic space management is better than S

+

. It is about 191% faster on 8

processors and 120% faster on 128 processors. Matrix wang3 can't run on T3E

using S

+

since it produces too many �ll-ins from static symbolic factorization.

However LazyS

+

only allocates space if necessary, so considerable space is saved

for a large amount of zero blocks.

As for other matrices, we can see from Table 3.5 that on 8 300Mhz proces-

sors LazyS

+

is about 1% slower than S

+

while on 128 processors, LazyS

+

is 7%

slower than S

+

. On average, LazyS

+

tends to become slower when the number of

processors becomes larger. This is because the lazy allocation scheme introduces

1

We will provide it when more computing resource is allocated.

29

Table 3.4: Time and MFLOPS performance of LazyS

+

and S

+

on 450MHz Cray

T3E. A "-" implies the data is not available due to insu�cient memory. A "*"

implies the data is not available due to insu�cient CPU quota on this machine.

Time is in seconds.

Matrix LazyS

+

P=8 S

+

P=8 LazyS

+

P=128 S

+

P=128

Time MFLOPS Time MFLOPS Time MFLOPS Time MFLOPS

goodwin * * 1.21 553.5 * * 0.67 999.6

e40r0100 * * 4.06 611.3 * * 1.59 1560.9

raefsky4 * * 38.62 804.2 * * 4.55 6826.0

af23560 * * 10.57 602.1 * * 2.80 2272.9

vavasis3 59.77 1492.9 62.68 1423.6 8.92 10004.0 8.08 11043.5

TIa 0.61 339.6 0.64 323.7 0.28 739.9 0.26 796.8

TId 2.10 281.5 1.98 298.6 0.59 1001.9 0.54 1094.8

TIb 12.81 555.7 47.88 148.7 2.83 2515.7 4.98 1429.5

memplus 8.28 0.2 - - 1.82 1.0 - -

wang3 74.69 194.9 - - 9.04 1610.2 - -

new overhead for dynamic memory management and for row and column broad-

casts (blocks of the same L-column or U-row, now allocated in non-contiguous

memory, can no longer be broadcasted as a unit). This new overhead a�ects

critical paths, which dominate performance when parallelism is limited and the

number of processors is large. This problem tends to become more serious when

the number of processors is getting bigger.

We need to mention memplus, a special circuit simulation matrix. This matrix

is excessively sparse: its order is 17758 but there are only 99147 nonzero elements.

Therefore the operation count reported by SuperLU is not large, but, due to its

special matrix structure (too sparse but still hard to conduct LU factorization),

it LU factorization still require a large portion of time. Therefore its MFLOPS

is much smaller than all the other test matrices.

30

Table 3.5: MFLOPS performance of S

+

and LazyS

+

on 300MHz Cray T3E.

Matrix P=8 P=32 P=128

LazyS

+

S

+

LazyS

+

S

+

LazyS

+

S

+

goodwin 374.1 403.5 676.4 736.0 788.0 826.8

e40r0100 413.0 443.2 880.2 992.8 1182.0 1272.8

raefsky4 587.6 568.2 1922.1 1930.3 4875.8 5133.6

af23560 418.4 432.1 1048.4 1161.3 1590.9 1844.7

vavasis3 1031.7 958.4 3469.4 3303.6 7924.5 8441.9

31

Chapter 4

Parallel Triangular Solves

In this chapter, we discuss some issues about parallel triangular solves. In

Section 4.1 we introduce some background information about triangular solves.

In Section 4.2 we discuss how to implement parallel triangular solve by using the

same data mapping scheme for the factorize phase so that data shu�ing can be

avoided. In Section 4.3 we present the time performance of parallel triangular

Solves compared with that of factorization.

4.1 Introduction

Triangular solve requires many fewer
oating point operations than sparse LU

factorization. Less e�orts have been made to parallelize it. However, paralleliza-

tion of triangular solve is drawing more attention [7] because of the following

reasons.

1. Limited memory resources of a sequential machine make it impossible to

solve very large triangular systems. Memory may be the most important

issue for some scienti�c and engineering computations.

2. After e�cient parallelizations of sparse LU factorization have been devel-

oped, triangular solve may become the bottleneck of the whole process of

32

sparse Gaussian elimination.

3. The factor results of factorization are distributed on multiprocessors for

space e�ciency. Gathering the factor results to a single processor introduces

high memory management and communication overhead.

4. For some applications, like multiple right-hand side systems and iterative

re�nement for linear systems [10], the triangular solves are executed multi-

ple times by reusing the factor results. In these kinds of systems triangular

solve might involve a comparable amount of computation as the factoriza-

tion.

It is more di�cult to parallelize sparse triangular solves than dense triangular

solves. One obvious reason is that we have to exploit irregular parallelism by

using asynchronous scheduling. More importantly, the data mapping of triangular

solves is predetermined by sparse LU factorization. We can not select the most

preferable mapping scheme for triangular solve because it may require global

data movement. It has been shown that 2-D data mapping scheme is more

scalable than 1-D data mapping for sparse LU factorization with partial pivoting,

but 2-D data mapping also makes the parallelization of triangular solves more

complicated. Lastly, because the L factor of sparse Gaussian elimination is stored

di�erently from that of dense elimination, the dependence of forward substitution

is more complicated in sparse elimination. In this chapter, we design the forward

substitution algorithm to solve Ly = b and the backward substitution algorithm

to solve Ux = y, where L and U are from the factorization for the original sparse

matrix equation Ax = b

The block triangular solvers are shown in Figure 4.1 and Figure 4.2. The

computation
ows of the block algorithms are the same as those of element-wise

algorithms. In Figure 4.1 and Figure 4.2, B

i

denote b

S(i):S(i+1)�1

. Again in the

block triangular solves, we assume that the block structure of L is Stored in a

column oriented manner and U is stored in a row oriented manner.

33

(01) for k = 1 to N

(02) b = P

k

b;

(03) Solve L

kk

B

k

= B

k

;

(04) for i = k + 1 to N with L

ik

6= 0

(05) B

i

= B

i

- L

ik

�B

k

;

(06) endfor

(07) endfor

Figure 4.1: Block forward substitution to solve P

1

L

1

P

2

L

2

� � �P

N

L

N

y = b. y is

stored in b at output. B

i

denote b

S(i):S(i+1)�1

.

(01) for k = N to 1

(02) Solve U

kk

B

k

= B

k

;

(03) for j = k � 1 to 1 with U

kj

6= 0

(04) B

j

= B

j

- U

jk

�B

j

;

(05) endfor

(06) endfor

Figure 4.2: Block back substitution to solve Ux = y. y is stored in b at input,

and x is stored in b at output. B

i

denote b

S(i):S(i+1)�1

.

34

Recall that in the sparse LU factorization with 2-D data mapping, a column

block is distributed onto a column of processors and a row block is distributed

onto a row of processors. So no matter whether row oriented or column ori-

ented, the computation of each stage can be overlapped. The column oriented

approach requires less communication, simple runtime control, less memory and

integer operation overhead, and better data locality, but multiple steps can not

be overlapped signi�cantly.

4.2 Parallel Triangular Solve

In this section, we implement the parallel version of triangle solve. Triangular

solving has two phases, the �rst phase is to solve Ly = b and the second phase

is to solve Ux = y where y is the temporary result from the �rst phase. To save

space, we will use the same memory location for b, y and x, which means the

result of y will cover b while the result of x will cover y, and x is the solution of

Ax = b.

We still use the data mapping scheme as in Chapter 3, therefore we use the

resulting L and U blocks obtained from LU factorization in the same processor.

At �rst, we divide the column b into several blocks B

i

where 1 � i � N and

B

i

denote b

S(i):S(i+1)�1

. Then we distribute these B blocks into the processors

which own the �rst block column of A according to the rule that the processor

which own L

k1

will own block B

k

, therefore the initial b values are distributed

on the �rst column blocks. Then as shown in Figure 4.3, the �rst column will

begin the �rst step of Ly = b and update the corresponding b blocks. Once

it's done, the �rst column processors will send the updated B blocks it own to

the second column processors which will update B blocks in the second step of

Ly = b. Keeping in this way, the processors which own the last column of A

blocks will have the �nal results of Ly = b stored in its own B blocks.

Next, the second phase of triangle solving, Ux = y begins at the processors

35

which owns the last column of A blocks. Each processor here will update its

own B blocks as in Ly = b, once it's done, it will send its own B blocks to its

left neighbor, and next its left neighbor will update B blocks in the same way.

Keeping this way for N steps, the processors which own the �rst column of A

blocks will get the �nal result of Ax = b and store it in its own B blocks.

Finally, we collect all B blocks from the processors which own the �rst column

of A blocks and put it back in b, which is the �nal result.

The two phases of parallel block triangular solves are shown in Figure 4.3 and

Figure 4.4. In Figure 4.3 and Figure 4.4, B

i

denote b

S(i):S(i+1)�1

.

4.3 Performance of Parallel Triangle Solves

In this section, we show the time performance of the parallel triangle solver

designed in Section 4.2.

Figure 4.1 shows the time comparison of LU factorization and triangular Solve

of MPI code on Cray T3E using 8 processors. We can see the time needed for the

triangle solve phase is less than 35% of the time needed for LU factorization for

most test matrices. Therefore the asynchronous computation scheduling which

can be used to utilize more parallelism is unnecessary here, since it will involve

more di�culty in the design algorithm but the time improvement is ignored

compared with time used for LU factorization.

The time performance for LU factorization and triangle solve is compared by

the same MPI code, therefore this comparison is acceptable.

We didn't implement the parallel triangle solve using SHMEM routines since

SHMEM routines can only be used on Cray T3E machines, thus many users

who have access to Origin or Meico can't use it. The SHMEM code is only

implemented for LU factorization in Chapter 3, since we want to �nd the highest

GFLOPs using any language and any platform. We already see we can reach

10GFlops under Cray T3E, which is the highest in the world.

36

(01) V = P

1

P

2

� � �P

N

;

(02) b = V

�1

b;

(03) for k = 1 to N

(04) if the processor owns column k

(05) if L

kk

is local

(06) solve L

kk

B

k

= B

k

(07) send B

k

to all the processors in the same column

(08) else

(09) receive B

k

from the processor which owns L

kk

(10) endif

(11) update B

j

= B

j

� L

jk

B

k

if L

jk

is local and L

jk

6= 0

(12) send the updated B blocks it owns to its right neighbor

(13) endif

(14) if the processor owns column k + 1

(15) receive the updated B blocks from its left neighbor

(16) endif

(17) endfor

Figure 4.3: Forward substitution to solve P

1

L

1

� � �P

N

L

N

y = b. y is stored in b

for output. B

i

denote b

S(k):S(k+1)�1

, and bsize(k) denote S(k + 1)� S(k).

37

(01) for k = N to 1

(02) if the processor owns column k

(03) if U

kk

is local

(04) solve U

kk

B

k

= B

k

(05) send B

k

to all the processors in the same column

(06) else

(07) receive B

k

from the processor which owns U

kk

(08) endif

(09) update B

j

= B

j

� U

jk

B

k

if L

jk

is local and L

jk

6= 0

(10) send the updated B blocks it owns to its left neighbor

(11) endif

(12) if the processor owns column k � 1

(13) receive the updated b blocks from its right neighbor

(14) endif

(15) endfor

Figure 4.4: Back substitution to solve Ux = y. y is stored in b at input, and x is

stored in b at output. B

i

denote b

S(k):S(k+1)�1

, and bsize(k) denote S(k+1)�S(k).

38

Table 4.1: Comparison of LU factorization and Triangular Solve of MPI code

with 8 processors. Time is in seconds.

Matrix Time of Triangular Solving Time of LU Factorization

OLAF1 2.42 11.38

af23560 4.91 18.95

vavsis 33.81 94.70

e40r0100 3.09 8.39

ex11 3.49 35.21

goodwin 0.71 2.55

jpwh991 0.11 0.28

memplus 6.01 14.17

orsreg1 0.27 0.69

raefsky4 4.67 58.40

saylr4 0.54 1.16

sherman3 1.80 1.12

sherman5 0.92 0.60

TIa 0.84 1.57

TIb 10.44 20.91

TId 1.56 2.92

wang3 17.54 119.70

39

Chapter 5

Implementation of MPI S

+

software and Comparison with

SHMEM

In Chapter 3, the parallel programs used to verify the e�ectiveness of our

new space allocation methods are implemented by SHMEM routines, which are

speci�c to Cray T3E and T3D platform.

The SHMEM routines are data passing library routines similar to message

passing library routines. They can be used as an alternative to message passing

routines such as Message Passing Interface (MPI) or Parallel Virtual Machine

(PVM). Like the message passing routines, the SHMEM routines pass data be-

tween cooperating parallel processes. SHMEM routines support remote data

transfer throughput operations, which transfer data to a di�erent PE, and get

operations, which transfer data from a di�erent PE.

SHMEM is much faster than MPI in that one processor can just write or

get data from the bu�er area of another processor without the awareness of

the second one by SHMEM code. However, it can only be implemented on Cray

machines and therefore a program written by SHMEM routines can not be ported

40

to other platforms such as ORIGIN 2000, or Meico machines. Thus the parallel

code we implemented in Chapter 3 has only theoretical importance to verify

the e�ectiveness of our new space saving methods. In order to use this sparse

matrix solver software called S

+

on di�erent platforms for di�erent users, we must

implement its equivalent Message Passing Interface (MPI) version, since MPI is a

widely used language on almost all parallel systems and its parallel performance

is robust and stable.

Since SHMEM is much faster than MPI in communication between di�erent

processors on Cray by utilizing Cray T3E communication properties, it is not

surprising to see that the new MPI version of S

+

should be slower than SHMEM

version. In Section 5.1, we will show how we implemented the MPI version of S

+

,

and in Section 5.2, we will compare the time performance of these two di�erent

codes on Cray T3E.

5.1 Implementation of S

+

MPI code

Since we solve the matrix equation on parallel machines, each processor owns

one part of the L and U structure. It �nishes its computation during each

step of Gaussian elimination, (symbolic factorization, LU factorization and tri-

angle solve) by communicating with other processors to exchange data blocks

frequently. Receiving and sending of data blocks between di�erent processors

can be implemented e�ciently by SHMEM routines or MPI routines.

Before we present the MPI implementation of S

+

, we �rst recall the imple-

mentation of SHMEM code. SHMEM is one kind of parallel routine which can

write or get data from the bu�er area of another processor without the awareness

of the second one. Therefore, when one processor needs to send some kind of

data to another processor, it just writes the data to the destination bu�er and

then sets one special bit in this bu�er to 1. When the second processor needs to

use this data, it �rst checks that bit. If the bit is set to 1, it knows the data has

41

already arrived and it just transfers the data in that bu�er area to its actual po-

sition in memory. Certainly, di�erent data should correspond to di�erent bu�er

areas on each processor, and all the processors know the situation in advance.

The advantage of the SHMEM code in communication is that each processor

can just read or write data from another processor's bu�er area directly. At

this time, the second processor may do something else, but it doesn't matter.

The receiving processor only needs to check the checking bit to see if the data is

received when it needs that data.

However, MPI routines have no such advantages in communication. They

must use MPI-Recv or MPI-Send functions to perform the above communication.

Now, let us explain some communication functions in S

+

MPI code and its

functionality.

There are four types of communication that need bu�ering:

1. Pivoting along a processor column, which includes communicating pivot

positions and multicasting pivot rows. We call the bu�er for this purpose

Pbu�er.

2. Multicasting along a processor row. The communicated data includes L

kk

,

local nonzero blocks in L

k+1:N; k

, and pivoting sequences. We call the bu�er

for this purpose Cbu�er.

3. Row interchange within a processor column. We call this bu�er Ibu�er.

4. Multicasting along a processor column. The data includes local nonzero

blocks of a row panel. We call the bu�er Rbu�er.

Corresponding to the above di�erent communication bu�ers, we provide the

following functions between di�erent processors:

1. SP-pivot-send and SP-pivot-get. The processor which owns block A

kk

will

send the pivot at step k to each processor on the same row.

42

2. SP-col-send and SP-col-get. Each processor which owns column k will send

its own blocks of block[k+1,...,n][k] to the processors which have the same

row number as that processor.

3. SP-row-send and SP-row-get. Each processor which owns row k will send

its own blocks of block[k][k+1,...,n] to the processors which have the same

column number as that processor.

All the above communication functions are implemented by using MPI-Recv

and MPI-Send functions.

5.2 Comparison of MPI with SHMEM

In this section we will show the comparison of time performance of S

+

MPI

code and SHMEM code. Since the major part of Gaussian Elimination is LU

factorization in time and space requirement, we only consider LU factorization

here.

Table 5.1 provides the comparison of LU time performance of SHMEM code

and MPI code on Cray T3E with 4, 8, 16 processors. From this table, we can

see the MPI code is really slower than the SHMEM code under Cray T3E. With

4 processors, the MPI code is 28% slower than the SHMEM code on average,

and with 8 processors, the MPI code is 29% slower than the SHMEM code on

average, while with 16 processors, the MPI code is 41% slower than the SHMEM

code on average.

43

Table 5.1: Comparison of parallel performance of MPI and SHMEM code with

4, 8, 16 processors. Time is in seconds. A \-" implies the data is not available

due to insu�cient memory.

Matrix 4 8 16

SHMEM MPI SHMEM MPI SHMEM MPI

OLAF1 15.87 19.87 9.27 11.38 6.14 8.52

af23560 26.59 33.45 14.91 18.95 8.96 13.05

vavsis - - 82.52 94.70 45.00 56.77

e40r0100 11.32 13.70 6.03 8.39 3.80 6.23

ex11 56.45 65.02 30.63 35.21 16.61 20.53

goodwin 3.10 4.125 1.97 2.55 1.20 2.54

jpwh991 0.21 0.34 0.14 0.28 0.12 0.35

memplus 19.82 24.29 11.51 14.17 6.84 9.68

orsreg1 0.59 0.94 0.41 0.69 0.41 0.81

raefsky4 100.2 109.15 51.74 58.40 28.36 33.64

saylr4 1.02 1.76 0.68 1.16 0.53 1.30

sherman3 0.90 1.39 0.51 1.12 0.41 1.31

sherman5 0.32 0.69 0.24 0.60 0.21 0.68

TIa 1.29 1.96 0.78 1.57 0.51 1.24

TIb 27.59 37.45 15.78 20.91 9.54 13.69

TId 3.17 4.96 2.20 2.92 1.21 2.37

wang3 - - 103.23 119.70 54.28 66.85

44

Chapter 6

Conclusions and Future

Directions

6.1 Summary of contributions

In this thesis, we implemented a time and space e�cient parallel method

for sparse matrix solving(i.e., Gaussian elimination) on distributed memory ma-

chines.

In the �rst step of sparse Gaussian elimination, we implemented the matrix

ordering algorithm, i.e., minimum degree ordering from J.W.Liu. However, the

ordering may introduce a lot of zeros on the diagonal, bring in more burden to the

symbolic factorization. Therefore, we implemented a new transversal algorithm

to reduce the portion of zeros on the diagonal to less than 1%, while the time

requirement for this algorithm is still linear to the number of nonzeros of the

matrix. The ordering and transversal is the minor part of Gaussian elimination

according to the time requirement but this is very important to later steps.

The second step concerns LU factorization. We proposed two space optimiza-

tion schemes. These two space optimization techniques used in LU factorization,

Delayed space allocation and Space reclamation, e�ectively reduce memory re-

45

quirements when static symbolic factorization creates an excessive amount of

extra �ll-ins. This new algorithm with dynamic space management exhibits com-

petitive sequential space and time performance compared to SuperLU for the

tested matrices. The parallel code becomes more robust in handling di�erent

classes of sparse matrices.

Finally, we implemented the parallel triangular solving. In this step, we still

use the same data mapping scheme, therefore, the data shu�ing is avoided. We

use forward substitution for the �rst phase Ly = b and use backward substitution

for the second phase Ux = y while x, y and b use the same space to reduce the

space requirement. At �rst, the initial column b is distributed to all processors

which owns the �rst column blocks of the matrix. In the �rst phase Ly = b, with

k going from 1 to n, the updated b at each step k will move from left to right,i.e.,

each processor which owns column blocks k will send its own B blocks to its right

neighbor. In the phase of Ux = y, with k going from n to 1, the updated b at

each step k will move from right to left, i.e., each processor which owns column

blocks k will send its own B blocks to its left neighbor. Finally, all the b blocks

will be collected together to constitute the �nal solution.

Considering the advantage of our S

+

method in time and space performance

on distributed memory machines , we released the MPI version of S

+

to the

public. You can download it from "http://www.cs.ucsb.edu/research/S+". The

portability of this software is very good. You can load and use it on Cray T3E,

T3D machines, SGI 2000 machine.

6.2 Future research directions

Since the ordering of the matrix before Gaussian Elimination will have an im-

portant in
uence on the performance of Gaussian Elimination, it is an interesting

research direction to study impact of the matrix ordering. Until now, there is

no optimal method to handle the matrix ordering. Some other approaches that

46

handle nonsymmetric matrices using the multifrontal method [1] and static piv-

oting [21] may be valuable to our S

+

method, which needs further investigation.

The second direction is the improvement of our S

+

MPI code which is slower

than the SHMEM code due to the communication pattern. We believe we can

still improve our MPI code by providing more parallelism in both computation

and communication to reduce the time di�erence between MPI and SHMEM

code.

47

Bibliography

[1] P. R. Amestoy, I. S. Du�, and J.-Y. L'Execellent. Multifrontal parallel

distributed symmetric and unsymmetric solvers. Technical Report RAL-

TR-98-051, Rutherford Appleton Laboratory, 1998.

[2] Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS Pub-

lishing Company, �fth edition, 1993.

[3] T. Davis. User's guide for the Unsymmetric-pattern Multifrontal Package

(UMFPACK). Technical Report TR-93-020, Computer and Information Sci-

ences Department, University of Florida, June 1993.

[4] T. Davis and I. S. Du�. An Unsymmetric-pattern Multifrontal Method for

Sparse LU factorization. SIAM Matrix Analysis & Applications, January

1997.

[5] T. A. Davis, J.R. Gilbert, E. Ng, and B. Peyton. Approximate Minimum

Degree Ordering for Unsymmetric Matrices. Talk presented at XIII House-

holder Symposium on Numerical Algebra, June 1996. Journal version in

preparation.

[6] J. Demmel. Numerical Linear Algebra on Parallel Processors. Lecture Notes

for NSF-CBMS Regional Conference in the Mathematical Sciences, June

1995.

48

[7] J. Demmel, S. Eisenstat, J. Gilbert, X. S. Li, and J. Liu. A Supernodal

Approach to Sparse Partial Pivoting. Technical Report CSD-95-883, EECS

Department, UC Berkeley, September 1995. To appear in SIAM J. Matrix

Anal. Appl.

[8] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended

Set of Basic Linear Algebra Subroutines. ACM Trans. on Mathematical

Software, 14:18{32, 1988.

[9] I. S. Du�. On Algorithms for Obtaining a Maximum Transversal. ACM

Transactions on Mathematical Software, 7(3):315{330, September 1981.

[10] I. S. Du�, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Ma-

trices. Clarendon Press, 1986.

[11] C. Fu, X. Jiao, and T. Yang. A Comparison of 1-D and 2-D Data Mapping

for Sparse LU Factorization with Partial Pivoting. In Proc. of Eighth SIAM

Conference on Parallel Processing for Scienti�c Computing, March 1997.

[12] C. Fu, X. Jiao, and T. Yang. A Comparison of 1-D and 2-D Data Mapping

for Sparse LU Factorization on Distributed Memory Machines. Proc. of 8th

SIAM Conference on Parallel Processing for Scienti�c Computing, March

1997.

[13] C. Fu, X. Jiao, and T. Yang. Parallel Sparse LU Factorization with Par-

tial Pivoting on Distributed Memory Architectures. Tech Rep. TRCS97-11,

UCSB Computer Science, 1997.

[14] C. Fu, X. Jiao, and T. Yang. E�cient Sparse LU Factorization with Par-

tial Pivoting on Distributed Memory Architectures. IEEE Transactions on

Parallel and Distributed Systems, 9(2):109{125, February 1998.

49

[15] C. Fu and T. Yang. Sparse LU Factorization with Partial Pivoting on Dis-

tributed Memory Machines. In Proceedings of ACM/IEEE Supercomputing,

Pittsburgh, November 1996.

[16] A. George and E. Ng. Symbolic Factorization for Sparse Gaussian Elimi-

nation with Partial Pivoting. SIAM J. Scienti�c and Statistical Computing,

8(6):877{898, November 1987.

[17] A. George and E. Ng. Parallel Sparse Gaussian Elimination with Partial

Pivoting. Annals of Operations Research, 22:219{240, 1990.

[18] J. A. George and J. W.-H. Liu. The Evolution of the Minimum Degree

Ordering Algorithm. SIAM Review, 31:1{19, 1989.

[19] X. Jiao. Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-D

Data Mapping. Master's thesis, Dept. of Computer Science, University of

California at Santa Barbara, August 1997.

[20] X. S. Li. Sparse Gaussian Elimination on High Performance Computers.

PhD thesis, Computer Science Division, EECS, UC Berkeley, 1996.

[21] X. S. Li and J. W. Demmel. Making Sparse Gaussian Elimination Scalable

by Static Pivoting. In Proceedings of Supercomputing'98, 1998.

[22] E. Rothberg. Exploiting the Memory Hierarchy in Sequential and Paral-

lel Sparse Cholesky Factorization. PhD thesis, Dept. of Computer Science,

Stanford, December 1992.

[23] K. Shen, X. Jiao, and T. Yang. Elimination Forest Guided 2D Sparse

LU Factorization. In Proceedings of the 10th ACM Symposium on Par-

allel Algorithms and Architectures, pages 5{15, June 1998. Available at

www:cs:ucsb:edu=research=RAPID:html.

50

[24] M. Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM J.

Alg. Disc. Meth., 2:77{79, 1981.

