Efficient Sparse Gaussian Elimination with Lazy
Space Allocation

by

Bin Jiang

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Master of Science
in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at SANTA BARBARA

Committee in charge:

Professor Tao Yang, Chair
Professor Linda Petzold
Professor John Bruch

June 1999

Abstract

Efficient Sparse Gaussian Elimination with Lazy Space Allocation
by

Bin Jiang

Master of Science in Computer Science

University of California at Santa Barbara

Professor Tao Yang, Chair

A parallel algorithm is implemented for sparse Gaussian elimination on dis-
tributed memory machines. At First, we utilize the minimum degree ordering
algorithm and transversal algorithm to reorder the columns and rows of the
matrix. Next, we implement the LU factorization of the reordered matrix by
combining various techniques, such as static symbolic factorization, 2D supern-
ode partitioning, asynchronous computation scheduling and the new lazy space
allocation strategy. This lazy space allocation strategy can effectively control
memory usage, especially when static symbolic factorization overestimates fill-
ins excessively. Our experiments show that the new LU code using this strategy
has sequential time and space cost competitive with SuperLU, and can deliver
up to 10 GFLOPS when running on 128 Cray 450Mhz T3E nodes. At last, we
implement the triangle solve phase of Gaussian Elimination by using the same
data mapping scheme as in LU factorization. The software implementing this GE
algorithm is released to public and can be ported to Cray T3E and SGI Origin
2000 systems.

1

Contents

1 Introduction 1
2 Ordering and Transversal of Sparse Matrix 4
2.1 Transversal Algorithm by Duft 4
2.2 Approximate Transversal Algorithm in S* 6

3 Sparse LU factorization with Lazy Allocation 9
3.1 Strategies of ST Implementation 9
3.1.1 Static symbolic factorization. 9

3.1.2 Elimination forests. 11

3.1.3 2D L/U supernode partitioning and amalgamation. 12
3.1.4 2D data mapping and asynchronous parallelism ex-

ploitation. 15

3.2 Space Optimization Techniques 16
3.2.1 Delayed space allocation 16
3.2.2 Space reclamation. L. 18

3.3 Performance Comparison of new St with old code and SuperLU . 19
3.3.1 Experimental Studies on Sequential Performance 19
3.3.2 Experimental Studies on Parallel Performance 21

4 Parallel Triangular Solves 24
4.1 Introduction 24
4.2 Parallel Triangular Solve 26
4.3 Performance of Parallel Triangle Solves 27

5 Implementation of MPI S* software and Comparison with SHMEM 30
5.1 Implementation of St MPIcode 31
5.2 Comparison of MPI with SHMEM 32

iv

6 Conclusions and Future Directions 34
6.1 Summary of contributions oL 34
6.2 Future research directions 35

Bibliography 36

Acknowledgements

I would like to thank every one who has helped me during my graduate study
at UCSB. In particular, I would like to thank my advisor Tao Yang, who has
always been available for discussions and insightful comments, so I could pursue
research in the right direction. I thank Prof. Linda Petzold and Prof. John
Bruch for serving on my thesis committee. I also own thanks to Kai Shen and
Steve Richman, who have been working with me for a long time and helped me
a lot for this paper, and Xiangmin Jiao and Cong Fu, who are the past members
of our project but they still provided me with some good advice for this thesis.
Finally I would like to thank my wife Jinhua for her support and much good
advise towards my future career.

This work was supported in part by NSF CAREER CCR-9702640 and by
DARPA through UMD (ONR Contract Number N6600197C8534). We would like
to thank Horst Simon for providing access to the Cray 450Mhz T3E at NERSC.

Chapter 1
Introduction

A time and space efficient parallelization for sparse Gaussian elimination with
pivoting is the key to solving large sparse non-symmetric linear systems. Such
linear systems arise from a wide range of areas, such as computational fluid
dynamics, structural engineering and device simulation etc., and many of the
systems involve tens of thousands of unknowns. Solving these large linear systems
may involve tens of billions of floating point operations and require gigabytes of
memory. A high performance sequential computer may not be powerful enough
to solve the problems. It is very important to design a parallel algorithm which
can aggregate computational power and memory of multiprocessors to efficiently

solve large sparse linear systems.

As far as we know, there is no published result for parallel sparse LU on
current commercially available distributed memory machines such as Cray-T3D,
Intel Paragon, IBM SP/2, TMC CM-5 and Meiko CS-2. One difficulty in the
parallelization of sparse LU on these machines is how to utilize the sophisticated
uni-processor architecture. The design of a sequential algorithm must take advan-
tage of caching, which makes some previously proposed techniques less effective.
On the other hand, a parallel implementation must utilize the fast communi-

cation mechanisms available on these machines. It is easy to get speedups by

comparing a parallel code to a sequential code which does not fully exploit the
uni-processor capability, but it is not as easy to parallelize a highly optimized
sequential code. One such sequential code is SuperLU [7] which uses a supernode
approach to conduct sequential sparse LU with column partial pivoting. The su-
pernode partitioning makes it possible to perform most of the numerical updates
using BLAS-2 level dense matrix-vector multiplications, and therefore to better
exploit memory hierarchies. They perform symbolic factorization and generate
supernodes on the fly as the factorization proceeds. Their code delivers impres-
sive performance and is among the best sequential codes for sparse LU with
partial pivoting [7, 3]. However it is challenging to parallelize their code to get
scalable performance and so far we have not seen any published results on the

parallelization of their method on distributed memory machines.

In [15] we presented a novel approach that considers three key optimization
strategies together in parallelizing the sparse LU algorithm: 1) adopt a static
symbolic factorization scheme to eliminate the data structure variation caused by
dynamic pivoting; 2) identify data regularity from the sparse structure obtained
by the symbolic factorization scheme so that efficient dense operations can be used
to perform most of the computation; 3) make use of graph scheduling techniques
and efficient run-time support to exploit irregular parallelism. We observe that on
most current commodity processors with memory hierarchies, a highly optimized
BLAS-3 subroutine usually outperforms a BLAS-2 subroutine in implementing
the same numerical operations [6, 8]. We can afford to introduce some extra
BLAS-3 operations in re-designing the LU algorithm so that the new algorithm is
easily parallelized but the sequential performance of this code is still competitive
to the current best sequential code. We use the static symbolic factorization
technique first proposed in [16, 17] to predict the worst possible structures of the
L and U factors without knowing the actual numerical values, then we develop
a non-symmetric L/U supernode partitioning technique to identify the dense

structures in both the L and U factors, and maximize the use of BLAS-3 level

subroutines (matrix-matrix multiplication) for these dense structures. We also
incorporate a supernode amalgamation technique to increase the granularity of
the computation.

Recently [23] we have further studied the properties of elimination forests to
guide supernode partitioning/amalgamation and execution scheduling. The new
code with 2D mapping, called ST, effectively clusters dense structures without
introducing too many zeros in the BLAS computation, and uses supernodal ma-
trix multiplication to retain the BLAS-3 level efficiency and avoid unnecessary
arithmetic operations. The experiments show that ST improves our previous
code substantially and can achieve up to 11.04GFLOPS on 128 Cray 450MHz
T3E nodes.

Our previous evaluation shows that for most of the tested matrices, static
symbolic factorization provides fairly accurate prediction of nonzero patterns and
only creates 10% to 50% more fill-ins compared to dynamic symbolic factoriza-
tion used in SuperLU. However, for some matrices static symbolic factorization
creates too many fill-ins and our previous solution does not provide a smooth
adaptation in handling such cases. For these cases, we find that the predic-
tion can contain a significant number of fill-ins that remain zero throughout the
numerical factorization. This indicates that space allocated to those fill-ins is
unnecessary.

Thus our first space-saving strategy is to delay the space allocation decision
and acquire memory only when a submatrix block becomes truly nonzero during
numerical computation. Such a dynamic space allocation strategy can lead to
a relatively small space requirement even if static factorization excessively over-
predicts nonzero fill-ins.

Another strategy we have proposed is to examine if space recycling for some
nonzero submatrices is possible since a nonzero submatrix may become zero dur-
ing numerical factorization due to pivoting and number subtraction. This has

the potential to save significantly more space since the early identification of zero

blocks prevents their propagation in the update phase of the factorization.

Since our ST method with lazy space allocation shows a great deal of advan-
tages over other software for the sparse matrix LU factorization on distributed
memory machines, such as Cray T3E, SGI Origin 2000, we implemented this S™
software utilizing all the methods we will talk about in this thesis to the solve
sparse matrix equation AX = B on the distributed memory machines. This
software is implemented by the widely used Message Passing Interface(MPI).
Since MPI code can be run under almost all parallel system, our software can be
applicable to all machines where MPI library is installed.

Generally speaking, sparse Gaussian elimination consists of three steps: ana-
lyze, factorize and solve [2, 10], compared to the dense elimination which has
only the last two steps. The concepts of factorize and solve of the sparse Gaus-
sian elimination are the same as those of the dense elimination, whereas there
exist some minor differences between them. The rest of this paper is organized
as follows. Chapter 2 concerns the analyze phase of our S*, and presents the
ordering and a new transversal technique for the matrices before Gaussian elimi-
nation. Chapter 3 presents the factorize phase of our S code and introduces two
Space Optimization methods for ST. The experimental results on a Sun Ultra-1
Sparcstation and Cray T3E show that our new code uses less space than our old
code and is faster than the SuperLU method. Chapter 4 concerns the solve phase
and presents a parallel forward substitution algorithm and a parallel backward
substitution algorithm for the triangular solving with the same data mapping
scheme to avoid data shuffling between processors. Chapter 5 introduces the S™
software implemented by MPI. A comparison of time performance of MPI code
with SHMEM code is also provided, showing that MPI code is comparable to
SHMEM code under Cray T3E and therefore can be used in practice. Chapter 6

concludes the paper and proposes some future research directions.

Chapter 2

Ordering and Transversal of

Sparse Matrix

The analyze phase is the preprocessing step for sparse Gaussian elimination.
The key features of the analyze phase are to preserve sparsity by using some

ordering algorithms.

Ordering is an important issue in sparse matrix computation, because different
ordering of equations and variables can have a significant impact on fill, which
determines the memory requirements, number of floating-point operations and

caching performance.

To find an optimal ordering for a given matrix is an NP-hard problem [24].
Some heuristic ordering algorithms have been extensively discussed in [18], and

better algorithms are still under investigation [5].

In this thesis, we use the column minimum degree ordering implemented by
J.W.Liu [18]. It has been verified that the minimum column degree ordering can

reduce the nonzero fill-ins during the step of symbolic factorization in our S™.

2.1 Transversal Algorithm by Duff

However, after the ordering of columns, the diagonal of the matrix may con-
tain many zeros due to the permutation of columns. This will introduce extra
nonzeros into the structure of the L and U factors and bring more burden to
the LU factorization, because Symbolic factorization determines the upper bound
of the structures of the L and U factors without actually computing the factors

numerically as follows:

“At each step k (1 < k < n), each row ¢ > k which has a nonzero element
in column k consists candidate pivot rows for row k. As the static symbolic
factorization proceeds, at step k the nonzero structures of each candidate pivot
row for k is replaced by the union of the structures of all these candidate pivot
rows and the kth row(no matter whether or not ayy is zero) except the first & — 1

columns.”

Since the kth row will always be taken into the union at step k even though
its diagonal element agy is zero, but this row won’t be taken into the union at
step k if it is not the kth row based on the above principle, therefore we should
keep all (or as many as we can) the diagonal elements as nonzeros, then reduce
the possibility of rows with zero diagonal being taken into the union while in fact
it won’t be considered for the union if it is not the kth row at step k. In this way
we can decrease the number of candidate rows at each step.

Therefore a transversal algorithm to transverse the rows to produce a zero-free
diagonal is necessary for the matrix being ordered by minimum degree ordering.
The most popular transversal algorithm is Duff’s algorithm [9] which ensures the
transverse matrix will have a zero-free diagonal.

First let’s describe the basic techniques of the algorithm, making use of some
terminology from graph theory.

The transversal is constructed in n major steps, after the kth of which we

have a transversal for a submatrix of order k. After the kth step, we associated

with the matrix an unconventional directed graph(which usually changes from
step to step). Each vertex of the graph corresponds to a row of the matrix, and
there is an edge from vertex iy to vertex ¢, if there exists a column of the matrix,
J1 say, such that nonzero (i1, j;) is a current transversal element and element
(9, j1) is nonzero. We say we can reach vertex i; from vertex iy and define a
path to be a sequence of edges of this kind. It is helpful to consider a path,
from iy to ig, say, as a sequence of nonzero (ig, j1), (i1, j2),- .., (ix_1,jk) Where
the present transversal includes the nonzeros (i1, j1), (42, j2), - - -, (i, ji). Now if
there is a nonzero in position (i, jx+1), and if no nonzero in row i, or column
Jr+1 is currently on the transversal, then the length of the transversal can be
increased by 1 by removing nonzeros (i, j,),7 = 1,...,k, from the transversal
and adding nonzeros (i, jro1),” = 0,1,...,k to it. In Figure 2.1, we illustrate

this reassignment chain on the matrix representation.

s Ji J2 J4
i3 = @
i <

ol
i <
>
<
, >
io

Figure 2.1: Reassignment Chain

The reassignment is shown by directed lines in Figure 2.1, the vertical lines
from nonzeros (i, jr41) to (i, jr), and horizontal lines from (i,,j,) to (ir, jri1)-
The reassignment corresponds to replacing the three underlined transversal ele-
ments by the circled nonzeros.

We use a depth first search technique to find the reassignment chain. We

search edges from the current vertex and add to our path the first vertex en-

countered that we have not revisited. This becomes the current vertex and we
proceed from it as before. If all the vertices that can be reached from the current
one at the end of the path are already visited, we retrace our steps to the vertex
added to the path immediately before this present one, make that the current
vertex, and proceed as before. We define our edges, as before, to be the form of
(i1,12) where (i1, j2), say, is a nonzero and (is, jo) a present assignment. We start
from any unassigned vertex(row) iy and trace a path using a DFS technique until
a vertex iy is reached where the path terminates because nonzero (ix, jx1) exists
and ji.1 is an unassigned column.

In practice this algorithm is very inefficient because the DFS scheme does not
specify which unvisited vertex reached from the present current vertex should be
added to the path and such a choice could be quite critical.

The complexity of the algorithm is O(n7), where n is the order of the matrix
and 7 is the number of nonzeros of the matrix. Therefore, for a large matrix, the
transversal algorithm is very time consuming(You will see it from Table 2.1), and
it will be very inefficient to use the original Duff’s algorithm to handle transversal
in our code. In Section 2.2 we propose a new approximation transversal algorithm

which is much faster than Duff’s algorithm.

2.2 Approximate Transversal Algorithm in S*

Notice that the transversal algorithm is used to eliminate zeros on the diago-
nal of a matrix, to produce a sparser L and U structure in the step of symbolic
factorization. The optimal transversal algorithm is of order O(n7). We imple-
mented an approximate algorithm which is of order only O(7) and will produce
an almost zero-free diagonal for the matrix(the proportion of nonzeros on the
diagonal is less than 1%) and therefore the symbolic factorization will produce
almost the same sparser L and U structure for symbolic factorization but the

time saving for transversal is significant.

We propose a new approximation transversal algorithm as follows:

Suppose the matrix has n rows. Each row contains some nonzero elements.
We use the array LeftOver[i] to denote the number of nonzeros in row i, where
1< <n.

At step 1, we go through all the nonzero elements of the 1st column. For
each element whose row number is i, the corresponding LeftOver[i] stands for the
number of nonzeros in row 7. We choose the row whose LeftOver[7] is minimum
and then interchange row 1 with row 7. At the same time, we decrease all the
LeftOver[i] by 1 for all nonzeros 7 in the 1st column and mark this row 7 so that it
won’t be picked up in later steps. The row whose LeftOver[i] is minimum at this
step has the least possibility to be picked up as a candidate row for exchange in
later steps, therefore we choose it to be the candidate at this step. We decrease
LeftOver[i] by 1 for those ¢ appearing in the first column since LeftOver[i] stands
for the remaining nonzero elements in row ¢ at present. At each step k, we only
care about how many nonzero leftovers a row still owns from column £ to column
n, therefore the LeftOver value will be decreased by 1 at the end of the current
step.

Generally, at step k, we go through all nonzeros in column %k which are not
marked(The marked rows have been picked up as candidate row for prior steps
so they can not be used here). Choose the row i whose LeftOver[i] is minimum.
Then we interchange row ¢ with row k£ and mark row ¢ correspondingly. In this
way, we can transverse all the rows of the matrix and will make the matrix almost
zero diagonal free by interchange rows according to the LeftOver[i] value.

It is easy to see that we avoid the depth first search algorithm which is very
time consuming and inefficient. We will see from the following table that our
approximate algorithm is very fast, but the trade-off is that there may exist
some zeros on the diagonal but the percentage is very very small, less than 1%,
therefore it won’t affect the time performance for symbolic factorization.

We can prove that the complexity of the above algorithm is O(7), where 7

10

is the number of nonzeros of the matrix. Recalling the complexity of Duft’s
algorithm is O(n7), we can see, for a matrix whose row number n is large, the
time saving of our approximate algorithm is significant over Duff’s Algorithm
from a theoretical point of view.

Table 2.1 compares the time used by the original Duff method applied to the
benchmark matrices after mmd ordering and that of our approximation algo-
rithm for the same matrices. The time for mmd ordering for those matrices is
also provided for clarity. We can see that the time of our algorithm is less than
1% of that spent by the Duff method on average, and can be ignored compared
with the time for mmd ordering. The last column shows the proportion of the
nonzero elements on the diagonal after using mmd and the approximate transver-

sal. It is usually less than 0.5% and will bring no negative effect for the symbolic

factorization.

Table 2.1: Comparison of Time Performance of Duff Transversal Method and our
Approximate method. Time is in seconds.

Matrix | MMD | Duff method | Approximate method zero?v[on the Diagonal
atrix Order
OLAF1 9.82 98.18 0.25 220/16146
ex11 12.90 121.91 0.29 197/16614
goodwin | 2.82 1.783 0.09 0/7320
jpwh991 | 0.087 0.114 0.003 12/991
memplus | 111.98 1.88 0.09 78/17758
orsregl 0.43 0.41 0.69 64/2205
raefsky4 | 13.91 178.65 0.359 343/19779
saylrd 0.47 5.53 0.02 76/3564
sherman3 | 0.25 0.66 0.02 62/5005
shermanb | 0.15 0.27 0.01 23/3312

11

Chapter 3

Sparse LU factorization with

Lazy Allocation

3.1 Strategies of ST Implementation

3.1.1 Static symbolic factorization.

After ordering, the data structures are prepared for runtime execution. The
data structures of sparse computation are much more complicated than those
of dense computation. One important data structure of sparse code is matriz
structure, which stores the sparsity pattern of the matrix. In Gaussian elimi-
nation with partial pivoting, the matrix structures of the factors are unknown
before factorization, because the pivoting sequence is unknown until the factorize
phase. A straightforward method is to dynamically construct the data structure
during runtime. This method keeps track of the fill during runtime and allo-
cates space for new fill dynamically. The method has the advantage of precise
manipulation of fill. However the disadvantages of this method are that it in-
troduces high overhead of memory management, one has to parallelize symbolic

factorization and numerical factorization interleavingly, and it is very difficult to

12

implement on a distributed memory architecture. Another method is to do sym-
bolic factorization statically, i.e., to predict all possible fill-ins and allocate space
for them before actual numerical computation. This method overestimates fill-
ins and allocates memory space to avoid dynamic memory management. It has
been shown that the static approach is competitive with the dynamic approach
in terms of performance as well as memory requirements for a broad range of lin-
ear systems [7, 11, 13, 17] and it is much easier to be parallelized on distributed
memory machines.

Static symbolic factorization is proposed in [17] to identify the worst case
nonzero patterns without knowing numerical values of elements. The basic idea
is to statically consider all the possible pivoting choices at each elimination step
and the space is allocated for all the possible nonzero entries. The symbolic

factorization for an n x n matrix can be outlined as follows:

“At each step k(1 < k < n), each row ¢ > k which has a nonzero element in
column £ is a candidate pivot row for row k. As the static symbolic factorization
proceeds, at step k the nonzero structure of each candidate pivot row is replaced
by the union of the structures of all these candidate pivot rows except the elements

in the first £ — 1 columns.”

It is easy to see that this algorithm guarantees that L and U structures are
contained in the resulting matrix structure regardless of pivoting sequences. The
symbolic factorization process of the sample matrix in Figure 3.1 is shown in
Figure 3.2.

Using an efficient implementation of the symbolic factorization algorithm [19],
this preprocessing step can be very fast. For example, it costs less than one second
for most of our tested matrices, at worst it costs 2 seconds on a single node of Cray
T3E, and the memory requirement is relatively small. The dynamic factorization,
which is used in the sequential and share-memory versions of SuperLU [7, 20],
provides more accurate data structure prediction on the fly, but it is challenging

to parallelize SuperLU with low runtime control overhead on distributed memory

13

A
C °]
o o
o0 o
° T
L ° o |

Figure 3.1: A sample sparse matrix.

@® Nonzero
O Fill-in
k=1 k=2 k=3
e O @] e O @] e O @]
® & O ® 6 O O O ® 6 O O O
® & ©o ®e 6 & O O ® 6 ¢ O O
o o O ® O o o e O e o
L ° ° | _ ° ° | _ e O o

Figure 3.2: The first 3 steps of the symbolic factorization on a sample 5 x 5 sparse
matrix. The structure remains unchanged at step 4.

machines. In [14, 15], we show that static factorization does not produce too
many fill-ins for most of the tested matrices, even for large matrices using a
simple matrix ordering strategy (minimum degree ordering). For a few tested
matrices, static factorization generates an excessive amount of fill-ins and future

work is needed to study re-ordering strategies to reduce over-estimation ratios.

14

3.1.2 Elimination forests.

Considering an n X n sparse matrix A, we assume that every diagonal element
of A is nonzero. Notice that for any nonsingular matrix which does not have
a zero-free diagonal, it is always possible to permute the rows of the matrix so
that the permuted matrix has a zero-free diagonal [9]. We will use the following
notations in the rest of this section. We will still call the matrix after symbolic
factorization as A since this paper assumes the symbolic factorization is con-
ducted first. Let a;; be the element of row ¢ and column j in A and a;;; . be the
submatrix of A from row ¢ to row j and column s to t. Let Ly denote column
k of the L factor, which is ay. 4:x- Let Uy denote row k of the U factor, which
iS Gg:g k- Also let |Lg| and |Ug| be the total number of nonzeros and fill-ins in

those structures.

Definition 1 An LU Elimination forest for an n x n matriz A has n nodes
numbered from 1 to n. For any two numbers k and j (k < j), there is an edge
from wvertex j to vertex k in the forest if and only if ay; is the first off-diagonal
nonzero in Uy, and |Lg| > 1. Vertex j is called the parent of vertex k, and vertex

k is called a child of vertex j.

An elimination forest for a given matrix can be generated in a time complexity
of O(n) and it can actually be a byproduct of the symbolic factorization. Fig-
ure 3.3 illustrates a sparse matrix after symbolic factorization and its elimination
forest.

The following property 1 below demonstrates the structural properties of an
elimination forest.

Property 1. If vertex j is an ancestor of vertex k in an elimination forest,
then Lk—{k,k—{—l,,j—l} g LJ and Uk—{k,k+1,,j—1} g Uj

Definition 2 Let j > k, L, directly updates L; if task Update(k, j) is per-
formed in LU factorization, i.e. aj; # 0 and |Lg| > 1. L indirectly updates

15

1 2 3 4 5 6 71 8 Elimination Forest
11 @@ ® O
2 [J O| @
3 [BN J o]0
4 o e C|e
510 @ ® O
6 @ ® ORN RECENC)
7 ® O O | @O
8 ® O ONNORN T
1@

@® Nonzeros in the original matrix

O Fill-in entries generated by symbolic factorization

Figure 3.3: A sparse matrix and its elimination forest.

L; if there is a sequence sy, sg, -+, sp such that: sy =k, s, = j and L, directly

updates L ., for each 1 < q<p—1.

Sq+1

Property 2 below identifies the dependency information in the elimination
forest.

Property 2. Let k < j, Ly, is used to directly or indirectly update L; in LU
factorization if and only if vertex j is an ancestor of vertex k.

Property 1 captures the structural containment between two columns in L
and two rows in U, which will be used for designing supernode partitioning with
amalgamation in the next subsection. Property 2 indicates dependency infor-
mation in the numerical elimination, which can guide our parallel scheduling of

asynchronous parallelism.

3.1.3 2D L/U supernode partitioning and amalgamation.

Given a nonsymmetric matrix A after symbolic factorization, in [15] we have
described a 2D L/U supernode partitioning in which two stage partitioning is

applied. Stage 1: A group of consecutive columns that have the same structure

16

in the L factor is considered as one supernode column block. Then the L factor
is sliced as a set of consecutive column blocks. Stage 2: After an L supernode
partition has been obtained, the same partition is applied to the rows of the
matrix to further break each supernode column block into submatrices.

We examine how elimination forests can be used to guide and improve the 2D
L/U supernode partitioning. The following corollary is a straightforward result
of Property 1 and it shows that we can easily traverse an elimination forest to
identify supernodes. Notice that each element in a dense structure can be a

nonzero or a fill-in due to static symbolic factorization.

Corollary 1 If for each i € {s+1,s+2,---,t}, verter i is the parent of vertex
i—1 and |L;| = |L;—1| — 1, then 1) the diagonal block ., s is completely dense,
2) Q1m0 contains only dense subrows, and 3) Ggypy1:0 contains only dense

subcolumns.

The partitioning algorithm using the above corollary can be briefly summa-
rized as follows. For each pair of two consecutively numbered vertices with the
parent/child relationship in the elimination forest, we check the size difference
between the two corresponding columns in the L part. If the difference is one, we
assign these two columns into an L supernode. Since if a submatrix in a supern-
ode is too large, it won’t fit into the cache and also large grain partitioning reduces
available parallelism, we usually enforce an upper bound on the supernode size.
Notice that U partitioning is applied after the L partitioning is completed. We
do not need to check any constraint on U because as long as a child-parent pair
(¢, — 1) satisfies |L;| = |L;—1| — 1, we can show that |U;| = |U;_1| — 1 based on
Theorem 1 in [15] and hence the structures of U; and U; ; are identical. Fig-
ure 3.4(a) illustrates supernode partitioning of the sparse matrix in Figure 3.3.
There are 6 L/U supernodes and from the L partitioning point of view, columns

from 1 to 5 are not grouped but columns 6, 7 and 8 are clustered together.

17

6
o
° ole N o e R(1:2)
3 ole o o 3 °® e 100 haw
" o e 0 o " Ae @O0 e
slele elo0 sle e P R(5:5)
o|e|e ole o o ile @ ole o o
7 elo| o e o0 7 e ol |o e o|RES
s elo| oo e s e ol oo e

@ Nonzeros in original matrix /N Fill-in entries generated by supernode amalgamation

O Fill-in entries generated by symbolic factorization

(a) ()

Figure 3.4: (a) Supernode partitioning for the matrix in Figure 3.3; (b) The result
of supernode amalgamation.

For most of the tested sparse matrices in our experiments, the average supern-
ode size after the above partitioning strategy is very small, about 1.5 to 2 columns.
This leads to relatively fine grained computation. In practice, amalgamation is
commonly adopted to increase the average supernode size by introducing some
extra zero entries in dense structures of supernodes. In this way, caching per-
formance can be improved and interprocessor communication overhead may be
reduced. For sparse Cholesky (e.g. [22]), the basic idea of amalgamation is to
relax the restriction that all the columns in a supernode must have exactly the
same off-diagonal nonzero structure. In a Cholesky elimination tree, a parent
could be merged with its children if merging does not introduce too many extra
zero entries into a supernode. Row and column permutations are needed if the
parent is not consecutive with its children. For sparse LU, such a permutation
may alter the symbolic factorization result. In our previous approach [15], we
simply compare the consecutive columns of the L factor, and make a decision
on merging if the total number of difference is under a pre-set threshold. This
approach is simple, resulting in a bounded number of extra zero entries included
in the dense structure of L supernode. However, the result of partitioning may

lead to too many extra zero entries in the dense structure of U supernode. Using

18

the elimination forest properties, we can remedy this problem by partitioning L
and U factors simultaneously as follows.
We call our supernodes after amalgamation as relazed L/U supernodes and

each of them includes elements from both the L part and the U part.

Definition 3 A relaxed L/U supernode R(s:t) contains three parts: the diagonal

block ag.t 5., the L supernode part agyi.n s+ and the U supernode part ag.ti1:n-

The following corollary, which is also a straightforward result of Property 1,

can be used to bound the nonzero structure of a relaxed L/U supernode.

Corollary 2 If for each i where s+1 <1 < t, vertex i is the parent of vertex i —1
in an elimination forest, then the nonzero structure of each column in agy1.p, ¢4 95
a subset of the structure in Ly, and the nonzero structure of each row in sy, t41:1

s a subset of the structure in Uy.

Using Corollary 2, in R(s : t) the ratio of extra fill-ins introduced by amalga-

mation compared with the actual nonzeros can be computed as:

L (t—s+1)2+(t—s+1) x (nz(Ly) + nz(U;) — 2) _1

nz(R(s : t))

where nz() gives the number of nonzero elements in the corresponding structure
including fill-ins created by symbolic factorization. Also notice that both L; and
U; include the diagonal element.

Thus our heuristic for 2D partitioning is to traverse the elimination forest and

find relaxed supernodes R(s : t) satisfying the following conditions:

1. for each ¢ where s +1 <1 < t, vertex ¢ is the parent of vertex ¢ — 1 in the

elimination forest,
2. the extra fill-in ratio, z, is less than the pre-defined threshold, and

3. t — s+ 1 < the pre-defined upper bound for supernode sizes.

19

Our experiments show that the above strategy is very effective and the complexity
of the partitioning algorithm with amalgamation is O(n), which is very low and
is made possible by Corollary 2. Our experiments show that the number of total
extra fill-ins doesn’t change much when the upper bound for z is in the range of
10—100% and it seldom exceeds 2% of the total nonzeros in the whole matrix. In
terms of upper bound for supernode size, 25 gives the best caching and parallel
performance on T3E.

Figure 3.4(b) illustrates the result of supernode amalgamation for the sparse
matrix in Figure 3.3. Condition z < 30% is applied during the amalgamation.

There are four relaxed L/U supernodes: R(1:2), R(3:4), R(5:5), and R(6 : 8).

3.1.4 2D data mapping and asynchronous parallelism ex-

ploitation.

Given an n X n matrix A, assume that after the matrix partitioning it has
N x N submatrix blocks. Let A;; denote a submatrix of A with row block in-
dex ¢ and column block index 5. We use 2D block-cyclic mapping: processors
are viewed as a 2D grid, and a column block of A is assigned to a column of
processors. 2D sparse LU Factorization is more scalable than the 1D data map-
ping [12]. However 2D mapping introduces more overhead for pivoting and row
swapping. Each column block k is associated with two types of tasks: Factor(k)
and Update(k, j) for 1 <k < j < N. 1) Task Factor(k) factorizes all the columns
in the k-th column block, including finding the pivoting sequence associated with
those columns and updating the lower triangular portion of column block &.
The pivoting sequence is held until the factorization of the k-th column block
is completed. Then the pivoting sequence is applied to the rest of the matrix.
This is called “delayed pivoting” [6]. 2) Task Update(k, j) uses column block k
(Akk, Aks1k, -, Ang) to modify column block j. That includes “row swapping”

using the result of pivoting derived by Factor(k), “scaling” which uses the fac-

20

torized submatrix Ay to scale Ay ;, and “updating” which uses submatrices A; j,
and Ay ; to modify A;; for k +1 < ¢ < N. Figure 3.5 outlines the partitioned

LU factorization algorithm with partial pivoting.

for k=1 to N
Perform task Factor(k);
for j=k+1 to N with A;; #0
Perform task Update(k,j);

endfor

endfor

Figure 3.5: Partitioned sparse LU factorization with partial pivoting.

In [23], we have proposed an asynchronous scheduling guided by the elimi-
nation forest. This strategy enables the parallelism exploitation among Factor()

tasks which used to be serialized by previous scheduling strategies.

3.2 Space Optimization Techniques

As we mentioned in Chapter 1, static symbolic factorization may produce
excessive amount of fill-ins for some test matrices. This makes our St LU factor-
ization very space and time consuming for these matrices. How to save space and
speed up LU for these matrices becomes a very serious problem for us. In this
section, we introduce two techniques to solve this problem. The first technique,
called delayed space allocation, delays the allocation of space for a block until
some of its elements truly become nonzero. The second technique, called space
reclamation, deallocates space for previously nonzero blocks which become zero

at some step of the factorization.

21

3.2.1 Delayed space allocation

Since symbolic factorization can introduce many more fill-ins than the nonze-
ros of the original matrix, the blocks produced during L/U supernode partitioning

basically are of the following three types:

1. Some elements in a block are nonzeros in the original matrix. For this type

of block, we should allocate the space for it in advance.

2. All the elements in a block are zeros in the original matrix during the
initialization, but some elements become nonzeros during the numerical
factorization. For this type of block, we don’t allocate space at first and

will allocate space when nonzero elements are produced later on.

3. All the elements in the block are zeros in the original matrix during the
initialization, and remain zeros throughout the numerical factorization. For

this type of block, we should not allocate space.

Our experiments showed that the matrices on which S* code didn’t run well
(i.e., ST needed a lot of space and time) contain 10 — 24% of type 3 blocks,
i.e., blocks which always remain zero from beginning to end. In S, these blocks
occupied space and were involved in the numerical factorization even though they
did nothing, thereby wasting a lot of time and space.

Therefore we use different space allocation policies for different types of blocks
in the matrices. The general idea is to delay the space allocation decision and
acquire memory only when a block becomes truly nonzero during numerical com-
putation. Such a dynamic space allocation strategy can lead to a relatively small
space requirement even if static factorization excessively over-predicts nonzero

fill-ins. We discuss the impact of this strategy in the following aspects:

e For relatively dense matrices, this strategy has almost no effect since almost

all the blocks produced at the step of supernode partitioning contain at least

22

some nonzeros or will have some nonzeros during numerical factorization,
the number of blocks of type 3 is very small. Thus lazy allocation won’t

save a lot of space for those matrices.

However for the relatively sparse matrices which contain many blocks of
type 3, the lazy allocation technique will never allocate the space for those

blocks of type 3. The space saving is obvious.

Further savings can be reaped in another part of our code: numerical fac-
torization. First of all, each Factor task in numerical factorization needs
to factorize one column block. And all zero blocks are unnecessary to get
involved into this task. But as long as a block is recognized as a nonzero
block in numerical factorization, S* still ran it even though it may be ac-
tually a zero block during numerical factorization. However, in LazyS™
with delayed space allocation, those actually zero blocks are not allocated
space throughout the numerical factorization and they will be treated as
zero blocks without getting involved into the numerical factorization. The
Update tasks are the most time consuming part of numerical factoriza-
tion. Update(k, j) uses blocks A;; and Ay ; to update block A, ; for every
k <i < N. If either A;; or Ay ; is a zero block, it is unnecessary to up-
date block A;; in this task (see Figure 3.6). However, ST code updated
every A;; if both A;, and A ; are recognized as nonzero blocks by sym-
bolic factorization even though one of them is a zero block during numeric
factorization. Therefore a lot of time was wasted in unnecessary updat-
ing. LazyS™ with delayed space allocation gets rid of this shortcoming. It
first checks block Ay ;. If it is a zero block, the whole Update(k, j) task is
skipped (see Figure 3.7(a)). Otherwise, it picks up the nonzero blocks A;
in column k&, and updates the corresponding blocks A, ; (see Figure 3.7(b)).

23

Figure 3.6: Illustration of Update(k, j) task.

3.2.2 Space reclamation

Our experiments also show that some nonzero blocks which have been assigned
space will become zero blocks later on due to pivoting. Since zero blocks don’t
need space any more, we can collect the space of these blocks. Therefore we
can save the space they occupied. Furthermore, these blocks won’t appear in
future Factor(k) and Update(k, j) tasks which saves unnecessary computation
time. This is our second strategy of space optimization.

The execution of task Update(k, j) uses blocks A;; and Ay ; to update block
A;j for every k < ¢ < N. If block A;; has been allocated space earlier due
to some nonzero elements in it but at this time contains only zeros due to piv-
oting, the benefits of this space reclamation strategy are considerable in several
ways. Without this strategy, A; ; would still be treated as a nonzero block, and it
would still get involved in task Update(k, j) which is actually unnecessary. Fur-
thermore, if the block A;; has not been allocated space before, this unnecessary
update would enforce a space allocation for A; ; which is again unnecessary. In the
worst case, this situation would propagate along with the factorization process
and produce a considerable amount of wasted space and unnecessary computa-
tion. The space reclamation strategy gets rid of this problem by checking if some

formerly-nonzero blocks on column block k or A ; have become zero in the be-

24

| Ak - \‘Akk ;Akj

N | | AN
o, .o o ——~0
FAik A FAik 0 A
| "™ | N

I I A I] N

| | N L | N

) e, o) e, |
rAik - TA§ . rAik - TAi/

?Aik ?Aij ?Aik ?Aij

(a) (b)

@ nonzero blocks in numeric factorization

O nonzero blocks recognized by symbolic factotization,
but are actually zero blocks in numeric factorization

Figure 3.7: Illustration of Update(k, j) task with delayed space allocation.

ginning of task Update(k,j). If they have, their space will be deallocated and

those blocks will also be excluded from future computation.

3.3 Performance Comparison of new S+ with

old code and SuperLU

3.3.1 Experimental Studies on Sequential Performance

The sequential machine we use is a SUN 167TMHZ Ultra-1 with 320MB mem-
ory, 16KB L1 data cache and 512KB L2 cache. We have compared our sequential
code with SuperLU, but not UMFPACK [4] because SuperLU has been shown
competitive to UMFPACK [7]. The following benchmark matrices are used from
various application domains: af23560, e40r0100, fidap011, goodwin, memplus,
orsregl, raefsky4, saylrd, sherman3, shermanb, TIa, TIb, TId and wang3. All
matrices are ordered using the minimum degree algorithm. In computing gigaflop

rates, we use operation counts reported by SuperLU for the tested matrices, which

25

excludes the extra computation introduced by static symbolic factorization.

Comparison of ST, LazyS™ and SuperLU

We compare the sequential performance of S*, SuperLU and LazyS™ on all
the matrices. From Table 3.1, we can see the LazyS™ code will run a little bit
faster than the S™ and SuperLU, while the space saving is not obvious. The
reason is that these matrices do not have enough zero blocks for lazy allocation
to be very advantageous. On average, for these non circuit simulation matrices,
LazyS™t will use 4.1% less space and 7.2% less time than S*, while LazyS™ will
use 0.8% less space and 15.8% less time than SuperLU.

From Table 3.1, we can see obvious savings of space and time when LazyS™
is compared with ST and SuperLU. The reason is twofold: first, these matrices
contain a lot of zero blocks which aren’t allocated space and involved in the com-
putation when lazy allocation is used; second, ST and SuperLU cause paging on
matrices TIb and wang3 due to the large amount of space needed. By excluding
the paging effects, i.e. only considering the other three matrices when calculating
the savings on time, LazyS™ uses 41.7% less space and 62.5% less time than S

and it uses 9.6% less space and 60.7% less time than SuperLU.

Sensitiveness on block size limit

The above experiments use the block size limit 25. Table 3.2 shows the per-
formance of LazyS™ under different block size limits. For most matrices where
fill-in overestimation is not excessive,, when we reduce this limit to 15, 10, and 5,
changes in space saving are insignificant while processing time increases gradually
due to degradation of caching performance.

For matrices with high fill-in overestimation, space saving is more effective
when the block size is reduced. The reason is that when the block size becomes

smaller, the probability of a block being zero block is higher. Therefore the lazy

26

Table 3.1: Sequential performance. A “-” implies the data is not available due
to insufficient memory. Time is in seconds and space is in MBytes.

Matrix S+ SuperLLU LazyS™ Exec. Time Ratio
Time Space Time Space | Time Space ;u“;giz L “gﬁﬁ
shermanb 0.97 3.061 1.09 3.305 0.93 2.964 0.853 0.959
sherman3 2.33 5.713 2.15 5.412 2.20 5.536 1.023 0.944
orsregl 2.37 2.077 2.12 4.555 1.95 4.730 0.920 0.823
saylrd 4.02 8.509 3.63 7.386 3.50 8.014 0.964 0.870
goodwin 15.02 29.192 22.71 35.555 | 14.91 28.995 0.657 0.993
e40r0100 02.87 79.086 77.89 93.214 | 54.78 78.568 0.703 1.036
raefsky4 | 658.89 303.617 | 857.67 272.947 | 606.72 285.920 | 0.707 0.921
af23560 159.62 170.166 | 180.65 147.307 | 157.04 162.839 | 0.869 0.984
fidap011 | 357.26 221.074 | 683.64 271.423 | 360.62 219.208 | 0.528 1.009
TIa 6.31 8.541 5.88 6.265 3.97 7.321 0.675 0.629
TId 30.03 29.647 30.08 18.741 | 11.00 19.655 0.366 0.366
memplus | 344.64 138.218 | 322.36 75.194 | 44.21 68.467 0.137 0.128
TIb 1325.29 341.418 | 1360.58 221.285 | 73.97 107.711 | 0.054 0.056
wang3 1431.91 430.817 - - 645.15 347.505 - 0.451

allocation strategy in LazyS™ will become more effective.

Effectiveness of each individual lazy allocation strategy used in LazyS™

We also conducted experiments concerning the effectiveness of each individual

lazy allocation strategy. We are more interested in the circuit simulation matrices

because they are the matrices in which LazyS™ shows great advantages.

Table 3.3 shows the time and space performance on circuit simulation matrices

by using ST, LazyS™ and LazyS™ without space reclamation. We can see that

the space reclamation plays a more important role than delayed allocation in the

overall improvement. And on average, the delayed allocation saves 6.6% in time

and 3.8% in space while the space reclamation saves 59.1% in time and 34.9%

in space. Note that we exclude the paging effect in this calculation, i.e., only

27

Table 3.2: Sequential performance of LazyS™ with different block size limits.
Time is in seconds and space is in MBytes.

Matrix 25 15 10 5)

Time Space | Time Space | Time Space Time Space

shermanb | 0.93 2.964 1.12 2.939 1.37 2.953 3.06 3.119

sherman3 | 2.20 5.536 2.79 5.545 3.52 5.600 7.92 5.988

orsregl 1.95 4.730 2.23 4.558 2.31 4.308 3.34 4.128

saylrd 3.50 8.014 4.09 7.834 4.41 7.498 6.80 7.119
goodwin | 14.91 28.995 0.89 29.168 | 28.02 29.725 79.10 32.760
e40r0100 | 54.78 78.568 | 76.45 79.170 | 102.39 80.373 | 334.93 88.968
raefsky4 | 606.72 285.920 | 809.11 279.931 | 997.88 278.565 | 2605.30 289.890
af23560 | 157.04 162.839 | 195.16 158.626 | 233.53 155.907 | 594.58 159.475
fidap011 | 360.62 219.208 | 513.05 220.791 | 688.81 225.337 | 2082.15 251.426

TTa 3.97 7.321 3.60 6.668 3.38 5.912 3.88 5.248
TId 11.00 19.655 8.29 15.090 7.50 12.641 7.77 12.410
memplus | 44.21 68.467 | 29.19 62.752 | 19.35 56.590 17.98 41.666
TIb 73.97 107.711 | 62.29 79.032 | 70.74 66.089 | 185.74 84.377
wang3 | 645.15 347.505 | 627.20 310.836 | 602.84 282.690 | 952.76 270.136

counting matrices Tla, TId and memplus when calculating savings on time.

3.3.2 Experimental Studies on Parallel Performance

Our experiments on Cray T3E show that the parallel time performance of

LazyST is still competitive to S*. It is shown in Table 3.4 that LazyS™ can

achieve 10.004 GFLOPS on matrix vavasis, which is not much less than the
highest 11.04 GFLOPS achieved by S* on 128 450MHz T3E nodes. Table 3.5

is the performance on 300Mhz T3E nodes. Our study focuses on relatively large

matrices.

Table 3.4 lists the parallel performance on 450MHz T3E nodes, and the per-

formance data of LazyS™ for some matrices is not available due to the insufficient

28

Table 3.3: Effectiveness of individual lazy strategy on circuit simulation matrices.
Time is in second s and space is in MBytes.

Matrix LazyS™ LazyS™ without space reclamation S+

Time Space Time Space Time Space

shermanb | 0.93 2.964 0.99 3.018 0.97 3.061
sherman3 | 2.20 5.536 2.36 5.657 2.33 5.713
orsregl 1.95 4.730 2.33 5.038 2.37 5.077
saylr4 3.50 8.014 4.03 8.418 4.02 8.509
goodwin | 14.91 28.995 15.42 29.070 15.02 29.192
e40r0100 | 54.78 78.568 | 55.07 78.761 52.87 79.086
raefsky4 | 606.72 285.920 | 672.02 300.094 658.89 303.617
af23560 | 157.04 162.839 | 163.45 167.710 159.62 170.166
fidap011 | 360.62 219.208 | 364.65 219.422 357.26 221.074
Tla 3.97 7.321 5.67 8.133 6.31 8.541
TId 11.00 19.655 | 27.73 27.682 30.03 29.647
memplus | 44.21 68.467 | 338.22 138.633 344.64 138.218
TIb 73.97 107.711 | 1213.47 315.412 1325.29 341.418
wang3 645.15 347.505 | 1417.70 428.741 1431.91 430.817

CPU quota on this machine !. Nevertheless, data on 300MHz T3E nodes in Ta-
ble 3.4 actually indicates that LazyS™ is competitive with ST for these matrices.
For the matrices with high fill-in overestimation ratios, we observe that LazyS™
with dynamic space management is better than S™. It is about 191% faster on 8
processors and 120% faster on 128 processors. Matrix wang3 can’t run on T3E
using ST since it produces too many fill-ins from static symbolic factorization.
However LazyS™ only allocates space if necessary, so considerable space is saved
for a large amount of zero blocks.

As for other matrices, we can see from Table 3.5 that on 8 300Mhz proces-
sors LazyS™ is about 1% slower than S* while on 128 processors, LazyS™ is 7%
slower than ST. On average, LazyS™ tends to become slower when the number of

processors becomes larger. This is because the lazy allocation scheme introduces

'We will provide it when more computing resource is allocated.

29

Table 3.4: Time and MFLOPS performance of LazyS™ and S on 450MHz Cray
T3E. A ”-” implies the data is not available due to insufficient memory. A ”7*”
implies the data is not available due to insufficient CPU quota on this machine.
Time is in seconds.

Matrix LazySt P=8 St P=8 LazySt P=128 St P=128
Time MFLOPS | Time MFLOPS | Time MFLOPS | Time MFLOPS
goodwin * * 1.21 553.5 * * 0.67 999.6
e40r0100 * * 4.06 611.3 * * 1.59 1560.9
raefsky4 * * 38.62 804.2 * * 4.55 6826.0
af23560 * * 10.57 602.1 * * 2.80 2272.9
vavasis3 | 59.77 1492.9 | 62.68 1423.6 8.92 10004.0 | 8.08 11043.5
TIa 0.61 339.6 0.64 323.7 0.28 739.9 0.26 796.8
TId 2.10 281.5 1.98 298.6 0.59 1001.9 0.54 1094.8
TTb 12.81 555.7 47.88 148.7 2.83 2515.7 4.98 1429.5
memplus | 8.28 0.2 - - 1.82 1.0 - -
wang3 | 74.69 194.9 - - 9.04 1610.2 - -

new overhead for dynamic memory management and for row and column broad-
casts (blocks of the same L-column or U-row, now allocated in non-contiguous
memory, can no longer be broadcasted as a unit). This new overhead affects
critical paths, which dominate performance when parallelism is limited and the
number of processors is large. This problem tends to become more serious when
the number of processors is getting bigger.

We need to mention memplus, a special circuit simulation matrix. This matrix
is excessively sparse: its order is 17758 but there are only 99147 nonzero elements.
Therefore the operation count reported by SuperLU is not large, but, due to its
special matrix structure (too sparse but still hard to conduct LU factorization),
it LU factorization still require a large portion of time. Therefore its MEFLOPS

is much smaller than all the other test matrices.

30

Table 3.5: MFLOPS performance of S* and LazyS™ on 300MHz Cray T3E.

Matrix P=8 P=32 P=128
LazyS™ ST | LazyS™ S* | LazyS™ ST
goodwin 374.1 403.5 | 676.4 736.0 788.0 826.8
e40r0100 413.0 443.2 880.2 992.8 1182.0 1272.8
raefsky4 587.6 568.2 | 1922.1 1930.3 | 4875.8 5133.6
af23560 418.4 432.1 | 1048.4 1161.3 | 1590.9 1844.7
vavasisd | 1031.7 958.4 | 3469.4 3303.6 | 7924.5 8441.9

31

Chapter 4
Parallel Triangular Solves

In this chapter, we discuss some issues about parallel triangular solves. In
Section 4.1 we introduce some background information about triangular solves.
In Section 4.2 we discuss how to implement parallel triangular solve by using the
same data mapping scheme for the factorize phase so that data shuffling can be
avoided. In Section 4.3 we present the time performance of parallel triangular

Solves compared with that of factorization.

4.1 Introduction

Triangular solve requires many fewer floating point operations than sparse LU
factorization. Less efforts have been made to parallelize it. However, paralleliza-
tion of triangular solve is drawing more attention [7] because of the following

reasons.

1. Limited memory resources of a sequential machine make it impossible to
solve very large triangular systems. Memory may be the most important

issue for some scientific and engineering computations.

2. After efficient parallelizations of sparse LU factorization have been devel-

oped, triangular solve may become the bottleneck of the whole process of

32

sparse Gaussian elimination.

3. The factor results of factorization are distributed on multiprocessors for
space efficiency. Gathering the factor results to a single processor introduces

high memory management and communication overhead.

4. For some applications, like multiple right-hand side systems and iterative
refinement for linear systems [10], the triangular solves are executed multi-
ple times by reusing the factor results. In these kinds of systems triangular
solve might involve a comparable amount of computation as the factoriza-

tion.

It is more difficult to parallelize sparse triangular solves than dense triangular
solves. One obvious reason is that we have to exploit irregular parallelism by
using asynchronous scheduling. More importantly, the data mapping of triangular
solves is predetermined by sparse LU factorization. We can not select the most
preferable mapping scheme for triangular solve because it may require global
data movement. It has been shown that 2-D data mapping scheme is more
scalable than 1-D data mapping for sparse LU factorization with partial pivoting,
but 2-D data mapping also makes the parallelization of triangular solves more
complicated. Lastly, because the L factor of sparse Gaussian elimination is stored
differently from that of dense elimination, the dependence of forward substitution
is more complicated in sparse elimination. In this chapter, we design the forward
substitution algorithm to solve Ly = b and the backward substitution algorithm
to solve Ur = y, where L and U are from the factorization for the original sparse
matrix equation Ax = b

The block triangular solvers are shown in Figure 4.1 and Figure 4.2. The
computation flows of the block algorithms are the same as those of element-wise
algorithms. In Figure 4.1 and Figure 4.2, B; denote bg(;).s(i+1)—1- Again in the
block triangular solves, we assume that the block structure of L is Stored in a

column oriented manner and U is stored in a row oriented manner.

33

(02)
(03)
(04)
(05)
(06)

(01) for k=1 to N

b = Pyb;

Solve LppB, = Byg;

for i=k+1 to N with L;#0
B; = B; - Lk By;

endfor

(07) endfor

Figure 4.1: Block forward substitution to solve P;L;PsyLo
stored in b at output. B; denote bg(;).s(i+1)—1-

PNLNy =b. Y is

(02)
(03)
(04)
(05)

(01) for k=N to 1

Solve Ukszk = Bk;
for j =%k —1 to 1 with Uy;# 0
Bj = Bj - UjiBj;

endfor

(06) endfor

Figure 4.2: Block back substitution to solve Uz = y. y is stored in b at input,
and x is stored in b at output. B; denote bg().5(i+1)—1-

34

Recall that in the sparse LU factorization with 2-D data mapping, a column
block is distributed onto a column of processors and a row block is distributed
onto a row of processors. So no matter whether row oriented or column ori-
ented, the computation of each stage can be overlapped. The column oriented
approach requires less communication, simple runtime control, less memory and
integer operation overhead, and better data locality, but multiple steps can not

be overlapped significantly.

4.2 Parallel Triangular Solve

In this section, we implement the parallel version of triangle solve. Triangular
solving has two phases, the first phase is to solve Ly = b and the second phase
is to solve Ux = y where y is the temporary result from the first phase. To save
space, we will use the same memory location for b, y and x, which means the
result of y will cover b while the result of « will cover y, and x is the solution of
Ax =b.

We still use the data mapping scheme as in Chapter 3, therefore we use the
resulting L and U blocks obtained from LU factorization in the same processor.

At first, we divide the column b into several blocks B; where 1 < ¢ < N and
B; denote bs(;).s(i+1)-1. Then we distribute these B blocks into the processors
which own the first block column of A according to the rule that the processor
which own L;; will own block By, therefore the initial b values are distributed
on the first column blocks. Then as shown in Figure 4.3, the first column will
begin the first step of Ly = b and update the corresponding b blocks. Once
it’s done, the first column processors will send the updated B blocks it own to
the second column processors which will update B blocks in the second step of
Ly = b. Keeping in this way, the processors which own the last column of A
blocks will have the final results of Ly = b stored in its own B blocks.

Next, the second phase of triangle solving, Uz = y begins at the processors

35

which owns the last column of A blocks. Each processor here will update its
own B blocks as in Ly = b, once it’s done, it will send its own B blocks to its
left neighbor, and next its left neighbor will update B blocks in the same way.
Keeping this way for N steps, the processors which own the first column of A
blocks will get the final result of Az = b and store it in its own B blocks.

Finally, we collect all B blocks from the processors which own the first column
of A blocks and put it back in b, which is the final result.

The two phases of parallel block triangular solves are shown in Figure 4.3 and

Figure 4.4. In Figure 4.3 and Figure 4.4, B; denote bg().5(i41)-1-

4.3 Performance of Parallel Triangle Solves

In this section, we show the time performance of the parallel triangle solver
designed in Section 4.2.

Figure 4.1 shows the time comparison of LU factorization and triangular Solve
of MPI code on Cray T3E using 8 processors. We can see the time needed for the
triangle solve phase is less than 35% of the time needed for LU factorization for
most test matrices. Therefore the asynchronous computation scheduling which
can be used to utilize more parallelism is unnecessary here, since it will involve
more difficulty in the design algorithm but the time improvement is ignored
compared with time used for LU factorization.

The time performance for LU factorization and triangle solve is compared by
the same MPI code, therefore this comparison is acceptable.

We didn’t implement the parallel triangle solve using SHMEM routines since
SHMEM routines can only be used on Cray T3E machines, thus many users
who have access to Origin or Meico can’t use it. The SHMEM code is only
implemented for LU factorization in Chapter 3, since we want to find the highest
GFLOPs using any language and any platform. We already see we can reach

10GFlops under Cray T3E, which is the highest in the world.

36

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)

V=PFPPFP---Py;
b="V"1b;
for k=1 to N
if the processor owns column k£
if L, is local
solve LBy = By
send Bj; to all the processors in the same column
else
receive B from the processor which owns Ly
endif
update Bj = Bj — Lj;By, if Lj;, is local and Lj, # 0
send the updated B blocks it owns to its right neighbor
endif
if the processor owns column £k +1
receive the updated B blocks from its left neighbor
endif

endfor

Figure 4.3: Forward substitution to solve P1L; ---PnxLny = b. ¥ is stored in b
for output. B; denote bgk).s(k+1)—1, and bsize(k) denote S(k + 1) — S(k).

37

(01)
(02)
(03)
(04)
(05)
(06)
(07)
(08)
(09)
(10)
(11
(12)
(13)
(14)
(15)

for k=N to 1
if the processor owns column £
if Uy, is local
solve U, B, = By,
send Bj; to all the processors in the same column
else
receive B from the processor which owns Uy
endif
update B; = B; — U B, if Lj, is local and Lj, #0
send the updated B blocks it owns to its left neighbor
endif
if the processor owns column k£ — 1
receive the updated b blocks from its right neighbor
endif

endfor

Figure 4.4: Back substitution to solve Ux = y. y is stored in b at input, and x is
stored in b at output. B; denote bg(k):s(k+1)-1, and bsize(k) denote S(k+1)—S(k).

38

Table 4.1: Comparison of LU factorization and Triangular Solve of MPI code
with 8 processors. Time is in seconds.

Matrix | Time of Triangular Solving | Time of LU Factorization
OLAF1 2.42 11.38
af23560 491 18.95
vavsis 33.81 94.70
e40r0100 3.09 8.39
ex11 3.49 35.21
goodwin 0.71 2.55
jpwh991 0.11 0.28
memplus 6.01 14.17
orsregl 0.27 0.69
raefsky4 4.67 58.40
saylrd 0.54 1.16
sherman3 1.80 1.12
shermanb 0.92 0.60
Tla 0.84 1.57
TIb 10.44 20.91
TId 1.56 2.92
wang3 17.54 119.70

39

Chapter 5

Implementation of MPI S
software and Comparison with

SHMEM

In Chapter 3, the parallel programs used to verify the effectiveness of our
new space allocation methods are implemented by SHMEM routines, which are
specific to Cray T3E and T3D platform.

The SHMEM routines are data passing library routines similar to message
passing library routines. They can be used as an alternative to message passing
routines such as Message Passing Interface (MPI) or Parallel Virtual Machine
(PVM). Like the message passing routines, the SHMEM routines pass data be-
tween cooperating parallel processes. SHMEM routines support remote data
transfer throughput operations, which transfer data to a different PE, and get
operations, which transfer data from a different PE.

SHMEM is much faster than MPI in that one processor can just write or
get data from the buffer area of another processor without the awareness of
the second one by SHMEM code. However, it can only be implemented on Cray

machines and therefore a program written by SHMEM routines can not be ported

40

to other platforms such as ORIGIN 2000, or Meico machines. Thus the parallel
code we implemented in Chapter 3 has only theoretical importance to verify
the effectiveness of our new space saving methods. In order to use this sparse
matrix solver software called S™ on different platforms for different users, we must
implement its equivalent Message Passing Interface (MPI) version, since MPI is a
widely used language on almost all parallel systems and its parallel performance
is robust and stable.

Since SHMEM is much faster than MPI in communication between different
processors on Cray by utilizing Cray T3E communication properties, it is not
surprising to see that the new MPI version of S* should be slower than SHMEM
version. In Section 5.1, we will show how we implemented the MPI version of ST,
and in Section 5.2, we will compare the time performance of these two different

codes on Cray T3E.

5.1 Implementation of ST MPI code

Since we solve the matrix equation on parallel machines, each processor owns
one part of the L and U structure. It finishes its computation during each
step of Gaussian elimination, (symbolic factorization, LU factorization and tri-
angle solve) by communicating with other processors to exchange data blocks
frequently. Receiving and sending of data blocks between different processors
can be implemented efficiently by SHMEM routines or MPI routines.

Before we present the MPI implementation of S*, we first recall the imple-
mentation of SHMEM code. SHMEM is one kind of parallel routine which can
write or get data from the buffer area of another processor without the awareness
of the second one. Therefore, when one processor needs to send some kind of
data to another processor, it just writes the data to the destination buffer and
then sets one special bit in this buffer to 1. When the second processor needs to

use this data, it first checks that bit. If the bit is set to 1, it knows the data has

41

already arrived and it just transfers the data in that buffer area to its actual po-
sition in memory. Certainly, different data should correspond to different buffer
areas on each processor, and all the processors know the situation in advance.

The advantage of the SHMEM code in communication is that each processor
can just read or write data from another processor’s buffer area directly. At
this time, the second processor may do something else, but it doesn’t matter.
The receiving processor only needs to check the checking bit to see if the data is
received when it needs that data.

However, MPI routines have no such advantages in communication. They
must use MPI-Recv or MPI-Send functions to perform the above communication.

Now, let us explain some communication functions in ST MPI code and its
functionality.

There are four types of communication that need buffering:

1. Pivoting along a processor column, which includes communicating pivot
positions and multicasting pivot rows. We call the buffer for this purpose
Pbuffer.

2. Multicasting along a processor row. The communicated data includes Ly,
local nonzero blocks in Lyy1.n, k, and pivoting sequences. We call the buffer

for this purpose Cbuffer.
3. Row interchange within a processor column. We call this buffer Ibuffer.

4. Multicasting along a processor column. The data includes local nonzero

blocks of a row panel. We call the buffer Rbuffer.

Corresponding to the above different communication buffers, we provide the

following functions between different processors:

1. SP-pivot-send and SP-pivot-get. The processor which owns block Ag will

send the pivot at step k to each processor on the same row.

42

2. SP-col-send and SP-col-get. Each processor which owns column £ will send
its own blocks of block[k+1,...,n|[k] to the processors which have the same

row number as that processor.

3. SP-row-send and SP-row-get. Each processor which owns row k& will send
its own blocks of block[k][k+1,...,n] to the processors which have the same

column number as that processor.

All the above communication functions are implemented by using MPI-Recv

and MPI-Send functions.

5.2 Comparison of MPI with SHMEM

In this section we will show the comparison of time performance of ST MPI
code and SHMEM code. Since the major part of Gaussian Elimination is LU
factorization in time and space requirement, we only consider LU factorization
here.

Table 5.1 provides the comparison of LU time performance of SHMEM code
and MPI code on Cray T3E with 4, 8, 16 processors. From this table, we can
see the MPI code is really slower than the SHMEM code under Cray T3E. With
4 processors, the MPI code is 28% slower than the SHMEM code on average,
and with 8 processors, the MPI code is 29% slower than the SHMEM code on
average, while with 16 processors, the MPI code is 41% slower than the SHMEM

code on average.

43

Table 5.1: Comparison of parallel performance of MPI and SHMEM code with
4, 8, 16 processors. Time is in seconds. A “-” implies the data is not available
due to insufficient memory.

Matrix 4 8 16

SHMEM MPI | SHMEM MPI | SHMEM MPI
OLAF1 15.87 19.87 9.27 11.38 6.14 8.52
af23560 26.59 33.45 14.91 18.95 8.96 13.05

vavsis - - 82.52 94.70 45.00 56.77
e40r0100 11.32 13.70 6.03 8.39 3.80 6.23
ex11 56.45 65.02 30.63 35.21 16.61 20.53

goodwin 3.10 4.125 1.97 2.55 1.20 2.54
jpwh991 0.21 0.34 0.14 0.28 0.12 0.35
memplus 19.82 24.29 11.51 14.17 6.84 9.68
orsregl 0.59 0.94 0.41 0.69 0.41 0.81
raefsky4 100.2 109.15 01.74 58.40 28.36 33.64

saylrd 1.02 1.76 0.68 1.16 0.53 1.30
sherman3 0.90 1.39 0.51 1.12 0.41 1.31
shermand 0.32 0.69 0.24 0.60 0.21 0.68

Tla 1.29 1.96 0.78 1.57 0.51 1.24
TIb 27.59 37.45 15.78 20.91 9.54 13.69
TId 3.17 4.96 2.20 2.92 1.21 2.37

wang3 - - 103.23 119.70 54.28 66.85

44

Chapter 6

Conclusions and Future

Directions

6.1 Summary of contributions

In this thesis, we implemented a time and space efficient parallel method
for sparse matrix solving(i.e., Gaussian elimination) on distributed memory ma-
chines.

In the first step of sparse Gaussian elimination, we implemented the matrix
ordering algorithm, i.e., minimum degree ordering from J.W.Liu. However, the
ordering may introduce a lot of zeros on the diagonal, bring in more burden to the
symbolic factorization. Therefore, we implemented a new transversal algorithm
to reduce the portion of zeros on the diagonal to less than 1%, while the time
requirement for this algorithm is still linear to the number of nonzeros of the
matrix. The ordering and transversal is the minor part of Gaussian elimination
according to the time requirement but this is very important to later steps.

The second step concerns LU factorization. We proposed two space optimiza-
tion schemes. These two space optimization techniques used in LU factorization,

Delayed space allocation and Space reclamation, effectively reduce memory re-

45

quirements when static symbolic factorization creates an excessive amount of
extra fill-ins. This new algorithm with dynamic space management exhibits com-
petitive sequential space and time performance compared to SuperLU for the
tested matrices. The parallel code becomes more robust in handling different
classes of sparse matrices.

Finally, we implemented the parallel triangular solving. In this step, we still
use the same data mapping scheme, therefore, the data shuffling is avoided. We
use forward substitution for the first phase Ly = b and use backward substitution
for the second phase Ux = y while x, y and b use the same space to reduce the
space requirement. At first, the initial column b is distributed to all processors
which owns the first column blocks of the matrix. In the first phase Ly = b, with
k going from 1 to n, the updated b at each step k£ will move from left to right,i.e.,
each processor which owns column blocks £ will send its own B blocks to its right
neighbor. In the phase of Ur = y, with k going from n to 1, the updated b at
each step k will move from right to left, i.e., each processor which owns column
blocks k£ will send its own B blocks to its left neighbor. Finally, all the b blocks
will be collected together to constitute the final solution.

Considering the advantage of our ST method in time and space performance
on distributed memory machines , we released the MPI version of St to the
public. You can download it from ”http://www.cs.ucsb.edu/research/S+”. The
portability of this software is very good. You can load and use it on Cray T3E,
T3D machines, SGI 2000 machine.

6.2 Future research directions

Since the ordering of the matrix before Gaussian Elimination will have an im-
portant influence on the performance of Gaussian Elimination, it is an interesting
research direction to study impact of the matrix ordering. Until now, there is

no optimal method to handle the matrix ordering. Some other approaches that

46

handle nonsymmetric matrices using the multifrontal method [1] and static piv-
oting [21] may be valuable to our ST method, which needs further investigation.

The second direction is the improvement of our ST MPI code which is slower
than the SHMEM code due to the communication pattern. We believe we can
still improve our MPI code by providing more parallelism in both computation
and communication to reduce the time difference between MPI and SHMEM

code.

47

Bibliography

1]

P. R. Amestoy, I. S. Duff, and J.-Y. L’Execellent. Multifrontal parallel
distributed symmetric and unsymmetric solvers. Technical Report RAL-

TR-98-051, Rutherford Appleton Laboratory, 1998.

Richard L. Burden and J. Douglas Faires. Numerical Analysis. PWS Pub-
lishing Company, fifth edition, 1993.

T. Davis. User’s guide for the Unsymmetric-pattern Multifrontal Package
(UMFPACK). Technical Report TR-93-020, Computer and Information Sci-

ences Department, University of Florida, June 1993.

T. Davis and I. S. Duff. An Unsymmetric-pattern Multifrontal Method for
Sparse LU factorization. SIAM Matriz Analysis € Applications, January
1997.

T. A. Davis, J.R. Gilbert, E. Ng, and B. Peyton. Approximate Minimum
Degree Ordering for Unsymmetric Matrices. Talk presented at XIII House-
holder Symposium on Numerical Algebra, June 1996. Journal version in

preparation.

J. Demmel. Numerical Linear Algebra on Parallel Processors. Lecture Notes
for NSF-CBMS Regional Conference in the Mathematical Sciences, June
1995.

48

7]

[12]

J. Demmel, S. Eisenstat, J. Gilbert, X. S. Li, and J. Liu. A Supernodal
Approach to Sparse Partial Pivoting. Technical Report CSD-95-883, EECS
Department, UC Berkeley, September 1995. To appear in SIAM J. Matrix
Anal. Appl.

J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An Extended
Set of Basic Linear Algebra Subroutines. ACM Trans. on Mathematical
Software, 14:18-32, 1988.

[. S. Duff. On Algorithms for Obtaining a Maximum Transversal. ACM
Transactions on Mathematical Software, 7(3):315-330, September 1981.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Ma-

trices. Clarendon Press, 1986.

C. Fu, X. Jiao, and T. Yang. A Comparison of 1-D and 2-D Data Mapping
for Sparse LU Factorization with Partial Pivoting. In Proc. of Eighth SIAM
Conference on Parallel Processing for Scientific Computing, March 1997.

C. Fu, X. Jiao, and T. Yang. A Comparison of 1-D and 2-D Data Mapping
for Sparse LU Factorization on Distributed Memory Machines. Proc. of 8th

SIAM Conference on Parallel Processing for Scientific Computing, March
1997.

C. Fu, X. Jiao, and T. Yang. Parallel Sparse LU Factorization with Par-
tial Pivoting on Distributed Memory Architectures. Tech Rep. TRCS97-11,
UCSB Computer Science, 1997.

C. Fu, X. Jiao, and T. Yang. Efficient Sparse LU Factorization with Par-
tial Pivoting on Distributed Memory Architectures. IEEE Transactions on
Parallel and Distributed Systems, 9(2):109-125, February 1998.

[15]

[16]

[17]

[18]

[20]

[21]

[22]

23]

49

C. Fu and T. Yang. Sparse LU Factorization with Partial Pivoting on Dis-
tributed Memory Machines. In Proceedings of ACM/IEEE Supercomputing,
Pittsburgh, November 1996.

A. George and E. Ng. Symbolic Factorization for Sparse Gaussian Elimi-
nation with Partial Pivoting. SIAM J. Scientific and Statistical Computing,
8(6):877-898, November 1987.

A. George and E. Ng. Parallel Sparse Gaussian Elimination with Partial
Pivoting. Annals of Operations Research, 22:219-240, 1990.

J. A. George and J. W.-H. Liu. The Evolution of the Minimum Degree
Ordering Algorithm. STAM Review, 31:1-19, 1989.

X. Jiao. Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-D
Data Mapping. Master’s thesis, Dept. of Computer Science, University of
California at Santa Barbara, August 1997.

X. S. Li. Sparse Gaussian Elimination on High Performance Computers.

PhD thesis, Computer Science Division, EECS, UC Berkeley, 1996.

X. 5. Li and J. W. Demmel. Making Sparse Gaussian Elimination Scalable
by Static Pivoting. In Proceedings of Supercomputing’98, 1998.

E. Rothberg. Fxploiting the Memory Hierarchy in Sequential and Paral-
lel Sparse Cholesky Factorization. PhD thesis, Dept. of Computer Science,
Stanford, December 1992.

K. Shen, X. Jiao, and T. Yang. Elimination Forest Guided 2D Sparse
LU Factorization. In Proceedings of the 10th ACM Symposium on Par-

allel Algorithms and Architectures, pages 5-15, June 1998. Available at
www.cs.ucsb.edu/research) RAPID.html.

50

[24] M. Yannakakis. Computing the Minimum Fill-In is NP-Complete. SIAM J.
Alg. Disc. Meth., 2:77-79, 1981.

