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An Overview of Transformers

1. Transformers
2. Vision Transftormers (ViT5s)
3. Video Vision Transformers
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1. Transformers

* Transformer architectures were first introduced in [Vaswani, 2017*], with “Attention is All You Need.” Achieved new state of the art in NLP
(machine translation using BLEU score), requiring only a fraction of time of previous SOTA models to train.

* Quickly, Transformers displaced RNN and LSTM architectures as the de facto NLP DL models; more recently, Transformers have displaced CNNs
in CV.

.
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* Basic high-level advantages of Transformers over RNN-based models: (1) Transformers can efficiently learn long-range semantic dependencies;
(2) Transformer training is parallelizable (on the token level), whereas RNN-based models are inherently sequential.

n
* Vaswani et al., “Attention is All You Need,” NIPS 2017: https://proceedings.neurips.cc/paper/2017/file/3f5See243547dee91tbd053clc4a845aa-Paper.pdf I n e ©
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1. Transformers

* Let’s dive into the nuts and bolts of the original Transformer model.
* Two macro components: (1) Encoder (left) and (2) Decoder (right).

* Several components of Transformers are standard, including Feed Forward module,
Layer Norm, linear project layer, softmax, etc.
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1. Transformers Probabilities
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Encoder Structure
* Encoder: encodes (in NLP application) first language text (e.g,, French) into latent code.

Input: Encoder takes as input a (usually 1-hot, etc.) representation of individual words that make up
a sentence/paragraph.

* Each word is then projected linearly via an input embedding (note this can be done in parallel for each
word). This yields an input embedding matrix X of dimension (#words, embedding dim — e.g;, 512).
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* Each word is then projected linearly via an input embedding (note this can be done in parallel for each FOVEE
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Where pos denotes the word position in the input sentence, and 7 represents dimension component; 4, ,, denotes the embedding dimension.
Denote the input after positional encoding as X.

*Note that the positional encoding is required because the Transformer is recurrence and convolution free. In other words, some information
about the absolute position of the tokens must be included. The Transformer learns a disentangled representation of the input.

|
*Recent Transformers have shown that making the positional encoding learnable can further improve model performance. Intel ®
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Encoder Structure

* Self-Attention Mechanism: Self-attention (SA) represents the key architectural innovation in Transformers.
SA allows the Transformer to learn meaningful correlations between the input tokens.

* This technique is inspired by approaches from text mining. For each SA component, we map X
into three new matrices: Q (query), K (key) and V(value) via multiplication with learnable weight matrices:
Wy, Wk, and Wy, , respectively.
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Encoder Structure
* This technique is inspired by approaches from text mining. For each SA component, we map X

into three new matrices: Q (query), K (key) and V (value)

Scaled Dot-Product Attention

Attentlon(Q, [{Vj V) — Softmax(—)v

Where QKT yields a similarity matrix between query and key tokens; division by /dj (the dimension of the
key matrix) normalizes this matrix and leads to more stable gradient values at training time.

* The softmax transformation renders a probability distribution per row, i.e. the correlation score of a query word
(row 7) with each key word (column ;). Finally, this row-normalized matrix is multiplied by the Value matrix,
yielding a weighted sum of each row of the normalized correlation scores (the weights in V can connote word

softmax( | 1] ) | | _ }

importance, for instance).
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Encoder Structure

* Multi-Headed Attention (MHA) indicates that the previous processes are repeated, independently, for
h (e.g., h = 8) Attention Heads. The latent matrices produced by each head are concatenated together;

an additional (tunable) weight matrix Wy is used to project this concatenation. The MHA is intended to
improve the expressivity of the model, including disambiguating different semantic uses of the same word.

MultiHead(Q, K, V') = Concat(head, ..., head,) W
where head; = Attention(QWiQ, KWE Vi)
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Encoder Structure

MultiHead(Q, K, V) = Concat(head;, ..., heady, ) W©
where head; = Attention(QWiQ, KWE vl

* Next, the output of the MHA is added to X via residual connection, followed by Layer Normalization. Lastly,

this feature representation is passed through a single layer feed-forward network, with residual connection.
This basic series of network blocks is duplicated exactly N times (e.g., N = 6).
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Decoder Structure

* The Transtormer Decoder operates in largely the same way as the Encoder, as it includes positional
encoding, MHSA modules followed by residual connections and Layer Normalization, as well as a single

Layer feed-forward NN.

* Recall that the Decoder is tasked with transforming the latent representation generated by the Encoder
into (in the case of machine translation) the equivalent sentence in another language.
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Decoder Structure

Qutput
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Decoder Structure

* Next, this output word is then passed through the Decoder, where it passes through a Masked Mult-
Head Attention module. This network component is identical to MHA from before, except that at
training time, the subsequent words in the translation sentence are “masked” (i.e. hidden) from the
Decoder, so that it does not have access to the ground-truth label during training.

* As in the previous step, the residual from the Encoder is passed to the MHA (now attention is
calculated between the input sentence and the translation sentence generated thus far).

* At the end of this sequential process (each word in the translated sentence is generated one at a time) the
Decoder generates a special <end> token to signify the end of the translation.
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Transformer Summary

(+) New SOTA!

BLEU

Training Cost (FLOPs)

Model .

EN-DE EN-FR EN-DE EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0-102%°
GNMT + RL [31] 24.6 39.92 2.3:10% 1.4.10%
ConvS2S (8] 25.16  40.46 9.6-10'® 1.5.10%
MOoE [26] 26.03 40.56 2.0-10" 1:2-10%
Deep-Att + PosUnk Ensemble [32] 40.4 8.0-10%0
GNMT + RL Ensemble [31] 2630  41.16 1.8-10%° 1.1.10%
ConvS2S Ensemble [8] 2636  41.29 7.7 <1012 1.9 102
Transformer (base model) 27.3 38.1 3.3.10%8
Transformer (big) 28.4 41.0 2.3 .10

(+) Can learn long-range semantic dependencies.
(+) Training is parallelizable (unlike RNN-based models which are inherently sequential), meaning training FLLOPS are relatively small.

(+) Model performance scales very well with # of parameters!
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(+) Much like previous NLP vector space models (e.g., word2vec), can use vanilla Transformer as pre-text model, and then fine-tune

for specific downstream task (e.g., query-answer, sentiment analysis, captioning, chatbot, etc.).

(-) Need colossal amount of data for large Transformers (think GPT-3).
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e With BERT (Devlin et al., Google, 2019), the authors proposed (2) unsupervised, NLP-based pretext tasks

for large-scale Transformer pretraining:

(1) Masked Language Model (MLM) — where some percentage of input tokens are randomly masked, and

the model predicts these masked tokens.

(2) Next Sentence Prediction (NSP) — where sentence relationships are learned using a binarized sentence
prediction, 1.e., given sentences: A | B, does B follow A (50% of the time during training B does follow A

in the training corpus).

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgasE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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* With BERT, the authors proposed (2) unsupervised, NLP-based pretext tasks for large-scale Transformer pretraining:

(1) Masked Language Model (MLLM) — where some percentage of input tokens are randomly masked, and the model predicts these masked

tokens.

(2) Next Sentence Prediction (NSP) — where sentence relationships are learned using a binarized sentence prediction, i.e. given sentences:
A|B, does B follow A (50% of the time during training B does follow A in the training corpus).
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An Overview of Transformers

1. Transformers
2. Vision Transformers (ViTs)
3. Video Vision Transformers
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Limitations of CNNs
*According to Geoffrey Hinton*, it is unfortunate in some sense that CNNs work so well, because they have serious flaws which he believes “will be
hard to get rid of.”

These flaws include (according to Hinton):
* Inefficiencies in backpropagation paradigm itself
* Poor translational invariance
* Lack of “pose” information — absence of nuanced information about relative position and orientation of
parts of an object. These is sometimes referred to as the “Picasso problem.”
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* Hinton proposed Capsule Nets** (2017) to address some of these issues.
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*https://www.youtube.com/watch?v=tTawFwUvnLE&t=8s
** https:/ /arxiv.org/abs/1710.09829 I n
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Vision Transformers

* The introduction of high-performing Transformers models in NLP (2017) and Computer Vision (2020) encapsulates an effort to
replace hand-written features or inductive biases with general-purpose neural architectures powered by data-driven training.

* In CV in particular, SOTA Vision Transformers are thought to benefit from the lack of strong inductive biases exhibited by
traditional CNN models, including inherently spatial, local and hierarchical feature processing operations.*



Intel Labs: Anthony Rhodes

Vision Transformers

* The introduction of high-performing Transformers models in NLP (2017) and Computer Vision (2020) encapsulates an effort to replace
hand-written features or inductive biases with general-purpose neural architectures powered by data-driven training,

* In CV in particular, SOTA Vision Transformers are thought to benefit from the lack of strong inductive biases exhibited by traditional
CNN models, including inherently spatial, local and hierarchical teature processing operations.*

* The absence of many of these convolution-like inductive biases can lead to improved generalizability; on the other hand, the lack of
inductive bias presents unique challenges, as such models can require either large quantities of data to train or specialized optimization

functions.*

Likelihood of the data Model Prior 0081

P(M|D) =

Posterior of model,
given data

0 10 20 a0 40 a0 60 Eitl a0 an 100
Parameter value s

Classical Bayes’ Rule captures the trade-off between models with high inductive bias and those with low inductive bias (i.e. informed
priors vs uniformed priors). Learning algorithms utilizing models with low inductive bias can learn model types that are otherwise

inaccessible via models with high inductive bias.

*Chen et al., “When Vision Transformers Outperform ResNets...”: https://arxiv.org/pdf/2106.01548.pdf
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Vision Transformetrs

* “An Image is Worth 16x16 Words...” (Dosovitskiy et al., ICLR 2021), a highly-influential pure ViT (no convolutions).

* Fundamentally same architecture as original Transformer, except that ‘tokens’ here are image patches; MLP is 2-layer. Note that only an Encoder sub-
network is used. Notice that fundamental challenge with ViTs is citcumventing ostensible O(n?) pixel-level attention calculation.

* For this reason, most subsequent Vision Transformer work focuses on efficient attention/scale computations.

Vision Transformer (ViT)
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* https:/ /arxiv.org/pdf/2010.11929.pdf
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The MLP contains two layers with a GELU non-linearity.
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Vision Transformers

* VIT produces SOTA results — however due to size of model, requires large data sets (it is believed). Note that much less

computation is required to train ViT compared to equivalent-sized CNN:ss.

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M
Ours-JFT Ours-JFT Ours-121k BiT-L Noisy Student
(ViT-H/14)  (ViT-L/16)  (ViT-L/16) (ResNetl152x4) (EfficientNet-L2)
ImageNet 88.55+0.04 87.76+0.03 85.30+0.02 87.54 +0.02 88.4/88.5*
ImageNet RealL 90.72+0.05 90.54+0.03 88.62+0.05 90.54 90.55
CIFAR-10 99.50+0.06 99.42+0.03 99.15+0.03 99.37 +0.06 -
CIFAR-100 94.55+0.04 93.90+0.05 93.25+0.05 93.51 +0.08 -
Oxford-IIIT Pets 97.56+0.03 97.32+011 94.67+0.15 96.62 +0.23 —
Oxford Flowers-102  99.68 +0.02 99.74+0.00 99.61 +0.02 99.63 +0.03 -
VTAB (19 tasks) 77.63+023 T76.28+046 72.72+0.21 76.29 +1.70 -
TPUv3-core-days 2.5k 0.68k 0.23k 9.9k 12.3k

ImageNet Topl Accuracy %]
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* Notably, ViT is highly performant — when trained on large datasets. In particular, when training on large datasets such as
ImageNet-21k (~14M images) and JFT (Google proprietary, ~300M images), ViT performs best in class. However, when

trained on smaller datasets, e.g., Imagenet (~1M images) the performance is worse than ResNet.

* These results are fairly intuitive. Because ViT possesses fewer inductive biases than standard CNNs, without more
data/regularization, it is likely to underperform.
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* “Do Vision Transformers See Like CNNs?” (Dosovitskiy,
Google Brain August 2021)
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Figure 1: Representation structure of ViTs and convolutional networks show significant differences, with ViTs —— encoder_blockl —— encoder_blockl
having highly similar representations throughout the model, while the ResNet models show much lower similarity 20 —— encoder_block22 20 —— encoder_block30
between lower and higher layers. We plot CKA similarities between all pairs of layers across different model architec- encoder_block23 encoder_block31
tures. The results are shown as a heatmap, with the x and y axes indexing the layers from input to output. We observe that 0 ) 3 2 3 3 0 2 2 0 ) 3 P 3 8 10 > 14
ViTs have relatively uniform layer similarity structure, with a clear grid-like pattern and large similarity between lower Sorted Attentionl Heald 1 Sorted Attention Heald
and higher layers. By contrast, the ResNet models show clear stages in similarity structure, with smaller similarity scores
between lower and higher layers.
) _ ViT-B/32
ViT-L/16 on ImageNet ViT-H/14 on ImageNet Attention 1 Attention 3 Attention 6 Attention 9 Attention 12
120 120]
o - ! Figure 6: ResNet effective recep-
a S tive fields are highly local and
g 80 £ 80/ . . . . . grow gradually; ViT effective re-
2 o 2 o ceptive fields shift from local to
< H global. We measure the effective
S 40| — encoder_block0 S 40| — encoder_blocko receptive field of different layers as
—— encoder_blockl —— encoder_blockl ResNet-50 X
20 encoder_block22 20{ — encoder_block30 Initial Conv Block 3 Block 7 Block 12 Block 16 the absolute value of the gradient
o encoder block?3 0 encoder block3l of the center location of the feature
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 i -
Sorted Attention Head Sorted Attention Head E 1 rpap ([a!(cn after rc51dua_l connec
. . ™ ‘ tions) with respect to the input. Re-
Figure 4: With less training data, lower attention layers do not learn to attend locally. Comparing the results to sul ts.are averaged‘across all chan-
Figure 3, we see that training only on ImageNet leads to the lower layers not learning to attend more locally. These models nels in each map for 32 randomly-
also perform much worse when only trained on ImageNet, suggesting that incorporating local features (which is hardcoded selected images. u

into CNNs) may be important for strong performance. (See also Figure C.5.)
Note: CNN receptive field grows only linearly per layer.
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SWIN Vision Transformer

 “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows” (Liu, Microsoft, August 2021)

e SWIN builds on V1T by constructing a hierarchical feature representation by starting with small-sized patches and
gradually merging them with neighbors in deeper layers. Because the number of patches is fixed, the computational

complexity becomes linear wrt image size.
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t Layer | Layer 1+1
- - a 7
16x //7//%
- A local window to
é?/: Tz Ax o 7 perform self-attention
Z L AL =
L 5= i T A patch
L e s s 4% / 16x
L o~

(a) Swin Transformer (ours)

https://arxiv.org/pdf/2103.14030.pdf Intel®
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SWIN Vision Transformer
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EffNet-B4 [58] |380% 19M 4.2G 3494 82.9
EffNet-BS [58] |456® 30M 9.9G  169.1 83.6
EffNet-B6 [58] [528% 43M  19.0G  96.9 840  Semmsmmsmmssest Seeessooshec Seoooeo-n-
EffNet-B7 [58] 6002 66M 37.0G 55.1 84.3 (a) Architecture (b) Two Successive Swin Transformer Blocks
ViT-B/16 [20] [384° 86M 554G 859 77.9
ViT-L/16 [20] |384% 307M 190.7G  27.3 76.5

DeiT-S [63] 2247 22M  4.6G 940.4 79.8

DeiT-B [63] 224% 86M 175G 2923 81.8

' I
(a) Regular ImageNet-1K trained models : :
i hroughput|ImageNet .- o emmmmmmemesl mmzeeoooe 1 :
method tmage #param. FLOPs t. !
size (image / s) [top-1 acc. ! 1
RegNetY-4G [13] [2247 2IM  40G 11567 | 80.0 - ” w0 ! :
2 HxWx3 |.2 g g ' L
RegNetY-8G [48] | 224© 39M 8.0G  591.6 81.7 = po Be 1 !
RegNetY-16G [48]) 2242 84M 160G 3347 | 829 Images [ = = ' :
EffNet-B3 58] |3002 12M 1.8G  732.1 81.6 g g 5 ' ;
£ & & X !
! i

1

. S 2 (a) Various frameworks ADE20K val  test - B it
DeiT-B [63] 384 86M  55.4G 85.9 83.1 Method ~ Backbone|AP™ APS* AP} [#param. FLOPs FPS Method Backbone |mloU score T
Swin-T 224> 29M  4.5G 755.2 81.3 Cascade R-50 [46.3 64.3 50.5| 82M 739G 18.0 DANet[77] ResNet-101 [452 - | 69M 1119G 15.2
Swin-S 2242 50M 8.7G 436.9 83.0 Mask R-CNN Swin-T | 50.5 69.3 54.9| 86M 745G 15.3 DLab.v3+ [I1] ResNet-101 [44.1 - | 63M 1021G 16.0
. 2 R-50 |435 619 47.0| 32M 205G 283 ACNet [21]  ResNet-101 | 459 385| -

Swin-B 2247 88M 154G 278.1 83.5 ATSS  SwinT [47.2 665 513| 36M 215G 223 DNL(71]  ResNet-101 | 460 56.2| 69M 1249G 14.8
Swin-B 384 88M 47.0G 847 84.5 Repomevs RS0 [ 465 646 503| 42M 274G 136 OCRNet [73] ResNet-101 | 453 56.0| 56M 923G 19.3
(b) ImageNet-22K pre-trained models CPEOMBYS swin-T | 50.0 68.5 54.2| 45M 283G 12.0 UperNet [(9] ResNet-101 [ 449 - | 86M 1029G 20.1
; Sparse R-50 |44.5 634 482 106M 166G 21.0 OCRNet [75] HRNet-w48 | 45.7 - | 7IM 664G 12.5
method HI}age#param. FLOPs ﬂ,]mughput Imaﬁ”eNm R-CNN  Swin-T |47.9 67.3 52.3| 110M 172G 18.4 DLab.v3+ [11] ResNeSt-101| 46,9 55.1| 66M 1051G 11.9
01x3 33;262 388M 204.6G (image /5) t0p8-4 ZCC' (b) Various backbones w. Cascade Mask R-CNN DLab.v3+[11] RCSN':S“:;(X) 43": |'7 ::::‘:A 1381G 8.1
R-101x3 [38] M : - : AP APY* APSAP™* APL™ AP param FLOPs FPS SETR[81]  T-Large’ | 503 61.7] : 2
R-152x4 [38] |480% 937M 840.5G - 85.4 DeiT-ST|48.0 67.2 51.7| 41.4 642 44.3 |80M 889G 10.4 Er’cf:ﬂ ';CiT'STf ::‘l’ - Zm '9‘1:’:(? :;’z
= 5 P R50 [46.3 64.3 50.5| 40.1 61.7 434 |82M 739G 18.0 perNet win- d- 43 .2
V}T B/16 [20] 3842 86M 554G 85.9 8.0 Swin-T|50.5 69.3 54.9| 43.7 66.6 47.1 |86M 745G 15.3 UperNet Swin-S 1493 - | 8IM 1038G 15.2
VIiT-L/16 [20] | 384" 307M 190.7G  27.3 85.2 X101-32/48.1 66.5 52.4|41.6 639 452 [10IM 819G 12.8 UperNet Swin-B* | 516 - | 12IM 1841G 87
Swin-B 224> 88M 154G 278.1 85.2 Swin-S [51.8 70.4 56.3| 44.7 67.9 48.5 |107M 838G 12.0 UperNet Swin-L' | 53.5 62.8| 234M 3230G 6.2
Swin-B 3842 88M 47.0G 84.7 86.4 X101-64/483 664 523| 41.7 64.0 45.1 [140M 972G 10.4 Table 3. Res‘l‘xlls of semantic segmentation on the ADE20K val
K : : . Swin-B [51.9 70.9 56.5| 45.0 68.4 48.7 |145M 982G 11.6 and test set. ' indicates additional deconvolution layers are used
Swin-L 3842 197M 103.9G  42.1 87.3 i - - te nnditae hissarhinal faativemmane Findisates that thamndal ta
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SETR ViT

* “Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers” (Zheng, FAIR, 2021) introduce

a pure Transformer for semantic segmentation. Bl [Fitives HifEuats Sl
-base Z Z
T-Large 24 1024 16

Table 1. Configuration of Transformer backbone variants.

A Method Pre | Backbone | #Params | 40k 80k
' FCN [39] IK | R-101 | 68.59M [73.93 75.52
/ (2 \ Semantic FPN [39] 1K R-101 47.51M - 75.80
M‘IZP * Hybrid-Base R T-Base | 112.59M | 74.48 77.36
[ Decnder ] Hybrid-Base 21K | T-Base |112.59M |76.76 76.57
1 Hybrid-DeiT 21K | T-Base |112.59M |77.42 78.28
SETR-Naive 21K | T-Large |305.67M |77.37 77.90
( Tensstormes Layes _} SETR-MIA 21K | T-Large |310.57M | 76.65 77.24
SETR-PUP 21K | T-Large |318.31M |78.39 79.34
( Iranstormer Laver ___} SETR-PUP R | T-Large |3183IM|4227 -
T T T 1‘ o 1 Wy 102 By W o6 Hx W x956 I o W 25 W x 19 SETR-Naive-Base 21K | T-Base | 87.69M |75.54 76.25
/ / / / SETR-MLA-Base 21K | T-Base 92.59M | 75.60 76.87
/ / / SETR-PUP-Base 21K | T-Base | 97.64M |76.71 78.02
f) f) 1 papecons SETR-Naive-DeiT 1K | T-Base | 87.69M |77.85 78.66
Linear Projection 74 | v, SETR-MLA-DeiT 1K T-Base 92.59M | 78.04 78.98
1 = SETR-PUP-DeiT 1K | T-Base | 97.64M | 78.79 79.45
ﬁ l. ﬁ ﬁ — Table 2. Comparing SETR variants on different pre-training
— strategies and backbones.  All experiments are trained on
”"";”’ = Cityscapes train fine set with batch size 8, and evaluated using the

single scale test protocol on the Cityscapes validation set in mean
IoU (%) rate. “Pre” denotes the pre-training of transformer part.
“R" means the transformer part is randomly initialized.

 Key innovations: Authors introduce (3) Decoder architectures (e.g. PUP or “progressive up-sampling”) to accommodate dense
segmentation output layer.

* Demonstrate effectiveness of using pretrained Transformer (in this case ViT) for downstream task, e.g., dense segmentation,

analogous to pre-text training for NLP Transformers.
[ |

*https:/ /arxiv.org/pdf/2012.15840.pdf I n
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SAM Optimization

* “Sharpness-Aware Minimization for Efficiently Improving Generalization” (Foret, ICLR 2021)

* Introduces a new paradigm for gradient-based optimizers (SAM):

min L3*M (w) + M |w||3  where

LM (w) £ max Lg(w + €),

ellp<p

Where the objective (above) is to minimize a loss function uniformly within an e-hypersphere (radius governed by

hyperparameter p). This objective is solved with a first-order approximation, which, notably requires two backpropgation passes per

update.

(*) Importantly, the authors show empirically that descending in the direction of uniformly minimal regions yields improved

generalization.

Input: Training set S £ U, {(x:, y:)}, Loss function

l: W x X xY — Ry, Batch size b, Step size n > 0,

Neighborhood size p > 0.
Output: Model trained with SAM
Initialize weights wo, t = 0;
while not converged do
Sample batch B = {(z1,y1),...(xs, ys) };

Compute gradient V,, Liz(w) of the batch’s training loss;

Compute €(w) per equation 2;
Compute gradient approximation for the SAM objective
(equation 3): g = V, La(W)|w+é(w):
Update weights: w1 = w; — ng;
t=t+1;
end
return w,

Algorithm 1: SAM algorithm

Wes1
o
w Wit
S
—nNVEL(Wa4y)

Figure 2: Schematic of the SAM param-

eter update.

Cifar10 4
Cifar100
Imagenet

Finetuning

SVHN |
F-MNIST
Noisy Cifar 4

0 20 40
Error reduction (%)

Figure 1: (left) Error rate reduction obtained by switching to SAM. Each point is a different dataset

/ model / data augmentation. (middle) A sharp minimum to which a ResNet trained with SGD |
converged. (right) A wide minimum to which the same ResNet trained with SAM converged. I n
®
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SAM Optimization for ViTs

* More recently, “When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations” (Google,
June 2021) demonstrated that leveraging SAM optimization can obviate the need for large dataset pretraining for ViTs.

( % § 8 i
» AW il Al d s s
4 M., 4 M., <M., < M., < M.,

- * # { 2z g =

| . | y ¢ | s
p— o A, (U i - ke I - A, o M,

s (13 s — 0s - 0s
00 -0 0o e
o 4

(a) ResNet (b) ViT (c) Mixer (d) ViT-SAM (e) Mixer-SAM
Figure 1: Cross-entropy loss landscapes of ResNet-152, ViT-B/16, and Mixer-B/16. ViT and MLP-
Mixer converge to sharper regions than ResNet when trained on ImageNet with the basic Inception-
style preprocessing. SAM, a sharpness-aware optimizer, significantly smooths the landscapes.

Table 1: Number of parameters, NTK condition number «, Hessian dominate eigenvalue A, 4,
accuracy on ImageNet, and accuracy/robustness on ImageNet-C. ViT and MLP-Mixer suffer divergent
 and converge to sharp regions of big A,,..; SAM rescues that and leads to better generalization.

ResNet-50 | ResNet-152 | ViT-B/16 V‘gﬂ/} 6 | Mixer-B/16 M"‘SCXIBI’ 16-
#Params 25M 60M 87M 59M
NTK & 2801.6 2801.6 4205.3 14468.0
Hessian \,... 122.9 179.8 738.8 20.9 1644.4 225
ImageNet (%) 76.0 78.5 74.6 79.9 66.4 774
ImageNet-C (%) 44.6 50.0 46.6 56.5 338 48.8

*https://arxiv.org/pdf/2106.01548.pdf

eEETHIsHE
] | o B+ eI
CREHB< B
S lal AP

Figure 3: Raw images (Left) and attention maps of ViT-S/16 with (Right) and without (Middle)
sharpness-aware optimization. ViT-S/16 with less sharp local optimum contains perceptive segmenta-
tion information in its attention maps.
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Perceiver
* DeepMind introduced “Perceiver: General Perception with Iterative Attention” (Jaegle, 2021): a model building

upon Transformers using asymmetrical attention to iteratively distill inputs into a small latent bottleneck (e.g;,

224 X 224 — 512 latent dimensions).

* Perceiver can handle high dimensional input and different modalities using a single Transformer-based
architecture. No need to fine-tune architecture for different modalities, or decide on bespoke fusion strategies, etc.

Relies on scalable Fourier features for position encoding;

* Model is performant across image, audio, point cloud, video and mixed modality use-cases.

Weights optionally shared between repeats

Logits

Latent
Transformer

Latent
Transformer

i A
Cross
Attention

Latent array
(N x D)
[T

i A 4
Cross
Attention

(=]
<]
(=]
<]

Byte array
(MxC)

https://arxiv.org/pdf/2103.03206.pdf
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Perceiver

Weights optionally shared between repeats

Latent
Transformer

Latent array
(N x D)

Cross

(. (I
(=]
(< }—{_Attention
&
—»B—— Attention

Byte array
(MxC)

ResNet-50 (He et al., 2016) 77.6
ViT-B-16 (Dosovitskiy et al., 2021) | 77.9
ResNet-50 (FF) 73.5
ViT-B-16 (FF) 76.7
'__' """"""" | Transformer (64x64, FF) 57.0
5 .
! .. - ! @ o Perceiver (FF) 78.0
g 2 "‘% - g o Table 1. Top-1 validation accuracy (in %) on ImageNet
] 5 8¢ O] [EJ 9 able 1. Top y geNet.
=
Raw | Perm. || Input RF
ResNet-50 (FF) 73.5 | 394 49
ViT-B-16 (FF) 76.7 | 61.7 256
Transformer (64x64) (FF) | 57.0 | 57.0 4,096
Perceiver:
(FF) 78.0 | 78.0 50,176
(Learned pos.) 70.9 | 70.9 50,176
Model / Inputs Audio | Video | A+V
Benchmark (Gemmeke et al., 2017) 31.4 - -
Attention (Kong et al., 2018) 32.7 - -
Multi-level Attention (Yu et al., 2018) 36.0 - -
ResNet-50 (Ford et al., 2019) 38.0 - -
CNN-14 (Kong et al., 2020) 43.1 - -
CNN-14 (no balancing & no mixup) (Kong et al., 2020) | 37.5 - -
G-blend (Wang et al., 2020c) 32.4 18.8 41.8
Attention AV-fusion (Fayek & Kumar, 2020) 38.4 25.7 46.2
Perceiver (raw audio) 38.3 25.8 43.5
Perceiver (mel spectrogram) 38.4 25.8 43.2
Perceiver (mel spectrogram - tuned) - - 44.2
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An Overview of Transformers

1. Transformers
2. Vision Transtormers (ViTs)
3. Video Vision Transformers



Intel Labs: Anthony Rhodes

“ViViT: A Video Vision Transformer” (Google, 2021)

J Pure Transformer based model for video classification. Authors propose several variants which factorize the spatial and temporal dimensions of
the input. They also show effects of regularization and leveraging pretrained ViTs.

. Key innovations: efficient calculation of attention by factorizing the spatial and temporal dimensions of the input video.

| MLP I
Head Class

1 1
1 1
1 1
1 1
Factorised : Factorised E Factorised
Transformer|Encoder Encoder : Self-Attention I Dot-Product
1
- - 1
Position + Token ' 4 | E 4
Embedding - , N -
1 1
.................. I 1 JPUNPR E - ————
T 1 =
- ' Temporal ; : Temporal | : I Eiee )
1 I | I
- s — ! : ! ! ' | Spatial J[ Temporal]i
o) | I -
_’8_, Lx Self-Attention '__@@__ ! | 22 . E S I _________ ;
1
N 1 cee
e oo B TSR B () N (R [ . S N [ S [ ' [ IR IR
3 »H— Embed to —.8—- Multi-Head : vl [ vl :’ | :
N r‘ tokens Dot-Product E Spatial ] i : i i ! I Fuse ]E
: Attention i : : i ' | i Spatial || Temporal E
e * : ! : ! | 1
: ] Spatial ] - : Spatial ! E : ]
D ST J ! . S N { ________
B | | |= J | g —
1 1
4 1 ]
@ -~ D : ac - | GDIEDERAED)
1 1
. 1

*https://arxiv.org/pdf/2103.15691.pdf I n
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“ViViT: A Video Vision Transformer” (Google, 2021)

. Two ways to embed video clips for attention calculation: (1) Uniform frame sampling and (2) Tubelet embedding.

-
> &
¢ @i+D
(Z1) (T2) eee ( ) --ooo- :
Figure 2: Uniform frame sampling: We simply sample n; frames, D)

and embed each 2D frame independently following ViT [15].
Figure 3: Tubelet embedding. We extract and linearly embed non-
overlapping tubelets that span the spatio-temporal input volume.

Table 1: Comparison of input encoding methods using ViViT-B
and spatio-temporal attention on Kinetics. Further details in text.

Top-1 accuracy

Uniform frame sampling 78.5
Tubelet embedding

Random initialisation [ 2] 732
Filter inflation [0] 77.6

||
Central frame 79.2 I n
®
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“ViViT: A Video Vision Transformer” (Google, 2021)

. Attention Model 1: Spatio-Temporal Attention: Simply model spatio-temporal attention jointly (most computationally intensive).

. Attention Model 2: Factorized Encoder: Two separate Transformer encoders: spatial and temporal. Frame-level representations are

concatenated together and forwarded through a temporal encoder.

Temporal Transformer Encoder

" __

Spatial Transformer Spatial Transformer
Encoder Encoder

lu 00

oo

Temporal + Token
Embedding

Positional + Token
Embedding

Embed to tokens ]

|

O
e

X

)
A

Figure 4: Factorised encoder (Model 2). This model consists of
two transformer encoders in series: the first models interactions
between tokens extracted from the same temporal index to produce
a latent representation per time-index. The second transformer
models interactions between time steps. It thus corresponds to a
“late fusion” of spatial- and temporal information.

Transformer Block x L

(" N
1 \ l l
ot = [ a8
0 o o
3 < s . 3
( Token embedding >—~.+ 2 T 2 2 % D

- P Z
3 3 3

Spatial Self-Attention Block Temporal Self-Attention Block )

Figure 5: Factorised self-attention (Model 3). Within each trans-
former block, the multi-headed self-attention operation is fac-
torised into two operations (indicated by striped boxes) that first
only compute self-attention spatially, and then temporally.

. Attention Model 3: Factorized self-attention: like Model 1, but more efficient. Factorize attention so that the first layer only compute SA

spatially (same temporal index); next layer only computes attention temporally (among all tokens extracted from same spatial index). u

INtel.
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“ViViT: A Video Vision Transformer” (Google, 2021)

Table 2: Comparison of model architectures using ViViT-B as the
backbone, and tubelet size of 16 x 2. We report Top-1 accuracy on
Kinetics 400 (K400) and action accuracy on Epic Kitchens (EK).
Runtime is during inference on a TPU-v3.

FLOPs Params Runtime
(x10%)  (x10%  (ms)

Model 1: Spatio-temporal 80.0 43.1 455.2 88.9 58.9
Model 2: Fact. encoder 78.8 43.7 284.4 100.7 17.4
Model 3: Fact. self-attention 77.4  39.1 372.3 117.3 31.7

K400 EK

Table 4: The effect of progressively adding regularisation (each
row includes all methods above it) on Top-1 action accuracy on
Epic Kitchens. We use a Factorised encoder model with tubelet
size 16 x 2.

Top-1 accuracy

Random crop, flip, colour jitter 38.4
+ Kinetics 400 initialisation 39.6
+ Stochastic depth [28] 40.2
+ Random augment [10] 41.1
+ Label smoothing [58] 43.1
+ Mixup [79] 437

==ViViT-B  =&=ViViT-L
15 'y

>
3
9
z 1.0 ’,,,
< -
- A
3 0.5 ';;/
& g

T T T T T T

16x8 16x4 16x2 16x8 16x4 16x2
Input tubelet size Input tubelet size
(a) Accuracy (b) Compute

Figure 7: The effect of the backbone architecture on (a) accuracy
and (b) computation on Kinetics 400, for the spatio-temporal at-
tention model (Model 1).

—+—Spatio-temporal  =A=Factorised encoder == Factorised self-attention - #- Factorised dot-product

T T T T
16x8 16x4 16x2 16x8 16x4 16x2

Input tubelet size Input tubelet size
(a) Accuracy (b) Compute

Figure 8: The effect of varying the number of temporal tokens on
(a) accuracy and (b) computation on Kinetics 400, for different
variants of our model with a ViViT-B backbone.
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“Is Space-Time Attention All you Need for Video Understanding?” (Facebook Al, 2021)

. Authors also introduce a pure Transformer-based video classifier. Key observation: self-attention requires computing similarity for all pairs of
tokens; consequently, efficient calculation of attention is vital.

. They propose several schema:
ST 2D Local Alt.
[ spaceat. | [ Joint Space-Time Att. |
¢ s
ELP ‘jLP
¢ q
70 7z é

Z

Joint Space-Time
Attention (ST)

Divided Space-Time
Attention (T+S)

Sparse Local Global

Space Attention (S) Attention (L+G)

https://arxiv.org/pdf/2102.05095.pdf

Time Att.

Axial Attention
(T+W+H)

(ST): Jointly calculate space-time attention (most computationally intensive).

(T+S): Separate spatial and temporal attention sequentially.

(L+G): First compute local attention by considering neighboring patches, then global attention over entire clip using stride = 2 patches.
(T+W+H): Decomposes attention over 3 dimensions: time, width and height.

Attention Params K400  SSv2
Space 85.9M 76.9 36.6
Joint Space-Time 85.9M 77.4 58.5
Divided Space-Time 121.4M 78.0 59.5
Sparse Local Global 121.4M 75.9 56.3
Axial 156.8M 73.5 56.2
Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc.  TFLOPs
I3D 8x8 R50  ImageNet-1K 444 71.0 1:11 28.0M
I3D 8x8 R50  ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast RS0 ImageNet-1K 448 70.0 1.97 34.6M
SlowFast R50  ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast R50 N/A 6336 76.4 1.97 34.6M
TimeSformer ImageNet-1K 416 75.8 0.59 121.4M
TimeSformer ImageNet-21K 416 78.0 0.59 121.4M
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Landscape Analysis of Vision Transformers

(+) Lack of inductive bias, good fit for data-drive applications, SOTA results, many topical innovations, can model long-term
statistical dependencies, computational efficiency, multi-modal fusion potential, faster to train.

Some essential considerations:

(*) Large models, require large datasets

(*) Innovation potential with efficient calculation/use of attention, multi-modal data fusion
(*) Pre-text training, downstream fine-tuning

(*) Fit for weakly-supervised data?

(*) Continuous learning potential?

(*) Scaling and generalizability?



