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1. Transformers

• Transformer architectures were first introduced in [Vaswani, 2017*], with “Attention is All You Need.” Achieved new state of  the art in NLP 

(machine translation using BLEU score), requiring only a fraction of  time of  previous SOTA models to train. 

• Quickly, Transformers displaced RNN and LSTM architectures as the de facto NLP DL models; more recently, Transformers have displaced CNNs 

in CV. 

• Basic high-level advantages of  Transformers over RNN-based models: (1) Transformers can efficiently learn long-range semantic dependencies; 

(2) Transformer training is parallelizable (on the token level), whereas RNN-based models are inherently sequential.

* Vaswani et al., “Attention is All You Need,” NIPS 2017: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
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1. Transformers

• Let’s dive into the nuts and bolts of  the original Transformer model.

• Two macro components: (1) Encoder (left) and (2) Decoder (right). 

• Several components of  Transformers are standard, including Feed Forward module, 

Layer Norm, linear project layer, softmax, etc.
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1. Transformers

• Let’s dive into the nuts and bolts of  the original Transformer model.

• Two macro components: (1) Encoder (left) and (2) Decoder (right). 

• Several components of  Transformers are standard, including Feed Forward module, 

Layer Norm, linear project layer, softmax, etc. 

• So, what’s new? Multi-Head Attention (and Masked Multi-Head Attention); recall: attention is 

all you need.  

• Encoder: encodes (in NLP application) first language text (e.g., French) into latent code;

Decoder: decodes latent code into second language text (e.g., English). 
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Encoder Structure 

• Encoder: encodes (in NLP application) first language text (e.g., French) into latent code.

Input: Encoder takes as input a (usually 1-hot, etc.) representation of  individual words that make up

a sentence/paragraph. 

• Each word is then projected linearly via an input embedding (note this can be done in parallel for each 

word). This yields an input embedding matrix ሗ𝑿 of  dimension (#words, embedding dim – e.g., 512). 
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Encoder Structure 

• Each word is then projected linearly via an input embedding (note this can be done in parallel for each 

word). This yields an input embedding matrix ሗ𝑿 of  dimension (#words, embedding dim). 

• Next, positional encodings are added to the embedding matrix:

Where pos denotes the word position in the input sentence, and i represents dimension component; dmodel denotes the embedding dimension.

Denote the input after positional encoding as 𝑿.

*Note that the positional encoding is required because the Transformer is recurrence and convolution free. In other words, some information

about the absolute position of  the tokens must be included. The Transformer learns a disentangled representation of  the input. 

*Recent Transformers have shown that making the positional encoding learnable can further improve model performance. 
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Encoder Structure 

• Self-Attention Mechanism: Self-attention (SA) represents the key architectural innovation in Transformers.

SA allows the Transformer to learn meaningful correlations between the input tokens. 

• This technique is inspired by approaches from text mining. For each SA component, we map 𝑿
into three new matrices: 𝑸 (query), 𝑲 (key) and 𝑽(value) via multiplication with learnable weight matrices:

𝑊𝑄 , 𝑊𝐾 , and 𝑊𝑉 , respectively. 
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Encoder Structure 

• This technique is inspired by approaches from text mining. For each SA component, we map 𝑿
into three new matrices: 𝑸 (query), 𝑲 (key) and 𝑽(value)

Where 𝑄𝐾𝑇 yields a similarity matrix between query and key tokens; division by 𝑑𝑘 (the dimension of  the

key matrix) normalizes this matrix and leads to more stable gradient values at training time. 

• The softmax transformation renders a probability distribution per row, i.e. the correlation score of  a query word

(row i ) with each key word (column j ). Finally, this row-normalized matrix is multiplied by the Value matrix, 

yielding a weighted sum of  each row of  the normalized correlation scores (the weights in V can connote word 

importance, for instance).
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Encoder Structure 

• Multi-Headed Attention (MHA) indicates that the previous processes are repeated, independently, for

ℎ (e.g., ℎ = 8) Attention Heads. The latent matrices produced by each head are concatenated together;

an additional (tunable) weight matrix 𝑊𝑂 is used to project this concatenation. The MHA is intended to

improve the expressivity of the model, including disambiguating different semantic uses of  the same word.
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Encoder Structure 

• Next, the output of  the MHA is added to 𝑿 via residual connection, followed by Layer Normalization. Lastly, 

this feature representation is passed through a single layer feed-forward network, with residual connection. 

This basic series of network blocks is duplicated exactly N times (e.g., N = 6).
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Decoder Structure

• The Transformer Decoder operates in largely the same way as the Encoder, as it includes positional

encoding, MHSA modules followed by residual connections and Layer Normalization, as well as a single

Layer feed-forward NN.

• Recall that the Decoder is tasked with transforming the latent representation generated by the Encoder

into (in the case of  machine translation) the equivalent sentence in another language. 
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Decoder Structure

• So, what then is different about the Decoder? More concretely, the Decoder receives the latent representation

of  the input produced by the Encoder as a residual connection (see diagram). 

• When the latent representation is passed through the Decoder it elicits a distribution of  probabilities 

over the output language dictionary, i.e. it outputs a word (take the max of  the predictions). 

• Next, this output word is then passed through the Decoder, where it passes through a Masked Multi-

Head Attention module. 

• This network component is identical to MHA from before, except that at training time, the subsequent 

words in the translation sentence are “masked”, i.e., hidden from the Decoder, so that it does not have 

access to the ground-truth label during training. 
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Decoder Structure

• Next, this output word is then passed through the Decoder, where it passes through a Masked Mult-

Head Attention module. This network component is identical to MHA from before, except that at

training time, the subsequent words in the translation sentence are “masked” (i.e. hidden) from the 

Decoder, so that it does not have access to the ground-truth label during training. 

• As in the previous step, the residual from the Encoder is passed to the MHA (now attention is 

calculated between the input sentence and the translation sentence generated thus far).

• At the end of  this sequential process (each word in the translated sentence is generated one at a time) the

Decoder generates a special <end> token to signify the end of  the translation. 
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Transformer Summary

(+) New SOTA!

(+) Can learn long-range semantic dependencies. 

(+) Training is parallelizable (unlike RNN-based models which are inherently sequential), meaning training FLOPS are relatively small.

(+) Model performance scales very well with # of parameters!

(+) Much like previous NLP vector space models (e.g., word2vec), can use vanilla Transformer as pre-text model, and then fine-tune 

for specific downstream task (e.g., query-answer, sentiment analysis, captioning, chatbot, etc.). 

(-) Need colossal amount of  data for large Transformers (think GPT-3). 
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• With BERT (Devlin et al., Google, 2019), the authors proposed (2) unsupervised, NLP-based pretext tasks 

for large-scale Transformer pretraining: 

(1) Masked Language Model (MLM) – where some percentage of  input tokens are randomly masked, and 

the model predicts these masked tokens. 

(2) Next Sentence Prediction (NSP) – where sentence relationships are learned using a binarized sentence 

prediction, i.e., given sentences: A|B, does B follow A (50% of  the time during training B does follow A 

in the training corpus). 
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• With BERT, the authors proposed (2) unsupervised, NLP-based pretext tasks for large-scale Transformer pretraining: 
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Limitations of  CNNs 
•According to Geoffrey Hinton*, it is unfortunate in some sense that CNNs work so well, because they have serious flaws which he believes “will be 

hard to get rid of.” 

These flaws include (according to Hinton): 

• Inefficiencies in backpropagation paradigm itself  

• Poor translational invariance 

• Lack of  “pose” information – absence of  nuanced information about relative position and orientation of    

parts of  an object. These is sometimes referred to as the “Picasso problem.” 

• Hinton proposed Capsule Nets** (2017) to address some of  these issues. 

*https://www.youtube.com/watch?v=rTawFwUvnLE&t=8s

** https://arxiv.org/abs/1710.09829
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Vision Transformers 
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• The introduction of  high-performing Transformers models in NLP (2017) and Computer Vision (2020) encapsulates an effort to 

replace hand-written features or inductive biases with general-purpose neural architectures powered by data-driven training. 

• In CV in particular, SOTA Vision Transformers are thought to benefit from the lack of  strong inductive biases exhibited by 

traditional CNN models, including inherently spatial, local and hierarchical feature processing operations.*



Vision Transformers 
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• The introduction of  high-performing Transformers models in NLP (2017) and Computer Vision (2020) encapsulates an effort to replace 

hand-written features or inductive biases with general-purpose neural architectures powered by data-driven training. 

• In CV in particular, SOTA Vision Transformers are thought to benefit from the lack of  strong inductive biases exhibited by traditional 

CNN models, including inherently spatial, local and hierarchical feature processing operations.*

• The absence of  many of  these convolution-like inductive biases can lead to improved generalizability; on the other hand, the lack of  

inductive bias presents unique challenges, as such models can require either large quantities of  data to train or specialized optimization 

functions.* 

*Chen et al., “When Vision Transformers Outperform ResNets…”: https://arxiv.org/pdf/2106.01548.pdf

Classical Bayes’ Rule captures the trade-off  between models with high inductive bias and those with low inductive bias (i.e. informed 

priors vs uniformed priors).  Learning algorithms utilizing models with low inductive bias can learn model types that are otherwise 

inaccessible via models with high inductive bias.



Vision Transformers 
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• “An Image is Worth 16x16 Words…” (Dosovitskiy et al., ICLR 2021), a highly-influential pure ViT (no convolutions).

• Fundamentally same architecture as original Transformer, except that ‘tokens’ here are image patches; MLP is 2-layer. Note that only an Encoder sub-

network is used. Notice that fundamental challenge with ViTs is circumventing ostensible O(n2) pixel-level attention calculation.

•  For this reason, most subsequent Vision Transformer work focuses on efficient attention/scale computations.

* https://arxiv.org/pdf/2010.11929.pdf



Vision Transformers 
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• ViT produces SOTA results – however due to size of  model, requires large data sets (it is believed). Note that much less 

computation is required to train ViT compared to equivalent-sized CNNs.  

• Notably, ViT is highly performant – when trained on large datasets. In particular, when training on large datasets such as 

ImageNet-21k (~14M images) and JFT (Google proprietary, ~300M images), ViT performs best in class. However, when 

trained on smaller datasets, e.g., Imagenet (~1M images) the performance is worse than ResNet. 

• These results are fairly intuitive. Because ViT possesses fewer inductive biases than standard CNNs, without more 

data/regularization, it is likely to underperform. 



ViTs vs. CNNs
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• “Do Vision Transformers See Like CNNs?” (Dosovitskiy,

Google Brain August 2021)

Note: CNN receptive field grows only linearly per layer.



SWIN Vision Transformer 

• “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows” (Liu, Microsoft, August 2021)

• SWIN builds on ViT by constructing a hierarchical feature representation by starting with small-sized patches and 

gradually merging them with neighbors in deeper layers. Because the number of  patches is fixed, the computational 

complexity becomes linear wrt image size. 
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SWIN Vision Transformer 
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SETR ViT

• “Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers” (Zheng, FAIR, 2021) introduce 

a pure Transformer for semantic segmentation. 

• Key innovations: Authors introduce (3) Decoder architectures (e.g. PUP or “progressive up-sampling”) to accommodate dense 

segmentation output layer. 

• Demonstrate effectiveness of  using pretrained Transformer (in this case ViT) for downstream task, e.g., dense segmentation, 

analogous to pre-text training for NLP Transformers. 

*https://arxiv.org/pdf/2012.15840.pdf
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SAM Optimization

• “Sharpness-Aware Minimization for Efficiently Improving Generalization” (Foret, ICLR 2021)

• Introduces a new paradigm for gradient-based optimizers (SAM):

Where the objective (above) is to minimize a loss function uniformly within an ε-hypersphere (radius governed by 

hyperparameter ρ). This objective is solved with a first-order approximation, which, notably requires two backpropgation passes per 

update. 

(*) Importantly, the authors show empirically that descending in the direction of  uniformly minimal regions yields improved 

generalization. 
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SAM Optimization for ViTs

• More recently, “When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations” (Google, 

June 2021) demonstrated that leveraging SAM optimization can obviate the need for large dataset pretraining for ViTs. 

*https://arxiv.org/pdf/2106.01548.pdf
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Perceiver

• DeepMind introduced “Perceiver: General Perception with Iterative Attention” (Jaegle, 2021): a model building 

upon Transformers using asymmetrical attention to iteratively distill inputs into a small latent bottleneck (e.g., 

224 × 224 → 512 latent dimensions). 

• Perceiver can handle high dimensional input and different modalities using a single Transformer-based

architecture. No need to fine-tune architecture for different modalities, or decide on bespoke fusion strategies, etc. 

Relies on scalable Fourier features for position encoding. 

• Model is performant across image, audio, point cloud, video and mixed modality use-cases. 
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Perceiver
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“ViViT: A Video Vision Transformer” (Google, 2021) 

• Pure Transformer based model for video classification. Authors propose several variants which factorize the spatial and temporal dimensions of  

the input. They also show effects of  regularization and leveraging pretrained ViTs. 

• Key innovations: efficient calculation of  attention by factorizing the spatial and temporal dimensions of  the input video. 

*https://arxiv.org/pdf/2103.15691.pdf
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“ViViT: A Video Vision Transformer” (Google, 2021) 

• Two ways to embed video clips for attention calculation: (1) Uniform frame sampling and (2) Tubelet embedding. 
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“ViViT: A Video Vision Transformer” (Google, 2021) 

• Attention Model 1: Spatio-Temporal Attention: Simply model spatio-temporal attention jointly (most computationally intensive). 

• Attention Model 2: Factorized Encoder: Two separate Transformer encoders: spatial and temporal. Frame-level representations are 

concatenated together and forwarded through a temporal encoder. 

• Attention Model 3: Factorized self-attention: like Model 1, but more efficient. Factorize attention so that the first layer only compute SA

spatially (same temporal index); next layer only computes attention temporally (among all tokens extracted from same spatial index). 
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“ViViT: A Video Vision Transformer” (Google, 2021) 
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“Is Space-Time Attention All you Need for Video Understanding?” (Facebook AI, 2021) 

• Authors also introduce a pure Transformer-based video classifier. Key observation: self-attention requires computing similarity for all pairs of  

tokens; consequently, efficient calculation of  attention is vital. 

• They propose several schema: 

• (ST): Jointly calculate space-time attention (most computationally intensive).

• (T+S): Separate spatial and temporal attention sequentially. 

• (L+G): First compute local attention by considering neighboring patches, then global attention over entire clip using stride = 2 patches.

• (T+W+H): Decomposes attention over 3 dimensions: time, width and height. 
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Landscape Analysis of Vision Transformers

(+) Lack of inductive bias, good fit for data-drive applications, SOTA results, many topical innovations, can model long-term

statistical dependencies, computational efficiency, multi-modal fusion potential, faster to train. 

Some essential considerations: 

(*) Large models, require large datasets 

(*) Innovation potential with efficient calculation/use of  attention, multi-modal data fusion 

(*) Pre-text training, downstream fine-tuning 

(*) Fit for weakly-supervised data? 

(*) Continuous learning potential? 

(*) Scaling and generalizability? 
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