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Research Goals & Motives 

Goals: 

(*) Develop robust, generalizable algorithms capable of  real-time 

deployment of  the following tasks:

(i) Accurate wind/noise detection

(ii) Wind noise suppression / accurate signal reconstruction for 

ASR (automatic speech recognition)

Challenges/Novelties: 

(*) Low-power regime 

(*) Multi-microphone device

(*) Solving noise detection/suppression crucial for improving 

potential IoT (internet of  things) connectivity. 
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Noise: The Bane of  Signal Processing
(*) “Noise” is the unwanted modification of  a signal suffered during 

capture, storage, transmission, processing, or conversion. 

(*) Noise reduces (or potentially eliminates) the presence of  useful 

information in a signal. 

(*) Noise reduction/suppression is the process of  recovering the 

original signal from the noise corrupted one – the most common goal 

in the design of  signal processing systems (e.g. filters). 



Wind Noise: The Bane of  Audio Signal 

Processing

(*) Because wind noise is a predominant source of  audio interference, 

it creates a common – albeit challenging – setting for voice-driven 

applications for wearable devices, including ASR (automatic speech 

recognition). 



The Disastrous Effects of  Wind



The Disastrous Effects of  Wind

*Spanish Armada Defeated July 29, 1588 (it was a very windy day)



The Disastrous Effects of  Wind



Digital Signal Processing 
(*) Digital Signal Processing (DSP) is the mathematical manipulation of  the 

numerical representation of  a digital signal (for some advantageous end). 

(*) A basic DSP system is composed of: 

(1) An ADC providing digital samples of  an analog input

(2) A digital processing system

(3) A DAC converting processed sample to analog output 

What’s a signal? 

(*) An analog signal is defined as any representation of  a physical quantity that 

varies over time, has a value at all instants and contains information (e.g., 

temperature, electrical voltage, human voice, light intensity). 

What’s the role of  the processor? 

(*) Typically, to compress the signal and/or reduce presence of  noise. 



Digital Signal Processing 
Consider a microphone as a basic ADC: 

(*) Inside the microphone, the diaphragm vibrates as it receives sound waves. 

(*) The coil, attached to the diaphragm oscillates back and forth. 

(*) The coil moves back and forth through the magnetic field produced by 

the magnet; as a result an electric current flows through it. 



Digital Signal Processing 
(*) DSP typically involves a Fourier Transform (e.g. DFT).  

(*) The Fourier transform measures whether a frequency is present in a particular 

function. 

(*) Computing the Fourier transform for a function f, resolves f  into a Fourier series: a 

linear combination of  sines and cosines.

(*) The component frequencies of  these sines and cosines spread across the frequency 

spectrum, are represented as Dirac delta functions in the frequency domain. 

(*) The frequency domain representation መ𝑓, is the collection of  these peaks at the 

frequencies that appear in the resolution of  the function. 

Famously, Tukey & Cooley published a general version of  the FFT (fast Fourier 

Transform) requiring O(n log n) run-time vs. O(n2).

Gilbert Strang on the FFT: “the most important numerical algorithm of  our lifetime.” 



Digital Signal Processing 



Real-Time Wind Detection

(*) Many commercial devices in use today rely heavily on passive solutions to 

mitigating wind noise (e.g. physical dampening devices). 

(*) While these techniques can provide simple, approximate solutions to 

wind noise reduction, their effectiveness can nevertheless be limited even in 

moderate wind conditions. 

(*) We believe instead that more active (i.e. software-driven) approaches can 

also be leveraged, in addition, to achieve state-of-the-art wind noise 

suppression for wearable devices. 



Real-Time Wind Detection

(*)To this end we develop robust, software-driven wind noise detection and 

suppression algorithms operational in low-energy, multiple microphone 

regimes. 

(*) Limitations in computational and memory resources provide a significant 

challenge for noise detection and signal reconstruction tasks with wearable 

and smart devices. 

(*)Because ASR systems are commonly highly sensitive to the presence of  

interfering noise, we also require our noise suppression system to be both 

reliable in moderate and even low wind noise regimes and to furthermore 

minimize the introduction of  ectopic, reconstructed signal distortions. 



Related Research/Previous Work

(*) Previous research in active noise detection and related tasks in audio signal processing 

has chiefly relied on identifying a priori (or conversely: by learning) discriminative features 

that indicate the presence of  interfering noise. 

• Nelke et al. [19], for instance, use short-term mean (STM) features in the time-domain 

as the basis for a low-dimensional wind indicator. 

• Relying on the assumption that the magnitude of  the spectrum of  wind noise can be 

roughly approximated by a linear decay over the frequency, [23] proposes learning a 

negative slope fit (NSF) model for wind classification. 

• Freeman et al. [7] train a neural network to build a general noise classification system; 

see also: [32], [21], [25], [38], [28], [23]. 

(*) In each case, these various approaches violate either the low computational limitations 

or desired ASR sensitivity threshold for our consumer applications, and/or failed to make 

genuine use of  multi-channel signals.



Related Research

(*) In general, signal reconstruction and noise reduction tasks typically necessitate even 

more computational and memory resources than detection and classification tasks. 

• Popular examples include full spectrum neural “denoising” approaches [16], [2], non-

negative sparse coding (NNSC) [30], [26], and subspace-based methods [17], [4], [3], 

[8]. 

• Attempts to “sparsify” signal reconstruction systems to reduce their computational 

and memory requirements often come at a significant performance cost. While 

effective against point-wise interference sources, we found, for example, adaptive 

beamforming (particularly the MVDR and GSC algorithms, see: [11], [29], [35], [15]) 

approaches to be largely unsuccessful for clean signal reconstruction in the case of  

diffuse wind, or when the interference signal vector strongly aligned with the source 

signal. 

• Similarly, spectral subtraction ([33], [34]) and various filtration procedures ([6], [25]) 

commonly fail for ASR-based signal reconstruction tasks due to the non-stationarity 

of  wind noise. 



• A sufficiently precise detection of  wind noise is the first step towards 

suppression of  noise in captured signals [1].

• We seek discriminative (preferably low-dimensional) features that can 

be used to accurately determine the presence of  wind. 

• Features for wind detection commonly rely on short-term statistics.

• In particular, the spectral energy distribution for very low frequencies 

(< 10 Hz) for wind is discernable from that of  speech.  

 

 

Real-Time Wind Detection



• We first consider sub-band centroids (SSC) features for wind 

classification [32].

• Samples are captured from wearer voice and segmented into several 

frames and frequency analysis is performed via FFT.

• Define the spectral centroid for time frame λ with respect to the bin 

range [μ1, μ2]:

• In order to detect wind, we consider the sub-band range: [0,10], as in 

[3]. 

• Define the SSC-based wind indicator: 

Real-Time Wind Detection (SSC)



• Because of  the low-dimensional spectral representation used for the 

SSC method, the wind indicator function tends to be very noisy and 

frequently unstable. 

• To generate a more robust model, we apply a smoothing procedure 

(500ms windows), followed by an inverse Gaussian transformation of  

the ISSC function with graceful thresholding for robust wind 

classification. 

Speech + Wind Signal           ISSC (no smoothing) 

Real-Time Wind Detection (SSC)



• To improve SSC-based wind classification for multi-channel audio, we 

additionally apply a max operation to promote robustness in the case 

of  the non-stationarity of  wind noise and to safeguard against 

microphone occlusion in head-worn devices. 

Real-Time Wind Detection (SSC)



• By themselves, we found that transformed SSC features can be used to 

accurately detect the presence of  wind for wearable devices in the case of  

moderate to strong wind (15 mph+). 

• However, this method alone renders a large quantity of  false-positive results 

for low wind speed regimes (<= 10mph), which can be a critical range for 

ASR applications. 

• To reduce this sensitivity and thereby improve classification in low wind 

intensity scenarios by decreasing instances of  false-positive readings, we 

additionally incorporate coherence-based features into our algorithm. 

Real-Time Wind Detection (SSC)



• More specifically, we average the magnitude of  the coherence (MC) for the 

current frame of  captured audio.

• Values close to one indicate the presence of  a strong power “transfer” 

between the two channels, whereas values close to zero show a weak power 

transfer. 

• For example, wind alone should yield a small MC value, whereas speech alone 

produces a large MC value. 

• Finally, we tune the classification algorithm so that when both wind and 

speech are present simultaneously, wind detection “overwhelms” the presence 

of  speech. Together, we gracefully threshold the SSC and coherence features 

to achieve high accuracy for wind detection across a broad spectrum of  wind 

intensities.

Real-Time Wind Detection (MC)



• Define 2-channel coherence as the ratio of  the cross power spectral density 

(CPSD) and auto power spectral densities (APSDs):

• Where the power spectral densities (PSDs) are estimated by the recursive 

smoothed periodgram [9]:

ϕ𝑥𝑖𝑥𝑗
λ, μ =α𝑠ϕ𝑥𝑖𝑥𝑗

λ − 1, μ + 1 − α𝑠 𝑋𝑖 λ, μ 𝑋𝑗
𝐻 λ, μ

• Here α is a smoothing constant set heuristically (α=0.8) and X represents the 

short time spectrum of  the signal. 

Real-Time Wind Detection (MC)

Γ λ, μ =
ϕ𝑥1𝑥2

λ, μ

ϕ𝑥1𝑥1
λ, μ ϕ𝑥2𝑥2

λ, μ



• [25] Showed that the magnitude of  coherence can be used to discriminate 

between speech and noise. To this end, from the 2-channel coherence, define 

the magnitude of  coherence: 

Real-Time Wind Detection (MC)



Real-Time Wind Detection (MC)



(*) Schematic of  the RTWD algorithm in full. 

In summary: Following the FFT step, 

(1) SSC-based wind indicator values are computed for each channel, a windowed smoothing procedure 

(500ms) followed by an inverse Gaussian transformation is performed and subsequently a max 

operation is applied across the 2-channel signal. 

(2) Concurrently, we compute the 2-channel coherence features and then determine the average MC 

value for the given time frame; we apply smoothing for robustness. 

(3) Binary wind classification is finally determined based on a tunable, conjunctive thresholding using 

the transformed SSC and coherence-based features together (e.g., when both feature values meet 

specific thresholding criteria, the signal is classified as containing wind). 

Real-Time Wind Detection



• We devise a novel wind suppression algorithm, ANWS, for use with low-

computation, multiple-microphone devices. 

• Recently, [33], [28] have demonstrated the promise of  applying deep neural 

networks (DNNs) to the task of  clean audio signal reconstruction. However, 

due to their computational demands and extensive training data requirements, 

these approaches have heretofore rarely been applied successfully to low-

power devices.

• To circumvent these issues, we train a relatively low-dimensional, shallow 

neural network to reconstruct the wearer speech signal from wind-corrupted 

audio specifically in the spectral regions that are most adversely affected by 

wind noise; see: [22]. 

• In this way, we say that the neural-based signal reconstruction is a 

parsimonious process that attends to the regions of  greatest need for signal 

reconstruction. 

Attentive Neural Wind Suppression (ANWS)



• This attentive spectral region identification can feasibly be accomplished in 

one of  two ways: 

(1) We apply prior knowledge about the spectrum of  the noise class that 

has corrupted our signal.

(2) We use an a posteriori learning approach, where a noise approximation 

is first made (in combination with a classification/detection 

algorithm), and then relevant corrupted frequency bins are identified 

according to a separate feature/spectral analysis.

Attentive Neural Wind Suppression (ANWS)



• This approach bears several distinct advantages for the noise reduction 

task:

(1) The model can be learned with a relatively small amount of  data.

(2) The data representation is low-dimensional. 

(3) Generally, the speech signal remains largely undistorted by the 

reconstruction process.

Attentive Neural Wind Suppression (ANWS)



• We develop a shallow, low-dimensional, feed-forward NN for wind 

noise suppression. 

• The input to the network consists of  context-expanded frames (see 

below) of  the noisy signal. As in [12], [38], we use the log-power 

spectra features of  a noisy utterance nu for the short-time Fourier 

transform. 

• Let nt be the tth frame of  N(t, f). We express the multi-channel, context-

expanded input vector to the NN as:

• Where the parameter r represents the “context-horizon” and the 

superscripts here indicate the channel identification.

Attentive Neural Wind Suppression (ANWS)

𝑁 𝑡,𝑓 = 𝑙𝑜𝑔 𝑆𝑇𝐹𝑇 𝑛𝑢 2  

𝑦𝑡 =  𝑛𝑡−𝑟
(1)
,…𝑛𝑡

 1 ,… ,𝑛𝑡+𝑟
 1 ,𝑛𝑡−𝑟

 2 ,… ,𝑛𝑡+𝑟
 2   



• Using r = 3, we train a shallow NN with 150 hidden nodes, using 

conjugate gradient backpropagation on only 5 minutes of  noisy speech 

and clean audio sample pairings for training. 

• Note that noise-aware NN training [28] and larger microphone vector 

configurations are straightforwardly accommodated by the ANWS 

algorithm. 

• The reconstructed signal ŝ is obtained by applying the following 

“inverse” operation sequence to the output of  the NN, represented by 

Y(t, f):

Attentive Neural Wind Suppression (ANWS)

𝑠 = 𝑒𝑥𝑝 𝑌 𝑡,𝑓  ·𝑒𝑥𝑝 𝑖∠𝑁 𝑡,𝑓   



(*) Schematic of  the ANWS algorithm in full.

Attentive Neural Wind Suppression (ANWS)



• The effectiveness of  the ANWS is further illustrated by a spectrogram 

analysis for both noisy and subsequently reconstructed signals. 

• In the figure below, the spectrogram of  a wind corrupted signal is 

shown to be strongly dominated by extreme low frequencies (i.e. wind 

noise), whereas the corresponding reconstructed signal displays a more 

uniform frequency distribution. 

• Spectrogram analysis for noisy signal versus reconstructed signal. Here 

the horizontal axis represents normalized frequency and the vertical 

axis represents time (equivalently: “samples”). Yellow colors indicate 

frequency content with higher power; blue indicates low power.

Attentive Neural Wind Suppression (ANWS)

 



• We tested our wind noise suppression system, including RTWD and 

ANWS algorithms, in real-time, under difficult, low-power conditions 

using a high-end wind simulator.  

• We ported our algorithms to a Cirrus DSP (5.5 MIPS); for FFT we 

used 200ms audio “chunks”, with 25 frames per chunk, comprising 

16ms frames and 8ms overlap. Our smart glass device was affixed with 

a light, windscreen foam, so that our test conditions reflected the 

capabilities of  a commercial-ready device. 

• We used a competitive, proprietary ASR algorithm for measuring WER 

(word error rate) as an evaluative metric for wind noise suppression. 

Experimental Results



• The RTWD algorithm experiments yielded a very strong detection accuracy 

(approximately 90%) in challenging, low wind intensity scenarios (~6 mph). 

• These results are comparable with state-of-the-art active approaches used in 

wearable devices such as hearing aids. 

• In the case of  medium and strong wind (10 mph+) the detection accuracy was 

nearly perfect; the algorithm furthermore performed very well even in the case of  

partial or full microphone occlusion (viz., for one channel), as well as in both cases 

of  directed and diffuse wind. 

Experimental Results



• These results augur favorably for wind noise suppression when we 

consider the nature of  ASR degradation with respect to wind intensity 

(see Figure).

• From our experiments, we observed a negligible decline in WER for 

wind intensities less than 8 mph. In the range 9-15 mph, WER was 

moderate (indicating that quality clean speech reconstruction is still 

achievable); beyond wind speeds of  15 mph, however, WER grows 

sharply. 

Experimental Results



• WER for ASR was significantly reduced using the ANWS algorithm, showing 

the considerable potential of  this method. In particular, the algorithm 

performs very well in moderate to strong wind regimes for which ASR 

degradation is most precipitous; 

• At 12 mph, for example, ANWS reduced WER by 50% – see Figure above. 

• Although accurate ASR in severe wind conditions (25 mph+) may be generally 

unfeasible, the ANWS-based reconstructed audio under these extreme 

conditions is nonetheless still commonly comprehensible to a human listener, 

indicating the potential further utility of  ANWS as a noise suppression 

method for human-to-human audio communications.

Experimental Results



• We successfully developed a novel, robust and strongly competitive, 

low-energy wind noise suppression system portable to wearable and 

smart devices endowed with multi-channel capacities. 

• Future iterations of  this system would likely yield improved results by 

utilizing a data-driven process to dynamically learn attentive spectral regions

for signal reconstruction, in addition to incorporating noise-aware

training [28].

• More generally, the method we advance, which is built around the idea 

that different noise classes possess characteristic, learnable spectral 

energy distributions, could potentially be applied across a broad range 

of  noise sources. 

• In this way, we imagine that a future noise classification-suppression 

system grounded in this approach could provide an indispensable tool 

(e.g., through “context-awareness” and object-class localization 

capabilities) in the development of  a fully-realized, “intelligent” audio 

system and the incipient IoT. 

Conclusion



• Thanks for listening. Questions and comments are welcome.

Patents based on work presented: 

Rhodes, A. D., Kar, S., Efficient Wind Detection using Multiple Microphones for Headworn Devices. 

Rhodes, A. D., Kar, S., Neural-Based Signal Reconstruction using Multiple Microphone for Headworn

Devices. (Pending)

Conference paper: 

Rhodes, A. D., (2017). Real-Time Wind Noise Detection and Suppression with Neural-Based Signal 

Reconstruction for Multi-Channel, Low-Power Devices. (Submitted)

12mph wind 

noise + voice
12mph wind + voice

(ANWS reconstruction)

18mph wind 

noise + voice

18mph wind + voice

(ANWS reconstruction)
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