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Outline
•  Overview of  unsupervised learning 

•  K-means/fuzzy c-means 

•  Gaussian Mixture Models (GMMs)

•  Cluster Analysis 

•  Hierarchical Clustering 

•  DBSCAN

•  Vector Quantization / Self-organizing maps (SOMs) 



Overview 

•  To date, most of  the learning algorithms that we have seen make use of  

labelled training data (e.g. a discrete class assignment or real-valued targets). 

• Target labels are useful, since we can use them to guide the learning process 

(see: PLA, backprop, etc.). However, in many real-world circumstances 

labelled data is difficult (and expensive) to obtain. 



Introduction: Perspectives on Learning 

•   In addition, labelled data is not seemingly biologically plausible – when we are 

learning we rarely encounter labelled examples. Or do we? 

•   Here are (2) contrasting perspectives on epistemology and learning theory 

from the history of  philosophy.

‘When they (my elders) named some object, and accordingly moved towards something, I saw this and I grasped that the thing 

was called by the sound they uttered when they meant to point it out. Their intention was shewn by their bodily 

movements, as it were the natural language of  all peoples: the expression of  the face, the play of  the eyes, the movement 

of  other parts of  the body, and the tone of  voice which expresses our state of  mind in seeking, having, rejecting, or 

avoiding something. Thus, as I heard words repeatedly used in their proper places in various sentences, I gradually learnt 

to understand what objects they signified; and after I had trained my mouth to form these signs, I used them to express 

my own desires.’ -- Augustine, Confessions.

“[T]he term ‘language-game’ is meant to bring into prominence the fact that the speaking of  language is part of  an activity, or 

a form of  life … [M]eaning can be defined thus: the meaning of  word is its use in the language … And now, I think we 

can say: Augustine [only] describes the learning of  human language as if  a child did not understand the language and 

came into a strange country and did not understand the language of  the country; that is, as if  it already had a language, 

only not this one.” –Ludwig Wittgenstein, Philosophical Investigations. 

* Recommended recreational reading: Augustine, Confessions; Wittgenstein, Philosophical Investigations. 



Are Categories 

Fundamentally 

Ambiguous? 

•   Consider the ancient thought experiment, Theseus’ ship 
paradox. 

The ship wherein Theseus and the youth of  Athens 
returned from Crete had thirty oars, and was 
preserved by the Athenians down even to the time of  
Demetrius Phalereus, for they took away the old 
planks as they decayed, putting in new and stronger 
timber in their places, in so much that this ship 
became a standing example among the philosophers, 
for the logical question of  things that grow; one side 
holding that the ship remained the same, and the other 
contending that it was not the same. – Plutarch 

Plutarch thus questions whether the ship would remain the 
same if  it were entirely replaced, piece by piece.



Introduction 
•   Recall the previously referenced paper from Goodfellow et al (2016) on 

GANs (generative adversarial networks) that problematized the intuitive 

notion of  classification in high dimensions. 

•  This seminal paper (among other related papers) rightfully complicated our 

current understanding of  deep learning and DNNs – in a way, it conjures up 

a modern variant of  the Theseus ship paradox. 



Introduction 

•   Unsupervised learning is a conceptually different problem from supervised 

learning – no target labels are available to us. 

Q: How can we hope to perform classification?  



Introduction 
•   Unsupervised learning is a conceptually different problem from supervised 

learning – no target labels are available to us. 

Q: How can we hope to perform classification?  

A: Identify similarities between inputs, and consider groups of  similar inputs as 

belonging to the same cluster. 

(*) Accordingly, the aim of  unsupervised learning is to find clusters (according 

to some useful criteria) of  similar inputs in the data without being told 

explicitly that these data belong to a particular class. 

In this way, an unsupervised learning algorithm “discovers” similarities and 

patterns in the data itself. This procedure is often part of  a more general 

exploratory data analysis (EDA) methodology, common to data science, 

statistics, etc. 



Introduction 
•   Generally, supervised learning algorithms aim to minimize some external error 

criterion (e.g., OLS), based on a loss function quantifying the difference 

between targets and outputs. 

•   With supervised learning, calculating this loss explicitly was possible because 

we were provided with target labels. 

•   Instead, with unsupervised learning, we need to use an internal error 

criterion. This means that the measure has to be independent of  the task –

think of  the labels as defining a particular task. 

(*) A useful general error criterion in the unsupervised setting defines 

similarity in terms of  the distance between data points; accordingly, similar 

data are close to one another. 



Example:  Optdigits data set



Optdigits features
f1 f2 f3 f4 f5 f6 f7 f8

f9

x = (f1, f2, ..., f64)

= (0, 2, 13, 16, 16, 16, 2, 0, 0, ...) Etc. ..
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Issues for clustering algorithms

• How to measure distance between pairs of  instances?

• How many clusters to create? 

• Should clusters be hierarchical?  (i.e., clusters of  clusters)

• Should clustering be “soft”?  (i.e., an instance can belong to different 

clusters, with “weighted belonging”)



• k-means is a very popular (and simple) clustering algorithm used in ML 

and data science. 

• k-means clustering aims to partition n observations into k clusters in 

which each observation belongs to the cluster with the nearest mean, 

serving as a prototype of  the cluster. This results in a partitioning of  the 

data space into Voronoi cells. 

k-Means 

Vornoi

Tessellation; 20 

points and their 

Voroni cells. 



• Given a set of  observations (x1, x2, …, xn), where each observation is 

a d-dimensional real vector, k-means clustering endeavors to partition 

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to 

minimize the within-cluster sum of  squares (WCSS). 

• Formally, the objective is to find: 

where μi is the mean of  cluster Si. 

k-Means 
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• The algorithm itself  works by iterative refinement, and is a variant of  a 

more general algorithm, known as EM (expectation-maximization). 

• Given an initial set of  k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
(the subscript is the cluster 

identification, while superscript is the iteration number) k-means alternates 

between the following (2) steps:

(I) Assignment Step (i.e., the expectation step): 

Assign each observation to the cluster whose mean has the least squared   

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this 

means partitioning the observations according to the Voroni tessellation 

generated by the means. 

Where each datum xp is assigned to exactly one cluster, S(t).

k-Means 
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• Given an initial set of  k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
k-means alternates between 

the following (2) steps:

(I) Assignment Step (i.e., the expectation step): 

Assign each observation to the cluster whose mean has the least squared   

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this 

means partitioning the observations according to the Voroni tessellation 

generated by the means. 

(II)  Update Step (i.e., the parameter maximization step): 

• Calculate the new means to be the centroids of  the observations in the 

new clusters.

• The algorithm has converged when the assignments no longer change. 

There is no guarantee that the optimum is found using this algorithm.
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(I) Assignment Step (i.e., the expectation step): 

(II)  Update Step (i.e., the parameter maximization step): 

k-Means 
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K-means Clustering Algorithm Pseudocode

Distance metric:  Chosen by user.

For numerical attributes, often use L2 (Euclidean) distance:

Centroid of  a cluster here refers to the mean of  the points in the cluster. 

(*) NB: Using a different distance function other than (squared) Euclidean 

distance may stop the algorithm from converging. Various modifications 

of  k-means such as spherical k-means have been proposed to allow using 

other distance measures.

d(x,y) = (xi - yi )
2

i=1

n

å



Example:  Image segmentation by K-means 

clustering by color
From http://vitroz.com/Documents/Image%20Segmentation.pdf

K=5, RGB space

K=10, RGB space



K=5, RGB space

K=10, RGB space



K=5, RGB space

K=10, RGB space



• A text document is represented as a feature vector of  word frequencies 

(see: Word2vec). 

• Distance between two documents is the cosine of  the angle between 

their corresponding feature vectors. 

Example: Clustering text documents



Figure 4. Two-dimensional map of the PMRA cluster solution, representing nearly 29,000 clusters 

and over two million articles.

Boyack KW, Newman D, Duhon RJ, Klavans R, et al. (2011) Clustering More than Two Million Biomedical Publications: Comparing the 

Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE 6(3): e18029. doi:10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029


K-means Analysis

• Convergence: k-means is guaranteed to converge in a finite number of  

steps (irrespective of  the initial centroid assignment). Why? In short: there 

are only a finite number of  ways to cluster n data points into k clusters 

(although note that this number can be large). Usually convergence is 

relatively fast in practice. 

• NB: The algorithm is nevertheless not guaranteed to generate a 

(globally) optimal clustering. 

• Complexity: In general, finding the optimal solution to k-means for 

observations in d dimensions is NP-hard (even in the 2-class case). 

• The run-time of  k-means is O(nkdi), where n is the size of  the data set, d

is the dimension, k is the number of  clusters and i is the number of  

clusters needed until convergence. k-means is therefore oftentimes 

considered a linear run-time algorithm; in the worst-case it is more aptly 

described as superpolynomial. 



Potential Issues for K-means
• The algorithm is only applicable if  the mean is defined. 

– For categorical data, use K-modes: The centroid is represented by the most frequent 

values. 

• The user needs to specify K.

• Cluster morphology can be severely limited (epsilon-balls, etc.) 

• Algorithms makes hard cluster assignments (either element belongs to a particular cluster or 

it does not). 

• The algorithm is sensitive to outliers

– Outliers are data points that are very far away from expected range/other data points. 

– Outliers could be errors in the data recording or some special data points with very 

different values. 

– Note the mode is a more robust measure of  center (than, say the mean), meaning it is 

less susceptible to outliers; thus, we can potentially use K-modes to safeguard against 

influence of  outliers. 



Issues for K-means: Problems with outliers



Dealing with outliers

• One method is to remove some data points in the clustering process 

that are much further away from the centroids than other data points. 

– Expensive

– Not always a good idea!

• Another method is to perform random sampling. Since in sampling we 

only choose a small subset of  the data points, the chance of  selecting 

an outlier is very small. 

– Assign the rest of  the data points to the clusters by distance or 

similarity comparison, or classification



Issues for K-means (cont …)

• The algorithm is sensitive to initial seeds.

+

+



• If  we use different seeds: good results

• Often we can improve k-means results by performing 

several random restarts. 

• It is commonly helpful to use actual data values for the 

initial seeds. 

+
+

Issues for K-means (cont …)



• The K-means algorithm is not suitable for discovering clusters that are 

not hyper-ellipsoids (or hyper-spheres). 

+

Issues for K-means (cont …)



• In non-fuzzy clustering (also known as hard clustering), data is divided into 

distinct clusters, where each data point can only belong to exactly one cluster. 

(cf., k-means from previous slides). 

• In fuzzy clustering (also: soft clustering), data points can potentially belong to 

multiple clusters. 

• Commonly, “membership grades” (i.e. class probabilities) are assigned to 

each of  the data points. These membership grades indicate the degree to 

which data points belong to each cluster. Thus, points on the edge of  a 

cluster, with lower membership grades, may be in the cluster to a lesser degree 

than points in the center of  cluster.

Fuzzy c-means



• The FCM (fuzzy c-means (1973), as it is usually called) algorithm is very similar to the k-

means algorithm:

Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 

Fuzzy c-means



Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 

where C={c1,…,cc} are the cluster centers, 

, and each element wij tells the  

degree to which element xi, belongs to cluster cj (i.e. the w’s are the 

membership grades); m>1 is a hyperparameter known as the fuzzifier

parameter which controls the amount of  “fuzziness” in the  

partition. 

Fuzzy c-means
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Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 
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Here is the basic idea: 

•    Choose a number of  clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these 

are the initial membership grades). 

• Repeat until the algorithm has converged/stopping condition: 

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the       

clusters (e-step). 

(*) FCM aims to minimize the an objective function: 

Fuzzy c-means

 

 

m

k

x
k m

k

x

w

w





x x

c
x

2

1

1

1
i j

mc
i j

k i k

w






 
 
 
 


x c

x c

2

1 1

arg min
n c

m

ij i j
C i j

w
 

 x c



• For example, consider a simple 1-d data set, where we want to determine a plausible 

clustering for 2 classes (A and B).  

• Using “hard k-means” we associate each datum to a specific centroid; therefore the 

membership function looks like this: 

Fuzzy c-means



• For example, consider a simple 1-d data set, where we want to determine a plausible clustering for 2 

classes (A and B).  

• Using “hard k-means” we associate each datum to a specific centroid; therefore the membership 

function looks like this: 

• In the FCM approach, instead, the same given datum does not belong exclusively to a well defined 

cluster. In this case, the membership function follows a smoother line to indicate that every datum 

may belong to several clusters with different values of  the membership coefficient.

Fuzzy c-means



• FCM was essentially, again, a “fuzzy” version of  the k-means algorithm, where data 

points are assigned to each cluster with an associated probability/membership grade. 

• An additional, commonly used soft clustering model is the GMM (Gaussian mixture 

model); with GMMs, we assume (a priori) that the clusters resemble tightly-packed balls 

(i.e. Gaussian distributions).

GMMs



GMMs: Gaussian Distribution Review



GMMs: Gaussian Distribution Review



Main ideas for clustering using GMM: 

(*) Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters. 

(*) Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

(*) Update the parameters (i.e. μ, Σ) for each of  the clusters.    (update step/M-step) 

…repeat until stopping condition/convergence 

GMMs



Main ideas for clustering using GMM: 

(*) Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters. 

(*) Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

(*) Update the parameters (i.e. μ, Σ) and prior class estimates (P(Ci|x) (for each of  the 

clusters.    (update step/M-step) 

…repeat until stopping condition/convergence 

What makes this problem challenging? There are, ostensibly, many unknowns! 

(*) Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

GMMs



What makes this problem challenging? There are, ostensibly, many unknowns! 

(*) Strictly speaking, we don’t know the cluster assignments nor any of  the Gaussian 

distribution parameters.  

How can we simplify things? 

A nice trick…Solve each subproblem separately! 

(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule. 

(2) Conversely, to find the optimal estimates for μ and Σ for each cluster, in addition to 

the class priors, use the current (soft) class posterior assignments and compute the 

MLE. 

GMMs



(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule.  (assignment step/E-step)

(*) Given the current estimates of  both the parameters of  each Gaussian cluster: 

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the 

class posterior P(Ci) using Bayes’ Rule as follows: 
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(1) For instance, to find the optimal class assignments for each datum, use the current 

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known 

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x) 

using Bayes’ Rule. (assignment step/E-step)

(*) Given the current estimates of  both the parameters of  each Gaussian cluster: 

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the 

class posterior P(Ci) using Bayes’ Rule as follows: 
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(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class 

priors, use the current (soft) class posterior assignments and compute the MLE. (update 

step/M-step) 

(*) Observe that if  we knew which points belong to, say cluster i, for a hard clustering, we 

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian 

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g. P(Ci). These 

standard parameter estimates are given as follows: 

cluster prior             cluster mean                       cluster covariance matrix 

where above, ni denotes the size of  the ith cluster. 

GMMs
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(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class 

priors, use the current (soft) class posterior assignments and compute the MLE. (update 

step/M-step) 

(*) Observe that if  we knew which points belong to, say cluster i, for a hard clustering, we 

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian 

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g. P(Ci). These 

standard parameter estimates are given as follows: 

cluster prior             cluster mean                       cluster covariance matrix 

where above, ni denotes the size of  the ith cluster. 

(*) However, because we are executing a soft clustering, these parameter update formulae 

must incorporate the class posteriors: P(Ci|x), for each i=1,…,k and for each data point x, 

respectively. 

GMMs: MLE Parameter Estimates
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(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class 

priors, use the current (soft) class posterior assignments and compute the MLE. (update 

step/M-step) 

(*) Here are the parameter estimate formulas, updated to account for the soft clustering 

induced by the class posteriors: P(Ci|x), for each i=1,…,k, for each data point:

cluster prior modified formula                           cluster mean modified formula                       

cluster covariance matrix modified formula 

GMMs: Modified Parameter Estimates

 
1,..,

1
ˆ ˆ | ji

i i i

j n

n
P C

n n
 



    x

 

 
1,..,

1,..,

|
1

ˆ ˆ
|j

i

j j

i

j nj

i i j
Ci i

j n

P C

n P C
 







  




x

x x

x
x

  
   

 
1,..,

1,..,

ˆ ˆ|
1ˆ ˆˆ ˆ

|j
i

T
j j j

i i i
T j nj j

i i i i j
Ci i

j n

P C

n P C

 

 






 

     




x

x x x

x x
x



Main ideas for clustering using GMM: 

(*) Initialization: given a data set, fix k, the number of  clusters; initialize the mean (μ) and 

covariance matrices (Σ) for the k Gaussian clusters, and cluster priors (P(Ci)).

(I) Assign the data points to the k clusters (using a soft clustering)    (assignment step/E-

step) 

(II) Update the parameters (i.e. μ, Σ) for each of  the clusters, including the cluster priors.    

(update step/M-step) 

…repeat until stopping condition/convergence 

GMMs: Summary 
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• Demo: https://lukapopijac.github.io/gaussian-mixture-model/

GMMs



• Previously we considered clustering in a commonplace, unsupervised 

setting (i.e. no class labels); it is also likewise useful to consider clustering 

for supervised learning. 

When labels are present, we can determine a post hoc evaluation of  cluster 

validity (namely, the “goodness” of  the clustering model). 

Why might we want to do this? 

Cluster Analysis: Measuring Cluster Validity



• Previously we considered clustering in a commonplace, unsupervised 

setting (i.e. no class labels); it is also likewise useful to consider clustering 

for supervised learning. 

When labels are present, we can determine a post hoc evaluation of  cluster 

validity (namely, the “goodness” of  the clustering model). 

Why might we want to do this? There are a number of  reasons, including: 

(*) Determining whether non-random structure actually exists in the data           

set

(*) Comparing cluster results to externally known results (the labels, for 

instance)

(*) Comparing the results of  two different clustering algorithms

(*) Determining a good value of  the number of  clusters (e.g. k) 

Cluster Analysis: Measuring Cluster Validity



• There are a great many different numerical measures that can be used to 

quantify and assess cluster validity; in general these measures fall into at 

least (2) basic categories: 

(*) Internal index: Used to measure quality of  clustering without reference 

to external information, e.g., MSE, MSS. 

(*) External index: Used to measure degree to which cluster labels match 

class labels, e.g., purity, entropy.

Cluster Analysis: Measuring Cluster Validity



(*) In an unsupervised setting we can still measure and assess cluster 

validity by using internal indices. 

For example, let C denote a clustering (i.e. a set of  k clusters resulting from a 

clustering algorithm) and let c denote a particular cluster in C, and define |c| as the 

number of  elements in that cluster. 

• We want to minimize the distance between elements of  c and the centroid μc –

this would give us a naturally plausible clustering; formally we minimize mean 

square error (MSE):

Measuring Cluster Validity: Internal Indices 

(MSE)
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•

(*) In an unsupervised setting we can still measure and assess cluster 

validity by using internal indices. 

For example, let C denote a clustering (i.e. a set of  k clusters resulting from a 

clustering algorithm) and let c denote a particular cluster in C, and define |c| as the 

number of  elements in that cluster. 

• On the other hand, we also want to maximize the pairwise separation of  each 

cluster. That is, maximize mean square separation (MSS): 

Measuring Cluster Validity: Internal Indices 

(MSS)
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Measuring Cluster Validity: Internal Indices



(*) In an a supervised setting we measure and assess cluster validity by using external 

indices. 

For example, let C denote a clustering (i.e. a set of  k clusters resulting from a clustering 

algorithm) and let c denote a particular cluster in C, and define |c| as the number of  

elements in that cluster. 

• Entropy of  a cluster: The degree to which a cluster consists of  objects of  a single 

class. 

where pi,j denotes the probability that a member of  cluster i belongs to cluster j (i.e. 

pi,j=ni,j/ni, where ni,j represents the number of  instances in cluster i with class j, and ni is 

the number of  instances in cluster i).  

*NB: A “good” clustering will have a small mean entropy value. 

Measuring Cluster Validity: External Indices 

(Entropy)
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Measuring Cluster Validity: External Indices 

(Entropy)
• Entropy of  a cluster: The degree to which a cluster consists of  objects of  a single class. 

where pi,j denotes the probability that a member of  cluster i belongs to cluster j (i.e. pi,j=ni,j/ni, 

where ni,j represents the number of  instances in cluster i with class j, and ni is the number of  

instances in cluster i).  

Entropy example: 



Measuring Cluster Validity: External Indices 

(Purity)
• Purity of  a cluster: Purity is defined as the percent of  the total number of  data points that were 

classified correctly, in the unit range [0,1]:

Where n is the number of  data points, k is the number of  clusters, ci is a cluster in C, and tj is the 

classification which has the max count for cluster ci. 

(*) To compute purity, each cluster is assigned to the class which is most frequent in the cluster, 

and then the accuracy of  this assignment is measured by counting the number of  correctly assigned 

data and dividing by n.
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Measuring Cluster Validity: External Indices 

(Purity)
• Purity of  a cluster: Purity is defined as the percent of  the total number of  data points that were 

classified correctly, in the unit range [0,1]:

Where n is the number of  data points, k is the number of  clusters, ci is a cluster in C, and tj is the 

classification which has the max count for cluster ci. 

(*) To compute purity, each cluster is assigned to the class which is most frequent in the cluster, 

and then the accuracy of  this assignment is measured by counting the number of  correctly assigned 

data and dividing by n.

Consider the following example: 
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Hierarchical Clustering 

• One potential disadvantage of  K-means clustering is that it requires us to pre-

specify the number of  clusters K. 

• Hierarchical clustering is an alternative approach which does not require that 

we commit to a particular choice of  K. In addition, hierarchical clustering has the 

advantage over K-means in that it results in an interpretable, tree-based 

representation of  the data, called a dendrogram. 



Hierarchical Clustering: Dendrograms 

• Each leaf  in a dendrogram represents a datum; as we traverse the tree (from left 

to right – or equivalently from bottom to top for vertical orientations), some 

leaves begin to fuse into branches. 

• These fused data correspond to observations that are similar to one another. 

Elements that fuse early (farther to the left) are more similar than elements that 

fuse farther to the right. 



Hierarchical Clustering: Dendrograms 

• One strongly attractive aspect of  hierarchical clustering is that a single dendrogram can 

be used to obtain any number of  clusters (see figure) – we slice the tree at various heights 

to yield different clusterings (for different numbers of  clusters). 

• The term hierarchical refers to the fact that clusters obtained by cutting the dendrogram 

at a given height (for a vertical orientation, as shown) are necessarily nested within the 

clusters obtained by cutting the dendrogram at any greater height. 



Hierarchical Clustering: Dendrograms 

• Example above shows three dendrogram “slices” rendering different clusterings; in 

case (1) the slice produces 8 clusters; case (2) produces 4 total clusters; case (3)

generates 2 clusters. 

(1) (2) 
(3) 



Hierarchical Clustering Algorithm

• The hierarchical clustering dendrogram is obtained via an extremely simple (bottom-

up) algorithm.

• We begin by defining some sort of  dissimilarity measure between each pair of  

observations; most often a Euclidean distance is used. 

(*) The algorithm proceeds iteratively, in a greedy fashion; starting at the bottom of  the 

dendrogram, each of  the n observations is treated as its own cluster. Two clusters that 

are most similar are fused so that now there are n-1 clusters. Next the two clusters that 

are most similar are fused again, etc. The algorithm halts when one cluster remains. 



Hierarchical Clustering Algorithm

• The hierarchical clustering dendrogram is obtained via an extremely simple (bottom-

up) algorithm.

• We begin by defining some sort of  dissimilarity measure between each pair of  

observations; most often a Euclidean distance is used. 

(*) The algorithm proceeds iteratively, in a greedy fashion; starting at the bottom of  the 

dendrogram, each of  the n observations is treated as its own cluster. Two clusters that 

are most similar are fused so that now there are n-1 clusters. Next the two clusters that 

are most similar are fused again, etc. The algorithm halts when one cluster remains. 

Here we need to extend our concept of  dissimilarity beyond pairs of  observations, and 

to dissimilarity between clusters. This extension is achieved by developing the notion of  

linkage, which defines dissimilarity between to groups of  observations. 

The (4) most common types of  linkage – complete, average, single and centroid are described 

next, along with the general hierarchical clustering algorithm. 



Hierarchical Clustering Algorithm

(4) Common linkage types



Hierarchical Clustering: Application to 

Genomics

• In genomics, it is frequently necessary to identify groups of  genes with 

similar expression profiles across a large number of  experiments.

• Hierarchical clustering attempts to group genes into small clusters and to group 

clusters into higher-level systems. The resulting hierarchical tree is easily viewed as 

a dendrogram.

• Most studies involve comparing a series of  experiments to identify genes that 

are consistently coregulated under some defined set of  circumstances—disease 

state, drug dose, etc. 



Hierarchical Clustering: Application to Genomics

Unsupervised hierarchical clustering of  138 meningiomas by genome-wide 

expression profiling is shown. Atypical versus benign histology, underlying 

meningioma driver mutations, copy number variations, which are color coded, are 

shown on the left. Although the expression profile accurately clusters meningioma 

samples based on driver mutations, it does not fully differentiate atypical versus 

benign tumors. https://www.nature.com/articles/ncomms14433/figures/2

https://www.nature.com/articles/ncponc0072



DBSCAN (1996)

• DBSCAN (density-based spatial clustering of  applications with noise) is one of  the most 

popular and heavily cited clustering algorithms in scientific literature (11,000+ 

citations). 

• It is a density-based clustering algorithm: given a set of  points in some space, 

DBSCAN groups points that are closely packed together (points with many nearby 

neighbors), marking as outliers points that lie alone in low-density regions (whose 

nearest neighbors are too far away).

(*) Original DBSCAN paper: https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf



DBSCAN: Overview
• Before discussing the details of  the algorithm, let’s first consider some of  the broader  

advantages/disadvantages of  DBSCAN as a clustering algorithm. 

Advantages:

(*) Unlike k-means, DBSCAN does not require an a priori specification of  the number of  clusters

(i.e. the hyperparameter k).

(*) DBSCAN can find arbitrarily shaped clusters. It can even find a cluster completely surrounded by 

(but not connected to) a different cluster.

(*) DBSCAN is robust to outliers; and requires the specification of  only two total parameters. 

Disadvantages: 

(*) Algorithm is non-deterministic and often sensitive to the order the data are processed. 

(*) The quality of  the clustering is highly dependent upon the distance measure/parameter values. 

K-means 

can’t do 

this!



DBSCAN: Overview

• The basic idea behind DBSCAN is clusters are comprised of  dense 

groupings of  data points. 

• The algorithm relies on two parameters: ε (eps) – which represents the 

maximum radius of  a cluster and MinPts – which denotes the minimum threshold 

for the number of  points that form a cluster. 

The algorithm classifies all points in the data set into one of  (4) categories: 



DBSCAN: Overview
• The algorithm relies on two parameters: ε (eps) – which represents the 

maximum radius of  a cluster and MinPts – which denotes the minimum threshold 

for the number of  points that form a cluster. 

The algorithm classifies all points in the data set into one of  (4) categories: 

(1) core points: a point p is a core point if  at least MinPts points are within 

distance ε of  it (including p itself). These points are said to be directly reachable

from the core point p. 

(2) directly density-reachable points: a point q is directly density-

reachable from the core point p if  d(p,q)< ε.

(3) density-reachable points: a point q is density-reachable from the core 

point p if  there exists a path p->p2->p3->…->q where each pi+1 is directly 

reachable from pi, and all points in the path are core points (with the possible 

exception of  q). 

(4) outliers: all points not reachable from any other points are outliers. 



DBSCAN: Overview
• The algorithm relies on two parameters: ε (eps) – which represents the maximum radius of  a cluster and 

MinPts – which denotes the minimum threshold for the number of  points that form a cluster. 

(1) core points: a point p is a core point if  at least MinPts points are within distance ε of  it (including p itself). 

These points are said to be directly reachable from the core point p. 

(2) directly density-reachable points: a point q is directly density-reachable from the core point p if  d(p,q)<

ε.

(3) density-reachable points: a point q is density-reachable from the core point p if  there exists a path p-

>p2->p3->…->q where each pi+1 is directly reachable from pi, and all points in the path are core points (with 

the possible exception of  q). 

(4) outliers: all points not reachable from any other points are outliers. 

(*) If  p is a core point, then it forms a cluster together with all points (core or non-core) 

that are reachable from it. Each cluster contains at least one core point; non-core points can be 

part of  a cluster, but they form its "edge", since they cannot be used to reach more points.

In this diagram, minPts = 4. Point A and the other red points are core points, 

because the area surrounding these points in an ε radius contain at least 4 points 

(including the point itself). Because they are all reachable from one another, they 

form a single cluster. Points B and C are not core points, but are reachable from A 

(via other core points) and thus belong to the cluster as well. Point N is an outlier 

point that is neither a core point nor directly-reachable.



DBSCAN
(*) If  p is a core point, then it forms a cluster together with all points (core or non-core) 

that are reachable from it. Each cluster contains at least one core point; non-core points can be 

part of  a cluster, but they form its "edge", since they cannot be used to reach more points.

(*) Note that reachability is not symmetric – since, for instance, no point may be reachable 

from a non-core point. However, if  we defined two points p and q as density-connected if  there 

is a point o such that both p and q are reachable from o, then density-connectedness is, in fact, 

symmetric. 

A DBSCAN cluster consequently satisfies (2) properties: 

(1) All points within the cluster are mutually density-connected

(2) If  a point is density-reachable from any point of  the cluster, it is part of  the cluster as well. 

In this diagram, minPts = 4. Point A and the other red points are core 

points, because the area surrounding these points in an ε radius 

contain at least 4 points (including the point itself). Because they are 

all reachable from one another, they form a single cluster. Points B 

and C are not core points, but are reachable from A (via other core 

points) and thus belong to the cluster as well. Point N is an outlier 

point that is neither a core point nor directly-reachable.



DBSCAN
High-level program execution: 

(1) Determine the parameters: ε>0 and MinPts (a positive natural number) 

(2) Pick an arbitrary point in the dataset; if  there are more than MinPts points distance epsilon 

from that point (including the point itself), these points are part of  a cluster. 

(3) *Expand this cluster by checking all of  the new points and seeing if  they too have more than 

minPts within distance epsilon – grow cluster recursively. 

Repeat this process for new points – if  a point is not part of  any cluster we deem it an outlier.  

*NB: The assignment of  “border points” in DBSCAN is dependent upon the order in which the 

datapoints are processed. 



DBSCAN: Pseudocode & Demo

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/



DBSCAN: Analysis

Complexity: 

(*) DBSCAN visits each point of  the database, possibly multiple times (e.g., as 

candidates to different clusters). 

(*) For practical considerations, however, the time complexity is mostly governed by the 

number of  regionQuery invocations (i.e. determining the neighbors). DBSCAN 

executes exactly one such query for each point, and if  an efficient indexing structures is 

used that executes a neighborhood query in O(log n), an overall average runtime 

complexity of O(n log n) is obtained.

(*) Without the use of  an accelerating index structure the worst case run time 

complexity remains O(n²) (this is the result of  the computational bottleneck due to 

brute force pairwise comparisons of  points). 



DBSCAN: Analysis

Parameter Tuning: 

(*) Ideally, the value of  ε is given by the problem to solve (e.g. a physical distance), and 

minPts is then the desired minimum cluster size.

MinPts: As a rule of  thumb, a minimum minPts can be derived from the number of  

dimensions D in the data set, as minPts ≥ D + 1. However, larger values are usually 

better for data sets with noise and will yield more significant clusters. 

ε: if  ε is chosen much too small, a large part of  the data will not be clustered; whereas 

for a too high value of  ε, clusters will merge and the majority of  objects will be in the 

same cluster. In general, small values of  ε are preferable, and as a rule of  thumb only a 

small fraction of  points should be within this distance of  each other. 

Distance function: The choice of  distance function is tightly coupled to the choice of  

ε, and has a major impact on the results. 



Vector Quantization

(*) It is often useful to interpret k-means as a greedy algorithm for approximately

minimizing a loss function related to data compression.

• Suppose we want to perform lossy compression of  some real-value vectors:              .

• A simple approach to achieve this is to use vector quantization (VQ). The basic idea 

is to replace each real-valued vector xi with a discrete symbol 𝑧𝑖 ∈ 1,… , 𝐾 , which is 

an index to a codebook of  K prototypes: 𝝁𝑘 ∈ ℝ𝐷. 

• Each data vector is encoded by using the index of the most similar prototype, where

similarity is measured in terms of Euclidean distance:
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Vector Quantization

• We can define a natural cost function that measures the quality of  a codebook by 

computing the reconstruction error or distortion it induces: 

where decode(k)=𝝁𝑘 . The k-means algorithm can be thought of  as an iterative scheme 

for minimizing this objective. 
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Vector Quantization: Image Compression Example

• One application of  VQ is image compression. Consider N=200x320=64,000 pixel 

image in gray-scale so D=1 (shown below). If  we use one byte to represent each pixel 

(gray-scale intensity ranges [0,255]), we need 512,000 bits to represent the image. 

•For the compressed image we need Nlog2K +KC bits; for K=4 this is about 128kb, a 

factor of  4 compression. Greater compression could be achieved if  we modelled spatial 

correlation between pixels, e.g., if  we encoded 5x5 blocks (as used by jpeg). This is 

because the residual errors would be smaller, and would take fewer bits to encode. 



Self-Organizing Maps (SOMs)

• To date, we have only considered applications of  NNs for supervised 

learning, however, there exist several applications of  NNs for unsupervised 

learning, including self-organizing maps (SOMs, 1988, Kohonen).

• In the unsupervised setting (e.g., k-means), we wish to identify

meaningful data patterns in a self-organizing fashion (viz., 

Without the use of labels). This process is often referred to as

learning a feature map – that is to say, a compression scheme

that illuminates structurally significant input features. 

• Stated concisely, SOMs provide a way of  performing dimensionality reduction 

using vector quantization. Furthermore, SOMs are unique in that they preserve 

topolographic network properties that mimic biological processes in the brain. 



Self-Organization & Complex Systems 
(*) Self-organization is a process where some form of  overall order arises from local interactions 

between parts of  an initially disordered system. The process is spontaneous, not needing control by any 

external agent. It is often triggered by random fluctuations, amplified by positive feedback. The resulting 

organization is wholly decentralized, distributed over all the components of  the system. As such, the 

organization is typically robust and able to survive or self-repair substantial perturbation. 

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Systems 

formed from self-organization processes often exhibit emergent behavior. 

Recommended reading: M. Mitchell, Complexity: A Guided Tour. 



Topographic Maps & The Brain
• Neurobiological studies indicate that different sensory inputs (motor, visual, auditory, etc.) are 

mapped onto corresponding areas of  the cerebral cortex in an orderly fashion. This form of  

map, known as a topographic map has (2) important properties: 

(1) Each piece of  information is kept in its proper context/neighborhood;

(2) neurons dealing with closely-related pieces of  information are kept close together so that 

they can interact using short synaptic connections. 

(*) SOMs train an artificial topographic map through self-organization in a neurobiologically 

inspired way, abiding by the principle of  topographic map formation: “The spatial location of  

an output neuron in a topographic map corresponds to a particular domain or feature drawn 

from the input space.” 

http://jov.arvojournals.org/article.aspx?articleid=2121362



SOMs: Overview
• The goal of  a SOM is to transform the incoming signal pattern into a lower dimensional 

discrete map, and to perform this transformation adaptively in a topographically-ordered fashion 

(so that neurons that are close together represent inputs that are close together, while neurons 

that are far apart represent inputs that are far apart). 

• SOMs utilize a class of  unsupervised learning techniques known as competitive learning, in 

which output neurons compete amongst themselves to be activated, with the result being that 

only one is activated for a given input. 

• This activated neuron is called a winner-takes-all neuron (also: winning neuron). Neurons 

become selectively tuned to various input patterns during the course of  competitive learning. 



SOMs
• Note that with SOMs, the relative locations of  the neurons in the network matters (nearby 

neuron correspond to similar input patterns) and the neurons are arranged in a lattice/grid 

(usually in 1-D or 2-D) with connections between the neurons, rather than in layers with 

connections only between different layers (as with the previous NNs we’ve seen). Each neuron is 

fully connected to all the source nodes in the input layer.  

• Each node has a specific topological position (an (x,y) coordinate in the lattice) and contains a

vector of weights.

• For training, neurons are tuned to conform with the topographic map criteria; in this way, the 

winning neuron should pull other neurons that are close to it in the network closer to itself  in 

weight space, whereas neurons that are very far away should be ignored. 



SOM Algorithm



SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of  neurons, dimension for the map (d) 

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal

components.



SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of  neurons, dimension for the map (d) 

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal

components.

(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning 

rate η(t) is decreased over time.  
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SOM Algorithm: Recap
(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning     

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood    

function with respect to node nb, which decides whether each neuron should be included in the 

neighborhood of  the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbors – or a 

Gaussian function can be used).
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SOM Algorithm: Recap
(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning     

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood    

function with respect to node nb, which decides whether each neuron should be included in the 

neighborhood of  the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a 

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size 

decreases over time). 
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SOM Algorithm: Recap
(II) Learning: 

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of  nb: 

(this update has the effect of  moving the weight vector of  nb closer to the datum), the learning     

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood    

function with respect to node nb, which decides whether each neuron should be included in the 

neighborhood of  the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a 

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size 

decreases over time). 

(III) Testing: 

For each test point select best-matching neuron:
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SOM vs PCA

One-dimensional SOM versus principal component analysis (PCA) for data 

approximation. SOM is a red broken line with squares, 20 nodes. The first principal 

component is presented by a blue line. Data points are the small grey circles. For 

PCA, the fraction of  variance unexplained in this example is 23.23%, for SOM it is 

6.86%.



SOM for Semantic Maps

Semantic network (SOM) detects “logical similarity” between words based on 

statistics of  their contexts (e.g. word order).

https://www.semanticscholar.org/paper/Self-organizing-semantic-maps-Ritter-

Kohonen/7e6429291b65b4984a461350f7a07a3af1af7029



SOM for Atmospheric Science

SOM of  sea level pressure anomaly patterns; different days fall into different 

categories, allowing researchers to attribute causes for variation with greater 

specificity. 

https://www.intechopen.com/books/applications-of-self-organizing-maps/self-

organizing-maps-a-powerful-tool-for-the-atmospheric-sciences



SOM for Medical Diagnosis

Pipeline used to predict glioma (tumor) grade and subsequently guide therapeutic 

strategies. First MRI data is acquired, the data was clustered in (2) steps beginning 

with an SOM, followed by k-means; lastly classification between high and low 

gliomas was done using an SVM. 

https://www.nature.com/articles/srep30344
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