
Unsupervised Learning

CS 445/545

Outline
• Overview of unsupervised learning

• K-means/fuzzy c-means

• Gaussian Mixture Models (GMMs)

• Cluster Analysis

• Hierarchical Clustering

• DBSCAN

• Vector Quantization / Self-organizing maps (SOMs)

Overview

• To date, most of the learning algorithms that we have seen make use of

labelled training data (e.g. a discrete class assignment or real-valued targets).

• Target labels are useful, since we can use them to guide the learning process

(see: PLA, backprop, etc.). However, in many real-world circumstances

labelled data is difficult (and expensive) to obtain.

Introduction: Perspectives on Learning

• In addition, labelled data is not seemingly biologically plausible – when we are

learning we rarely encounter labelled examples. Or do we?

• Here are (2) contrasting perspectives on epistemology and learning theory

from the history of philosophy.

‘When they (my elders) named some object, and accordingly moved towards something, I saw this and I grasped that the thing

was called by the sound they uttered when they meant to point it out. Their intention was shewn by their bodily

movements, as it were the natural language of all peoples: the expression of the face, the play of the eyes, the movement

of other parts of the body, and the tone of voice which expresses our state of mind in seeking, having, rejecting, or

avoiding something. Thus, as I heard words repeatedly used in their proper places in various sentences, I gradually learnt

to understand what objects they signified; and after I had trained my mouth to form these signs, I used them to express

my own desires.’ -- Augustine, Confessions.

“[T]he term ‘language-game’ is meant to bring into prominence the fact that the speaking of language is part of an activity, or

a form of life … [M]eaning can be defined thus: the meaning of word is its use in the language … And now, I think we

can say: Augustine [only] describes the learning of human language as if a child did not understand the language and

came into a strange country and did not understand the language of the country; that is, as if it already had a language,

only not this one.” –Ludwig Wittgenstein, Philosophical Investigations.

* Recommended recreational reading: Augustine, Confessions; Wittgenstein, Philosophical Investigations.

Are Categories

Fundamentally

Ambiguous?

• Consider the ancient thought experiment, Theseus’ ship
paradox.

The ship wherein Theseus and the youth of Athens
returned from Crete had thirty oars, and was
preserved by the Athenians down even to the time of
Demetrius Phalereus, for they took away the old
planks as they decayed, putting in new and stronger
timber in their places, in so much that this ship
became a standing example among the philosophers,
for the logical question of things that grow; one side
holding that the ship remained the same, and the other
contending that it was not the same. – Plutarch

Plutarch thus questions whether the ship would remain the
same if it were entirely replaced, piece by piece.

Introduction
• Recall the previously referenced paper from Goodfellow et al (2016) on

GANs (generative adversarial networks) that problematized the intuitive

notion of classification in high dimensions.

• This seminal paper (among other related papers) rightfully complicated our

current understanding of deep learning and DNNs – in a way, it conjures up

a modern variant of the Theseus ship paradox.

Introduction

• Unsupervised learning is a conceptually different problem from supervised

learning – no target labels are available to us.

Q: How can we hope to perform classification?

Introduction
• Unsupervised learning is a conceptually different problem from supervised

learning – no target labels are available to us.

Q: How can we hope to perform classification?

A: Identify similarities between inputs, and consider groups of similar inputs as

belonging to the same cluster.

(*) Accordingly, the aim of unsupervised learning is to find clusters (according

to some useful criteria) of similar inputs in the data without being told

explicitly that these data belong to a particular class.

In this way, an unsupervised learning algorithm “discovers” similarities and

patterns in the data itself. This procedure is often part of a more general

exploratory data analysis (EDA) methodology, common to data science,

statistics, etc.

Introduction
• Generally, supervised learning algorithms aim to minimize some external error

criterion (e.g., OLS), based on a loss function quantifying the difference

between targets and outputs.

• With supervised learning, calculating this loss explicitly was possible because

we were provided with target labels.

• Instead, with unsupervised learning, we need to use an internal error

criterion. This means that the measure has to be independent of the task –

think of the labels as defining a particular task.

(*) A useful general error criterion in the unsupervised setting defines

similarity in terms of the distance between data points; accordingly, similar

data are close to one another.

Example: Optdigits data set

Optdigits features
f1 f2 f3 f4 f5 f6 f7 f8

f9

x = (f1, f2, ..., f64)

= (0, 2, 13, 16, 16, 16, 2, 0, 0, ...) Etc. ..

Partitional Clustering of

Optdigits
Feature 1

Feature 2

Feature 3
64-dimensional space

Partitional Clustering of

Optdigits
Feature 1

Feature 2

Feature 3
64-dimensional space

Issues for clustering algorithms

• How to measure distance between pairs of instances?

• How many clusters to create?

• Should clusters be hierarchical? (i.e., clusters of clusters)

• Should clustering be “soft”? (i.e., an instance can belong to different

clusters, with “weighted belonging”)

• k-means is a very popular (and simple) clustering algorithm used in ML

and data science.

• k-means clustering aims to partition n observations into k clusters in

which each observation belongs to the cluster with the nearest mean,

serving as a prototype of the cluster. This results in a partitioning of the

data space into Voronoi cells.

k-Means

Vornoi

Tessellation; 20

points and their

Voroni cells.

• Given a set of observations (x1, x2, …, xn), where each observation is

a d-dimensional real vector, k-means clustering endeavors to partition

the n observations into k (≤ n) sets S={S1, S2, …, Sk} so as to

minimize the within-cluster sum of squares (WCSS).

• Formally, the objective is to find:

where μi is the mean of cluster Si.

k-Means

2

1

arg min arg min Var()
i i

k

i i i

i x S x S

S S
  

  
S S

x μ

• The algorithm itself works by iterative refinement, and is a variant of a

more general algorithm, known as EM (expectation-maximization).

• Given an initial set of k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
(the subscript is the cluster

identification, while superscript is the iteration number) k-means alternates

between the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this

means partitioning the observations according to the Voroni tessellation

generated by the means.

Where each datum xp is assigned to exactly one cluster, S(t).

k-Means

      
2 2

: ,1
t t t

i p p i p jS x x m x m j j k      

• Given an initial set of k means 𝑚1
(1)
, … ,𝑚𝑘

(1)
k-means alternates between

the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared

Euclidean distance, this is intuitively the "nearest" mean. Mathematically, this

means partitioning the observations according to the Voroni tessellation

generated by the means.

(II) Update Step (i.e., the parameter maximization step):

• Calculate the new means to be the centroids of the observations in the

new clusters.

• The algorithm has converged when the assignments no longer change.

There is no guarantee that the optimum is found using this algorithm.

k-Means

      
2 2

: ,1
t t t

i p p i p jS x x m x m j j k      

 

 
 

1 1

t
j i

t

i jt
x Si

m x
S





 

(I) Assignment Step (i.e., the expectation step):

(II) Update Step (i.e., the parameter maximization step):

k-Means

      
2 2

: ,1
t t t

i p p i p jS x x m x m j j k      

 

 
 

1 1

t
j i

t

i jt
x Si

m x
S





 

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

Adapted from Andrew Moore,

http://www.cs.cmu.edu/~awm/tutori

als

K-means Clustering Algorithm Pseudocode

Distance metric: Chosen by user.

For numerical attributes, often use L2 (Euclidean) distance:

Centroid of a cluster here refers to the mean of the points in the cluster.

(*) NB: Using a different distance function other than (squared) Euclidean

distance may stop the algorithm from converging. Various modifications

of k-means such as spherical k-means have been proposed to allow using

other distance measures.

d(x,y) = (xi - yi)
2

i=1

n

å

Example: Image segmentation by K-means

clustering by color
From http://vitroz.com/Documents/Image%20Segmentation.pdf

K=5, RGB space

K=10, RGB space

K=5, RGB space

K=10, RGB space

K=5, RGB space

K=10, RGB space

• A text document is represented as a feature vector of word frequencies

(see: Word2vec).

• Distance between two documents is the cosine of the angle between

their corresponding feature vectors.

Example: Clustering text documents

Figure 4. Two-dimensional map of the PMRA cluster solution, representing nearly 29,000 clusters

and over two million articles.

Boyack KW, Newman D, Duhon RJ, Klavans R, et al. (2011) Clustering More than Two Million Biomedical Publications: Comparing the

Accuracies of Nine Text-Based Similarity Approaches. PLoS ONE 6(3): e18029. doi:10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

K-means Analysis

• Convergence: k-means is guaranteed to converge in a finite number of

steps (irrespective of the initial centroid assignment). Why? In short: there

are only a finite number of ways to cluster n data points into k clusters

(although note that this number can be large). Usually convergence is

relatively fast in practice.

• NB: The algorithm is nevertheless not guaranteed to generate a

(globally) optimal clustering.

• Complexity: In general, finding the optimal solution to k-means for

observations in d dimensions is NP-hard (even in the 2-class case).

• The run-time of k-means is O(nkdi), where n is the size of the data set, d

is the dimension, k is the number of clusters and i is the number of

clusters needed until convergence. k-means is therefore oftentimes

considered a linear run-time algorithm; in the worst-case it is more aptly

described as superpolynomial.

Potential Issues for K-means
• The algorithm is only applicable if the mean is defined.

– For categorical data, use K-modes: The centroid is represented by the most frequent

values.

• The user needs to specify K.

• Cluster morphology can be severely limited (epsilon-balls, etc.)

• Algorithms makes hard cluster assignments (either element belongs to a particular cluster or

it does not).

• The algorithm is sensitive to outliers

– Outliers are data points that are very far away from expected range/other data points.

– Outliers could be errors in the data recording or some special data points with very

different values.

– Note the mode is a more robust measure of center (than, say the mean), meaning it is

less susceptible to outliers; thus, we can potentially use K-modes to safeguard against

influence of outliers.

Issues for K-means: Problems with outliers

Dealing with outliers

• One method is to remove some data points in the clustering process

that are much further away from the centroids than other data points.

– Expensive

– Not always a good idea!

• Another method is to perform random sampling. Since in sampling we

only choose a small subset of the data points, the chance of selecting

an outlier is very small.

– Assign the rest of the data points to the clusters by distance or

similarity comparison, or classification

Issues for K-means (cont …)

• The algorithm is sensitive to initial seeds.

+

+

• If we use different seeds: good results

• Often we can improve k-means results by performing

several random restarts.

• It is commonly helpful to use actual data values for the

initial seeds.

+
+

Issues for K-means (cont …)

• The K-means algorithm is not suitable for discovering clusters that are

not hyper-ellipsoids (or hyper-spheres).

+

Issues for K-means (cont …)

• In non-fuzzy clustering (also known as hard clustering), data is divided into

distinct clusters, where each data point can only belong to exactly one cluster.

(cf., k-means from previous slides).

• In fuzzy clustering (also: soft clustering), data points can potentially belong to

multiple clusters.

• Commonly, “membership grades” (i.e. class probabilities) are assigned to

each of the data points. These membership grades indicate the degree to

which data points belong to each cluster. Thus, points on the edge of a

cluster, with lower membership grades, may be in the cluster to a lesser degree

than points in the center of cluster.

Fuzzy c-means

• The FCM (fuzzy c-means (1973), as it is usually called) algorithm is very similar to the k-

means algorithm:

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

Fuzzy c-means

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

where C={c1,…,cc} are the cluster centers,

, and each element wij tells the

degree to which element xi, belongs to cluster cj (i.e. the w’s are the

membership grades); m>1 is a hyperparameter known as the fuzzifier

parameter which controls the amount of “fuzziness” in the

partition.

Fuzzy c-means

 

 

m

k

x
k m

k

x

w

w





x x

c
x

 , 0,1 , 1,..., , 1,...,i jW w i n j c   

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

Fuzzy c-means

 

 

m

k

x
k m

k

x

w

w





x x

c
x

2

1

1

1
i j

mc
i j

k i k

w






 
 
 
 


x c

x c

Here is the basic idea:

• Choose a number of clusters: c (a hyperparameter).

• Initially assign coefficients randomly to each data point for being in the clusters (these

are the initial membership grades).

• Repeat until the algorithm has converged/stopping condition:

(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the

clusters (e-step).

(*) FCM aims to minimize the an objective function:

Fuzzy c-means

 

 

m

k

x
k m

k

x

w

w





x x

c
x

2

1

1

1
i j

mc
i j

k i k

w






 
 
 
 


x c

x c

2

1 1

arg min
n c

m

ij i j
C i j

w
 

 x c

• For example, consider a simple 1-d data set, where we want to determine a plausible

clustering for 2 classes (A and B).

• Using “hard k-means” we associate each datum to a specific centroid; therefore the

membership function looks like this:

Fuzzy c-means

• For example, consider a simple 1-d data set, where we want to determine a plausible clustering for 2

classes (A and B).

• Using “hard k-means” we associate each datum to a specific centroid; therefore the membership

function looks like this:

• In the FCM approach, instead, the same given datum does not belong exclusively to a well defined

cluster. In this case, the membership function follows a smoother line to indicate that every datum

may belong to several clusters with different values of the membership coefficient.

Fuzzy c-means

• FCM was essentially, again, a “fuzzy” version of the k-means algorithm, where data

points are assigned to each cluster with an associated probability/membership grade.

• An additional, commonly used soft clustering model is the GMM (Gaussian mixture

model); with GMMs, we assume (a priori) that the clusters resemble tightly-packed balls

(i.e. Gaussian distributions).

GMMs

GMMs: Gaussian Distribution Review

GMMs: Gaussian Distribution Review

Main ideas for clustering using GMM:

(*) Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters.

(*) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

(*) Update the parameters (i.e. μ, Σ) for each of the clusters. (update step/M-step)

…repeat until stopping condition/convergence

GMMs

Main ideas for clustering using GMM:

(*) Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters.

(*) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

(*) Update the parameters (i.e. μ, Σ) and prior class estimates (P(Ci|x) (for each of the

clusters. (update step/M-step)

…repeat until stopping condition/convergence

What makes this problem challenging? There are, ostensibly, many unknowns!

(*) Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

(*) Strictly speaking, we don’t know the cluster assignments nor any of the Gaussian

distribution parameters.

How can we simplify things?

A nice trick…Solve each subproblem separately!

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule.

(2) Conversely, to find the optimal estimates for μ and Σ for each cluster, in addition to

the class priors, use the current (soft) class posterior assignments and compute the

MLE.

GMMs

(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule. (assignment step/E-step)

(*) Given the current estimates of both the parameters of each Gaussian cluster:

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the

class posterior P(Ci) using Bayes’ Rule as follows:

GMMs

 
   |

|
()

i i

i

P x C P C
P C x

P x


(1) For instance, to find the optimal class assignments for each datum, use the current

approximations for the Gaussian parameters distributions (i.e. treat μ and Σ as known

for each cluster, as well as each class prior) and compute the class posterior: P(Ci|x)

using Bayes’ Rule. (assignment step/E-step)

(*) Given the current estimates of both the parameters of each Gaussian cluster:

(μ1,Σ1),…,(μk,Σk), and the prior for each cluster: P(C1)=π1,…, P(Ck)=πk, we compute the

class posterior P(Ci) using Bayes’ Rule as follows:

GMMs

 
   

 
   1

1/2/2

| 1 1
| exp

() 22

Ti i

i i i i id

i

P x C P C
P C x x x

P x
  



 
      

 

(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class

priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

(*) Observe that if we knew which points belong to, say cluster i, for a hard clustering, we

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g. P(Ci). These

standard parameter estimates are given as follows:

cluster prior cluster mean cluster covariance matrix

where above, ni denotes the size of the ith cluster.

GMMs

  
1 1ˆˆ ˆ ˆ ˆ

j j
i i

T
j j ji

i i i i i

C Ci i

n

n n n
   

 

      
x x

x x x

(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class

priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

(*) Observe that if we knew which points belong to, say cluster i, for a hard clustering, we

can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian

parameters (μ and Σ) for each cluster, in addition to the cluster priors (e.g. P(Ci). These

standard parameter estimates are given as follows:

cluster prior cluster mean cluster covariance matrix

where above, ni denotes the size of the ith cluster.

(*) However, because we are executing a soft clustering, these parameter update formulae

must incorporate the class posteriors: P(Ci|x), for each i=1,…,k and for each data point x,

respectively.

GMMs: MLE Parameter Estimates

  
1 1ˆˆ ˆ ˆ ˆ

j j
i i

T
j j ji

i i i i i

C Ci i

n

n n n
   

 

      
x x

x x x

(2) To find the optimal estimates for μ and Σ for each cluster, in addition to the class

priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

(*) Here are the parameter estimate formulas, updated to account for the soft clustering

induced by the class posteriors: P(Ci|x), for each i=1,…,k, for each data point:

cluster prior modified formula cluster mean modified formula

cluster covariance matrix modified formula

GMMs: Modified Parameter Estimates

 
1,..,

1
ˆ ˆ | ji

i i i

j n

n
P C

n n
 



    x

 

 
1,..,

1,..,

|
1

ˆ ˆ
|j

i

j j

i

j nj

i i j
Ci i

j n

P C

n P C
 







  




x

x x

x
x

  
   

 
1,..,

1,..,

ˆ ˆ|
1ˆ ˆˆ ˆ

|j
i

T
j j j

i i i
T j nj j

i i i i j
Ci i

j n

P C

n P C

 

 






 

     




x

x x x

x x
x

Main ideas for clustering using GMM:

(*) Initialization: given a data set, fix k, the number of clusters; initialize the mean (μ) and

covariance matrices (Σ) for the k Gaussian clusters, and cluster priors (P(Ci)).

(I) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-

step)

(II) Update the parameters (i.e. μ, Σ) for each of the clusters, including the cluster priors.

(update step/M-step)

…repeat until stopping condition/convergence

GMMs: Summary

 
 

   1

1/2/2

1 1
| exp

22

T

i i i i id

i

P C x x x  


 
     

 

 
1,..,

1
ˆ | j

i i

j n

P C
n




  x

 

 
1,..,

1,..,

|

ˆ
|

j j

i

j n

i j

i

j n

P C

P C












x x

x

   

 
1,..,

1,..,

ˆ ˆ|

ˆ
|

T
j j j

i i i

j n

i j

i

j n

P C

P C

 




 

 





x x x

x

• Demo: https://lukapopijac.github.io/gaussian-mixture-model/

GMMs

• Previously we considered clustering in a commonplace, unsupervised

setting (i.e. no class labels); it is also likewise useful to consider clustering

for supervised learning.

When labels are present, we can determine a post hoc evaluation of cluster

validity (namely, the “goodness” of the clustering model).

Why might we want to do this?

Cluster Analysis: Measuring Cluster Validity

• Previously we considered clustering in a commonplace, unsupervised

setting (i.e. no class labels); it is also likewise useful to consider clustering

for supervised learning.

When labels are present, we can determine a post hoc evaluation of cluster

validity (namely, the “goodness” of the clustering model).

Why might we want to do this? There are a number of reasons, including:

(*) Determining whether non-random structure actually exists in the data

set

(*) Comparing cluster results to externally known results (the labels, for

instance)

(*) Comparing the results of two different clustering algorithms

(*) Determining a good value of the number of clusters (e.g. k)

Cluster Analysis: Measuring Cluster Validity

• There are a great many different numerical measures that can be used to

quantify and assess cluster validity; in general these measures fall into at

least (2) basic categories:

(*) Internal index: Used to measure quality of clustering without reference

to external information, e.g., MSE, MSS.

(*) External index: Used to measure degree to which cluster labels match

class labels, e.g., purity, entropy.

Cluster Analysis: Measuring Cluster Validity

(*) In an unsupervised setting we can still measure and assess cluster

validity by using internal indices.

For example, let C denote a clustering (i.e. a set of k clusters resulting from a

clustering algorithm) and let c denote a particular cluster in C, and define |c| as the

number of elements in that cluster.

• We want to minimize the distance between elements of c and the centroid μc –

this would give us a naturally plausible clustering; formally we minimize mean

square error (MSE):

Measuring Cluster Validity: Internal Indices

(MSE)

 
 

 
 

2
, c

c

c C

d

MSE c
c

mse c

Average MSE C
K













x

x μ

•

(*) In an unsupervised setting we can still measure and assess cluster

validity by using internal indices.

For example, let C denote a clustering (i.e. a set of k clusters resulting from a

clustering algorithm) and let c denote a particular cluster in C, and define |c| as the

number of elements in that cluster.

• On the other hand, we also want to maximize the pairwise separation of each

cluster. That is, maximize mean square separation (MSS):

Measuring Cluster Validity: Internal Indices

(MSS)

 
 

 

 

2

,

,

1 / 2

i j

all distinct pairs of clusters i j C i j

d

MSS C
K K

 




 μ μ

Measuring Cluster Validity: Internal Indices

(*) In an a supervised setting we measure and assess cluster validity by using external

indices.

For example, let C denote a clustering (i.e. a set of k clusters resulting from a clustering

algorithm) and let c denote a particular cluster in C, and define |c| as the number of

elements in that cluster.

• Entropy of a cluster: The degree to which a cluster consists of objects of a single

class.

where pi,j denotes the probability that a member of cluster i belongs to cluster j (i.e.

pi,j=ni,j/ni, where ni,j represents the number of instances in cluster i with class j, and ni is

the number of instances in cluster i).

*NB: A “good” clustering will have a small mean entropy value.

Measuring Cluster Validity: External Indices

(Entropy)

  , 2 ,

1

log
ic

i i j i j

j

Entropy c p p


 

   
1

K
i

i

i

n
mean Entropy C Entropy c

n



Cluster 1 Cluster 2 Cluster3

1 2 1 3 1 1 3 2 3 3 3 2 3 1 1 3 2 2 3 2

Suppose there are 3 classes: 1, 2, 3

entropy(c1) = -
4

7
log2

4

7
+

1

7
log2

1

7
+

2

7
log2

2

7

æ

è
ç

ö

ø
÷ =1.37

entropy(c2) = - 0 +
2

6
log2

2

6
+

4

6
log2

4

6

æ

è
ç

ö

ø
÷ = 0.91

entropy(c3) = -
2

7
log2

2

7
+

3

7
log2

3

7
+

2

7
log2

2

7

æ

è
ç

ö

ø
÷ =1.54

mean entropy(C) =
7

20
1.37() +

6

20
0.91() +

7

20
1.54()

Measuring Cluster Validity: External Indices

(Entropy)
• Entropy of a cluster: The degree to which a cluster consists of objects of a single class.

where pi,j denotes the probability that a member of cluster i belongs to cluster j (i.e. pi,j=ni,j/ni,

where ni,j represents the number of instances in cluster i with class j, and ni is the number of

instances in cluster i).

Entropy example:

Measuring Cluster Validity: External Indices

(Purity)
• Purity of a cluster: Purity is defined as the percent of the total number of data points that were

classified correctly, in the unit range [0,1]:

Where n is the number of data points, k is the number of clusters, ci is a cluster in C, and tj is the

classification which has the max count for cluster ci.

(*) To compute purity, each cluster is assigned to the class which is most frequent in the cluster,

and then the accuracy of this assignment is measured by counting the number of correctly assigned

data and dividing by n.

 
1

1
max

k

i j
j

i

Purity C c t
n 

 

Measuring Cluster Validity: External Indices

(Purity)
• Purity of a cluster: Purity is defined as the percent of the total number of data points that were

classified correctly, in the unit range [0,1]:

Where n is the number of data points, k is the number of clusters, ci is a cluster in C, and tj is the

classification which has the max count for cluster ci.

(*) To compute purity, each cluster is assigned to the class which is most frequent in the cluster,

and then the accuracy of this assignment is measured by counting the number of correctly assigned

data and dividing by n.

Consider the following example:

 
1

1
max

k

i j
j

i

Purity C c t
n 

 

Hierarchical Clustering

• One potential disadvantage of K-means clustering is that it requires us to pre-

specify the number of clusters K.

• Hierarchical clustering is an alternative approach which does not require that

we commit to a particular choice of K. In addition, hierarchical clustering has the

advantage over K-means in that it results in an interpretable, tree-based

representation of the data, called a dendrogram.

Hierarchical Clustering: Dendrograms

• Each leaf in a dendrogram represents a datum; as we traverse the tree (from left

to right – or equivalently from bottom to top for vertical orientations), some

leaves begin to fuse into branches.

• These fused data correspond to observations that are similar to one another.

Elements that fuse early (farther to the left) are more similar than elements that

fuse farther to the right.

Hierarchical Clustering: Dendrograms

• One strongly attractive aspect of hierarchical clustering is that a single dendrogram can

be used to obtain any number of clusters (see figure) – we slice the tree at various heights

to yield different clusterings (for different numbers of clusters).

• The term hierarchical refers to the fact that clusters obtained by cutting the dendrogram

at a given height (for a vertical orientation, as shown) are necessarily nested within the

clusters obtained by cutting the dendrogram at any greater height.

Hierarchical Clustering: Dendrograms

• Example above shows three dendrogram “slices” rendering different clusterings; in

case (1) the slice produces 8 clusters; case (2) produces 4 total clusters; case (3)

generates 2 clusters.

(1) (2)
(3)

Hierarchical Clustering Algorithm

• The hierarchical clustering dendrogram is obtained via an extremely simple (bottom-

up) algorithm.

• We begin by defining some sort of dissimilarity measure between each pair of

observations; most often a Euclidean distance is used.

(*) The algorithm proceeds iteratively, in a greedy fashion; starting at the bottom of the

dendrogram, each of the n observations is treated as its own cluster. Two clusters that

are most similar are fused so that now there are n-1 clusters. Next the two clusters that

are most similar are fused again, etc. The algorithm halts when one cluster remains.

Hierarchical Clustering Algorithm

• The hierarchical clustering dendrogram is obtained via an extremely simple (bottom-

up) algorithm.

• We begin by defining some sort of dissimilarity measure between each pair of

observations; most often a Euclidean distance is used.

(*) The algorithm proceeds iteratively, in a greedy fashion; starting at the bottom of the

dendrogram, each of the n observations is treated as its own cluster. Two clusters that

are most similar are fused so that now there are n-1 clusters. Next the two clusters that

are most similar are fused again, etc. The algorithm halts when one cluster remains.

Here we need to extend our concept of dissimilarity beyond pairs of observations, and

to dissimilarity between clusters. This extension is achieved by developing the notion of

linkage, which defines dissimilarity between to groups of observations.

The (4) most common types of linkage – complete, average, single and centroid are described

next, along with the general hierarchical clustering algorithm.

Hierarchical Clustering Algorithm

(4) Common linkage types

Hierarchical Clustering: Application to

Genomics

• In genomics, it is frequently necessary to identify groups of genes with

similar expression profiles across a large number of experiments.

• Hierarchical clustering attempts to group genes into small clusters and to group

clusters into higher-level systems. The resulting hierarchical tree is easily viewed as

a dendrogram.

• Most studies involve comparing a series of experiments to identify genes that

are consistently coregulated under some defined set of circumstances—disease

state, drug dose, etc.

Hierarchical Clustering: Application to Genomics

Unsupervised hierarchical clustering of 138 meningiomas by genome-wide

expression profiling is shown. Atypical versus benign histology, underlying

meningioma driver mutations, copy number variations, which are color coded, are

shown on the left. Although the expression profile accurately clusters meningioma

samples based on driver mutations, it does not fully differentiate atypical versus

benign tumors. https://www.nature.com/articles/ncomms14433/figures/2

https://www.nature.com/articles/ncponc0072

DBSCAN (1996)

• DBSCAN (density-based spatial clustering of applications with noise) is one of the most

popular and heavily cited clustering algorithms in scientific literature (11,000+

citations).

• It is a density-based clustering algorithm: given a set of points in some space,

DBSCAN groups points that are closely packed together (points with many nearby

neighbors), marking as outliers points that lie alone in low-density regions (whose

nearest neighbors are too far away).

(*) Original DBSCAN paper: https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf

DBSCAN: Overview
• Before discussing the details of the algorithm, let’s first consider some of the broader

advantages/disadvantages of DBSCAN as a clustering algorithm.

Advantages:

(*) Unlike k-means, DBSCAN does not require an a priori specification of the number of clusters

(i.e. the hyperparameter k).

(*) DBSCAN can find arbitrarily shaped clusters. It can even find a cluster completely surrounded by

(but not connected to) a different cluster.

(*) DBSCAN is robust to outliers; and requires the specification of only two total parameters.

Disadvantages:

(*) Algorithm is non-deterministic and often sensitive to the order the data are processed.

(*) The quality of the clustering is highly dependent upon the distance measure/parameter values.

K-means

can’t do

this!

DBSCAN: Overview

• The basic idea behind DBSCAN is clusters are comprised of dense

groupings of data points.

• The algorithm relies on two parameters: ε (eps) – which represents the

maximum radius of a cluster and MinPts – which denotes the minimum threshold

for the number of points that form a cluster.

The algorithm classifies all points in the data set into one of (4) categories:

DBSCAN: Overview
• The algorithm relies on two parameters: ε (eps) – which represents the

maximum radius of a cluster and MinPts – which denotes the minimum threshold

for the number of points that form a cluster.

The algorithm classifies all points in the data set into one of (4) categories:

(1) core points: a point p is a core point if at least MinPts points are within

distance ε of it (including p itself). These points are said to be directly reachable

from the core point p.

(2) directly density-reachable points: a point q is directly density-

reachable from the core point p if d(p,q)< ε.

(3) density-reachable points: a point q is density-reachable from the core

point p if there exists a path p->p2->p3->…->q where each pi+1 is directly

reachable from pi, and all points in the path are core points (with the possible

exception of q).

(4) outliers: all points not reachable from any other points are outliers.

DBSCAN: Overview
• The algorithm relies on two parameters: ε (eps) – which represents the maximum radius of a cluster and

MinPts – which denotes the minimum threshold for the number of points that form a cluster.

(1) core points: a point p is a core point if at least MinPts points are within distance ε of it (including p itself).

These points are said to be directly reachable from the core point p.

(2) directly density-reachable points: a point q is directly density-reachable from the core point p if d(p,q)<

ε.

(3) density-reachable points: a point q is density-reachable from the core point p if there exists a path p-

>p2->p3->…->q where each pi+1 is directly reachable from pi, and all points in the path are core points (with

the possible exception of q).

(4) outliers: all points not reachable from any other points are outliers.

(*) If p is a core point, then it forms a cluster together with all points (core or non-core)

that are reachable from it. Each cluster contains at least one core point; non-core points can be

part of a cluster, but they form its "edge", since they cannot be used to reach more points.

In this diagram, minPts = 4. Point A and the other red points are core points,

because the area surrounding these points in an ε radius contain at least 4 points

(including the point itself). Because they are all reachable from one another, they

form a single cluster. Points B and C are not core points, but are reachable from A

(via other core points) and thus belong to the cluster as well. Point N is an outlier

point that is neither a core point nor directly-reachable.

DBSCAN
(*) If p is a core point, then it forms a cluster together with all points (core or non-core)

that are reachable from it. Each cluster contains at least one core point; non-core points can be

part of a cluster, but they form its "edge", since they cannot be used to reach more points.

(*) Note that reachability is not symmetric – since, for instance, no point may be reachable

from a non-core point. However, if we defined two points p and q as density-connected if there

is a point o such that both p and q are reachable from o, then density-connectedness is, in fact,

symmetric.

A DBSCAN cluster consequently satisfies (2) properties:

(1) All points within the cluster are mutually density-connected

(2) If a point is density-reachable from any point of the cluster, it is part of the cluster as well.

In this diagram, minPts = 4. Point A and the other red points are core

points, because the area surrounding these points in an ε radius

contain at least 4 points (including the point itself). Because they are

all reachable from one another, they form a single cluster. Points B

and C are not core points, but are reachable from A (via other core

points) and thus belong to the cluster as well. Point N is an outlier

point that is neither a core point nor directly-reachable.

DBSCAN
High-level program execution:

(1) Determine the parameters: ε>0 and MinPts (a positive natural number)

(2) Pick an arbitrary point in the dataset; if there are more than MinPts points distance epsilon

from that point (including the point itself), these points are part of a cluster.

(3) *Expand this cluster by checking all of the new points and seeing if they too have more than

minPts within distance epsilon – grow cluster recursively.

Repeat this process for new points – if a point is not part of any cluster we deem it an outlier.

*NB: The assignment of “border points” in DBSCAN is dependent upon the order in which the

datapoints are processed.

DBSCAN: Pseudocode & Demo

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

DBSCAN: Analysis

Complexity:

(*) DBSCAN visits each point of the database, possibly multiple times (e.g., as

candidates to different clusters).

(*) For practical considerations, however, the time complexity is mostly governed by the

number of regionQuery invocations (i.e. determining the neighbors). DBSCAN

executes exactly one such query for each point, and if an efficient indexing structures is

used that executes a neighborhood query in O(log n), an overall average runtime

complexity of O(n log n) is obtained.

(*) Without the use of an accelerating index structure the worst case run time

complexity remains O(n²) (this is the result of the computational bottleneck due to

brute force pairwise comparisons of points).

DBSCAN: Analysis

Parameter Tuning:

(*) Ideally, the value of ε is given by the problem to solve (e.g. a physical distance), and

minPts is then the desired minimum cluster size.

MinPts: As a rule of thumb, a minimum minPts can be derived from the number of

dimensions D in the data set, as minPts ≥ D + 1. However, larger values are usually

better for data sets with noise and will yield more significant clusters.

ε: if ε is chosen much too small, a large part of the data will not be clustered; whereas

for a too high value of ε, clusters will merge and the majority of objects will be in the

same cluster. In general, small values of ε are preferable, and as a rule of thumb only a

small fraction of points should be within this distance of each other.

Distance function: The choice of distance function is tightly coupled to the choice of

ε, and has a major impact on the results.

Vector Quantization

(*) It is often useful to interpret k-means as a greedy algorithm for approximately

minimizing a loss function related to data compression.

• Suppose we want to perform lossy compression of some real-value vectors: .

• A simple approach to achieve this is to use vector quantization (VQ). The basic idea

is to replace each real-valued vector xi with a discrete symbol 𝑧𝑖 ∈ 1,… , 𝐾 , which is

an index to a codebook of K prototypes: 𝝁𝑘 ∈ ℝ𝐷.

• Each data vector is encoded by using the index of the most similar prototype, where

similarity is measured in terms of Euclidean distance:

D

i x

 
2

arg mini i k
k

encode  x x μ

Vector Quantization

• We can define a natural cost function that measures the quality of a codebook by

computing the reconstruction error or distortion it induces:

where decode(k)=𝝁𝑘 . The k-means algorithm can be thought of as an iterative scheme

for minimizing this objective.

    
2 2

1

1 1
, | ,

N

i i i zi

i

J z K X decode encode
N N




    x x x μ

 
2

arg mini i k
k

encode  x x μ

Vector Quantization: Image Compression Example

• One application of VQ is image compression. Consider N=200x320=64,000 pixel

image in gray-scale so D=1 (shown below). If we use one byte to represent each pixel

(gray-scale intensity ranges [0,255]), we need 512,000 bits to represent the image.

•For the compressed image we need Nlog2K +KC bits; for K=4 this is about 128kb, a

factor of 4 compression. Greater compression could be achieved if we modelled spatial

correlation between pixels, e.g., if we encoded 5x5 blocks (as used by jpeg). This is

because the residual errors would be smaller, and would take fewer bits to encode.

Self-Organizing Maps (SOMs)

• To date, we have only considered applications of NNs for supervised

learning, however, there exist several applications of NNs for unsupervised

learning, including self-organizing maps (SOMs, 1988, Kohonen).

• In the unsupervised setting (e.g., k-means), we wish to identify

meaningful data patterns in a self-organizing fashion (viz.,

Without the use of labels). This process is often referred to as

learning a feature map – that is to say, a compression scheme

that illuminates structurally significant input features.

• Stated concisely, SOMs provide a way of performing dimensionality reduction

using vector quantization. Furthermore, SOMs are unique in that they preserve

topolographic network properties that mimic biological processes in the brain.

Self-Organization & Complex Systems
(*) Self-organization is a process where some form of overall order arises from local interactions

between parts of an initially disordered system. The process is spontaneous, not needing control by any

external agent. It is often triggered by random fluctuations, amplified by positive feedback. The resulting

organization is wholly decentralized, distributed over all the components of the system. As such, the

organization is typically robust and able to survive or self-repair substantial perturbation.

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Systems

formed from self-organization processes often exhibit emergent behavior.

Recommended reading: M. Mitchell, Complexity: A Guided Tour.

Topographic Maps & The Brain
• Neurobiological studies indicate that different sensory inputs (motor, visual, auditory, etc.) are

mapped onto corresponding areas of the cerebral cortex in an orderly fashion. This form of

map, known as a topographic map has (2) important properties:

(1) Each piece of information is kept in its proper context/neighborhood;

(2) neurons dealing with closely-related pieces of information are kept close together so that

they can interact using short synaptic connections.

(*) SOMs train an artificial topographic map through self-organization in a neurobiologically

inspired way, abiding by the principle of topographic map formation: “The spatial location of

an output neuron in a topographic map corresponds to a particular domain or feature drawn

from the input space.”

http://jov.arvojournals.org/article.aspx?articleid=2121362

SOMs: Overview
• The goal of a SOM is to transform the incoming signal pattern into a lower dimensional

discrete map, and to perform this transformation adaptively in a topographically-ordered fashion

(so that neurons that are close together represent inputs that are close together, while neurons

that are far apart represent inputs that are far apart).

• SOMs utilize a class of unsupervised learning techniques known as competitive learning, in

which output neurons compete amongst themselves to be activated, with the result being that

only one is activated for a given input.

• This activated neuron is called a winner-takes-all neuron (also: winning neuron). Neurons

become selectively tuned to various input patterns during the course of competitive learning.

SOMs
• Note that with SOMs, the relative locations of the neurons in the network matters (nearby

neuron correspond to similar input patterns) and the neurons are arranged in a lattice/grid

(usually in 1-D or 2-D) with connections between the neurons, rather than in layers with

connections only between different layers (as with the previous NNs we’ve seen). Each neuron is

fully connected to all the source nodes in the input layer.

• Each node has a specific topological position (an (x,y) coordinate in the lattice) and contains a

vector of weights.

• For training, neurons are tuned to conform with the topographic map criteria; in this way, the

winning neuron should pull other neurons that are close to it in the network closer to itself in

weight space, whereas neurons that are very far away should be ignored.

SOM Algorithm

SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of neurons, dimension for the map (d)

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal

components.

SOM Algorithm: Overview

(I) Initialization: network parameters: determine number of neurons, dimension for the map (d)

-- can use a random initialization or begin with, say the PCA algorithm, using first d principal

components.

(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

  T T T

j j jt  w w x w

SOM Algorithm: Recap
(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood

function with respect to node nb, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbors – or a

Gaussian function can be used).

  T T T

j j jt  w w x w

    ,T T T

j j n b jt h n t  w w x w

SOM Algorithm: Recap
(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood

function with respect to node nb, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size

decreases over time).

  T T T

j j jt  w w x w

    ,T T T

j j n b jt h n t  w w x w

h(nb,t) function

neighboorhood size

decreases over time

SOM Algorithm: Recap
(II) Learning:

(a) For each data point, select best-matching neuron (nb), using minimum

Euclidean distance.

(b) Update weight vector of nb:

(this update has the effect of moving the weight vector of nb closer to the datum), the learning

rate η(t) is decreased over time.

(c) Update the weight vector of all other neurons using:

where ηn(t) is the learning rate for the neighborhood nodes, and h(nb,t) is the neighborhood

function with respect to node nb, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbods – or a

Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size

decreases over time).

(III) Testing:

For each test point select best-matching neuron:

  T T T

j j jt  w w x w

    ,T T T

j j n b jt h n t  w w x w

h(nb,t) function

neighboorhood size

decreases over time min T

b j
j

n  x w

SOM vs PCA

One-dimensional SOM versus principal component analysis (PCA) for data

approximation. SOM is a red broken line with squares, 20 nodes. The first principal

component is presented by a blue line. Data points are the small grey circles. For

PCA, the fraction of variance unexplained in this example is 23.23%, for SOM it is

6.86%.

SOM for Semantic Maps

Semantic network (SOM) detects “logical similarity” between words based on

statistics of their contexts (e.g. word order).

https://www.semanticscholar.org/paper/Self-organizing-semantic-maps-Ritter-

Kohonen/7e6429291b65b4984a461350f7a07a3af1af7029

SOM for Atmospheric Science

SOM of sea level pressure anomaly patterns; different days fall into different

categories, allowing researchers to attribute causes for variation with greater

specificity.

https://www.intechopen.com/books/applications-of-self-organizing-maps/self-

organizing-maps-a-powerful-tool-for-the-atmospheric-sciences

SOM for Medical Diagnosis

Pipeline used to predict glioma (tumor) grade and subsequently guide therapeutic

strategies. First MRI data is acquired, the data was clustered in (2) steps beginning

with an SOM, followed by k-means; lastly classification between high and low

gliomas was done using an SVM.

https://www.nature.com/articles/srep30344

Fin

