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Overview

* To date, most of the learning algorithms that we have seen make use of
labelled training data (e.g. a discrete class assignment or real-valued targets).

* Target labels are useful, since we can use them to guide the learning process
(see: PLA, backprop, etc.). However, in many real-world circumstances
labelled data 1s difficult (and expensive) to obtain.

Supervised learning Unsupervised learning
AN
A clusters
X
X X
X, e X X2 5
O O o O
O O
boundary
> .



Introduction: Perspectives on Learning

* In addition, labelled data is not seemingly biologically plausible — when we are
learning we rarely encounter labelled examples. Or do we?

* Here are (2) contrasting perspectives on epistemology and learning theory
from the history of philosophy.

‘When they (my elders) named some object, and accordingly moved towards something, I saw this and I grasped that the thing
was called by the sound they uttered when they meant to point it out. Their intention was shewn by their bodily
movements, as it were the natural language of all peoples: the expression of the face, the play of the eyes, the movement
of other parts of the body, and the tone of voice which expresses our state of mind in seeking, having, rejecting, or
avoiding something. Thus, as I heard words repeatedly used in their proper places in various sentences, I gradually learnt
to understand what objects they signified; and after I had trained my mouth to form these 51gns I used them to express
my own desires.” -- Augustine, Confessions. ' '

“IThhe term ‘language-game’ is meant to bring into prominence the fact that the speaking of language is part of an activity, or
a form of life ... [M]eaning can be defined thus: the meaning of word is its use in the language ... And now, I think we
can say: Augustine [only] describes the learning of human language as if a child did not understand the language and
came into a strange country and did not understand the language of the country; that is, as if it already had a language,
only not this one.” —Ludwig Wittgenstein, Philosophical Investigations.

* Recommended recreational reading: Augustine, Confessions; Wittgenstein, Philosophical Investigations.



Are Categories
Fundamentally
Ambiguous?

e Consider the ancient thought experiment, Theseus’ ship
paradox.

The ship wherein Theseus and the youth of Athens
returned from Crete had thirty oars, and was
preserved by the Athenians down even to the time of
Demetrius Phalereus, for they took away the old
planks as they decayed, putting in new and stronger
timber in their places, in so much that this ship
became a standing example among the philosophers,
for the logical question of things that grow; one side
holding that the ship remained the same, and the other
contending that it was not the same. — Plutarch

Plutarch thus questions whether the ship would remain the
same if it were entirely replaced, piece by piece.



Introduction

* Recall the previously referenced paper from Goodfellow ez a/ (2016) on
GANSs (generative adversarial networks) that problematized the intuitive
notion of classification in high dimensions.

* This seminal paper (among other related papers) rightfully complicated our
current understanding of deep learning and DNNs — in a way, it conjures up
a modern variant of the Theseus ship paradox.
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Introduction

* Unsupervised learning is a conceptually different problem from supervised
learning — no target labels are available to us.

Q: How can we hope to perform classification?



Introduction

* Unsupervised learning is a conceptually different problem from supervised
learning — no target labels are available to us.

Q: How can we hope to perform classification?

A: Identify similarities between inputs, and consider groups of similar inputs as
belonging to the same cluster.

(*) Accordingly, the aim of unsupervised learning 1s to find clusters (according
to some useful criteria) of similar inputs in the data without being told
explicitly that these data belong to a particular class.

In this way, an unsupervised learning algorithm “discovers” similarities and
patterns in the data itself. This procedure is often part of a more general
exploratory data analysis (EDA) methodology, common to data science,

statistics, etc.



Introduction

* Generally, supervised learning algorithms aim to minimize some external error
criterion (e.g., OLS), based on a loss function quantitying the difference
between targets and outputs.

* With supervised learning, calculating this loss explicitly was possible because
we were provided with target labels.

* Instead, with unsupervised learning, we need to use an internal error
criterion. This means that the measure has to be independent of the task —
think of the labels as defining a particular task.

(*) A useful general error criterion in the unsupervised setting defines
similarity in terms of the distance between data points; accordingly, similar
data are close to one anothet.




Example: Optdigits data set
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Issues for clustering algorithms

How to measure distance between pairs of instances?
How many clusters to create?
Should clusters be hierarchical? (i.e., clusters of clusters)

Should clustering be “soft”? (i.e., an instance can belong to different
clusters, with “weighted belonging”)



k-Means

* k-means is a very popular (and simple) clustering algorithm used in ML

and data science.

* /A-means clustering aims to partition # observations into £ clusters in
which each observation belongs to the cluster with the nearest mean,
serving as a prototype of the cluster. This results in a partitioning of the
data space into Voronoi cells.

Vorno:
Tessellation; 20
points and their
Voroni cells.




k-Means

* Given a set of observations (X, X,, ..., X_), where each observation is
a d-dimensional real vector, k-means clustering endeavors to partition

the n observations into k (< n) sets S={S, S,, ..., S.} so as to
minimize the within-cluster sum of squares (WCSS).

* Formally, the objective is to find:

argmmZZHx | —argmln D IS Var(S;)

I=1 XxeS§ Xe$;

where p. is the mean of cluster S..



k-Means

* The algorithm itself works by iterative refinement, and 1s a variant of a
more general algorithm, known as EM (expectation-maximization).

(1)

. g ¢ 1 . <l
 (iven an initial set of k means mg ), ..,My "~ (the subscript is the cluster
identification, while superscript is the iteration number) k-means alternates
between the following (2) steps:

(I) Assignment Step (1.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared
Euclidean distance, this is intuitively the "nearest”" mean. Mathematically, this
means partitioning the observations according to the Voroni tessellation
generated by the means.

s.<t>:{xp;Hx _m®
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_
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Where each datum x, is assigned to exactly one cluster, S©.



k-Means

) _— 1 1
 (Given an initial set of k means mg ), = m,(( ) k-means alternates between
the following (2) steps:

(I) Assignment Step (i.e., the expectation step):

Assign each observation to the cluster whose mean has the least squared
Euclidean distance, this is intuitively the "nearest”" mean. Mathematically, this
means partitioning the observations according to the Voroni tessellation
generated by the means.

2
st = {x | Hx -m"
PP

ZVj,lngk}

W
stp m

(IT) Update Step (i.c., the parameter maximization step):

e (Calculate the new means to be the centroids of the observations in the
new clusters.

* The algorithm has converged when the assignments no longer change.
There 1s no guarantee that the optimum is found using this algorithm.




k-Means

(I) Assignment Step (i.e., the expectation step):

<[, ~m[ v 1< j<k

(IT) Update Step (i.c., the parameter maximization step):
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K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

Adapted from Andrew Moore,
http://www.cs.cmu.edu/~awm/tutori
als

Futor’z Craphics |73

0B

0B

0.4

i, 2

0,2

0.4 0.k 0,2 1
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K-means and Hierarchical Clustering: Slide 6




K-means

1. Ask user how many
clusters they'd like.

(e.g. k=5)

2. Randomly guess k
cluster Center
locations

Adapted from Andrew Moore,
http://www.cs.cmu.edu/~awm/tutori
als

Futorn’z Craphics | 4

=l

0.8

0B

0.1

i, 2

L

0.4 0.k 0,2 1

Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 7




Futorn’ s Graphics | 3

K-means |-

1. Ask user how many
clusters they'd like.

(e.g. k=5) 0.8

2. Randomly guess k
cluster Center
locations

0.B
3. Each datapoint finds
out which Center it's
closest to. (Thus
0.4

each Center "owns”
a set of datapoints)

0,2

Adapted from Andrew Moore, .
http://www.cs.cmu.edu/~awm/tutori -

0,2

b4 .k 0.2 1

als
Copyright © 2001, 2004, Andrew W. Moore

K-means and Hierarchical Clustering: Slide 8




K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it's
closest to.

Each Center finds
the centroid of the
points it owns

Adapted from Andrew Moore,
http://www.cs.cmu.edu/~awm/tutori
als

Copyright © 2001, 2004, Andrew W. Moore
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K-means

Ask user how many
clusters they'd like.

(e.g. k=5)

Randomly guess k
cluster Center
locations

Each datapoint finds
out which Center it’s
closest to.

Each Center finds
the centroid of the
points it owns...

...and jumps there

...Repeat until
terminated!
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K-means Clustering Algorithm Pseudocode

Algorithm Basic K-means algorithm.

1: Select K points as initial centroids.

2: repeat

3:  Form K clusters by assigning each point to its closest centroid.
4 Recompute the centroid of each cluster.

5: until Centroids do not change.

Distance metric: Chosen by user.

For numerical attributes, often use L, (Euclidean) distance: 4(x,y)= \/ aG -y)
i=1

Centroid of a cluster here refers to the mean of the points in the cluster.

(*) NB: Using a different distance function other than (squared) Euclidean
distance may stop the algorithm from converging. Various modifications
of k-means such as spherical k-means have been proposed to allow using
other distance measures.



Example: Image segmentation by K-means
clustering by color

From http://vitroz.com/Documents/Image%20Segmentation.pdf

K=5, RGB space
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K=5, RGB space
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K=10, RGB space




Example: Clustering text documents

A text document is represented as a feature vector of word frequencies

(see: Word2ve).

Distance between two documents is the cosine of the angle between
their corresponding feature vectors.



Figure 4. Two-dimensional map of the PMRA cluster solution, representing nearly 29,000 clusters
and over two million articles.
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http://www.plosone.org/article/info:doi/10.1371/journal.pone.0018029

K-means Analysis

* Convergence: k-means is guaranteed to converge in a finite number of

steps (irrespective of the initial centroid assignment). Why? In short: there
are only a finite number of ways to cluster n data points into k clusters
(although note that this number can be large). Usually convergence is

relatively fast in practice.

* NB: The algorithm is nevertheless not guaranteed to generate a

(globally) optimal clustering.

* Complexity: In general, finding the optimal solution to k-means for
observations in 4 dimensions is NP-hard (even in the 2-class case).

* The run-time of k-means 1s O(zkdi), where 7 is the size of the data set, 4
is the dimension, £ 1s the number of clusters and 71s the number of
clusters needed until convergence. k-means 1s therefore oftentimes
considered a linear run-time algorithm; in the worst-case it is more aptly

described as superpolynomial.



Potential Issues for K-means
The algorithm is only applicable if the mean is defined.

— For categorical data, use K-modes: The centroid is represented by the most frequent
values.

The user needs to specify K.
Cluster morphology can be severely limited (epsilon-balls, etc.)

Algorithms makes hard cluster assignments (either element belongs to a particular cluster or
it does not).

The algorithm 1s sensitive to outliers
— Odutliers are data points that are very far away from expected range/other data points.

— Qutliers could be errors in the data recording or some special data points with very
different values.

— Note the mode 1s a more robust measure of center (than, say the mean), meaning it is
less susceptible to outliers; thus, we can potentially use K-modes to safeguard against
influence of outliers.



Issues for K-means: Problems with outliers

outher

outher
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{ B): Ideal clusters



Dealing with outliers

* One method 1s to remove some data points in the clustering process
that are much further away from the centroids than other data points.

— Expensive

— Not always a good 1deal

* Another method is to perform random sampling. Since in sampling we
only choose a small subset of the data points, the chance of selecting
an outlier is very small.

— Assign the rest of the data points to the clusters by distance or
similarity comparison, or classification



Issues for K-means (cont ...)

* The algorithm 1s sensitive to initial seeds.

(B HMeration | [, Tteration 2



Issues for K-means (cont ...)

* If we use different seeds: good results

(B, Iteration | () Meration 2

* Often we can improve k-means results by performing
several random restarts.

* Itis commonly helpful to use actual data values for the

initial seeds.



Issues for K-means (cont ...)

* The K-means algorithm 1s not suitable for discovering clusters that are
not hyper-ellipsoids (or hyper-spheres).

LA Two natural clusters (B A-means clusters



Fuzzy c-means

In non-fuzzy clustering (also known as hard clustering), data 1s divided into
distinct clusters, where each data point can only belong to exactly one cluster.
(ct., k-means from previous slides).

In fuzzy clustering (also: soft clustering), data points can potentially belong to
multiple clusters.

Commonly, “membership grades” (1.e. class probabilities) are assigned to
each of the data points. These membership grades indicate the degree to
which data points belong to each cluster. Thus, points on the edge of a
cluster, with lower membership grades, may be 7z #he cluster to a lesser degree
than points in the center of cluster.

Hard Clustering (ex:k-means) Soft Clustering (ex: EM,FCM)

elements can belong to more than one cluster,
and associated with each element is a set of
membership levels. 4

each data element belongs to exactly
one cluster




Fuzzy c-means

* The FCM (fuzzy c-means (1973), as it is usually called) algorithm is very similar to the k-
means algorithm:

Here is the basic idea:
* Choose a number of clusters: ¢ (a hyperparameter).

* Initially assign coefficients randomly to each data point for being in the clusters (these
are the znitial membership grades).

* Repeat until the algorithm has converged/stopping condition:
(I) Compute the centroid for each cluster (m-step).

(I) For each data point, compute its coefficients/membership grades for being in the
clusters (e-step).



Fuzzy c-means

Here is the basic 1dea:
¢ Choose a number of clusters: ¢ (a hyperparameter).

* Initially assign coefficients randomly to each data point for being in the clusters (these
are the znitial membership grades).

* Repeat until the algorithm has converged/stopping condition:
(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the
clusters (e-step).

m
2 W (X)X
Cy = XZ:Wk X" where C={c,,...,c.} are the cluster centers,
X

W=w,, E[O’l]’i =L..nJ=L...c , and each element W tells the
degree to which element x;, belongs to cluster ¢; (i.e. the w’s are the

membership grades); 7>1 1s a hyperparameter known as the fuzzifier

parameter which controls the amount of “fuzziness” in the
partition.



Fuzzy c-means

Here is the basic 1dea:
¢ Choose a number of clusters: ¢ (a hyperparameter).

* Initially assign coefficients randomly to each data point for being in the clusters (these
are the znitial membership grades).

* Repeat until the algorithm has converged/stopping condition:
(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the
clusters (e-step).

1

_lewk(X)mx i 3 C Hx.—c.H z
: ZX:WK(X)m Z[”X:—C:”]

k=1




Fuzzy c-means

Here is the basic 1dea:
¢ Choose a number of clusters: ¢ (a hyperparameter).

* Initially assign coefficients randomly to each data point for being in the clusters (these
are the znitial membership grades).

* Repeat until the algorithm has converged/stopping condition:
(I) Compute the centroid for each cluster (m-step).

(II) For each data point, compute its coefficients/membership grades for being in the
clusters (e-step).

1

> w (X)X Wij = s

[ ¢

Cy = XZX:WK (x)m kzc;[nx k”] X

) FCM aims to minimize the an objective function: 2
&) ] argmlnzz HXi—CjH

i=1l j=1




Fuzzy c-means

* For example, consider a simple 1-d data set, where we want to determine a plausible
clustering for 2 classes (A and B).

o X

* Using “hard k-means” we associate each datum to a specific centroid; therefore the
membership function looks like this:

11 prembership fimction)
&

0 » X

A B



Fuzzy c-means

* For example, consider a simple 1-d data set, where we want to determine a plausible clustering for 2
classes (A and B).

* Using “hard k-means” we associate each datum to a specific centroid; therefore the membership
function looks like this: . b o

ZE SEE CEC R
* In the FCM approach, instead, the same given datum does not belong exclusively to a well defined
cluster. In this case, the membership function follows a smoother line to indicate that every datum
may belong to several clusters with different values of the membership coefficient.

11l $rembership fimction)
A

A \ B



GMMs

* FCM was essentially, again, a “fuzzy” version of the k-means algorithm, where data
points are assigned to each cluster with an associated probability/membership grade.

* An additional, commonly used soft clustering model is the GMM (Gaussian mixture
model); with GMMs, we assume (a priori) that the clusters resemble tightly-packed balls
(1.e. Gaussian distributions).

Gaussian Mixture Model




GMDMs: Gaussian Distribution Review

N(:I;;M7 Z) X (27_(_)1)/12|2|1/2 exp {—5(56 - N)Tz_1($ . :u)}

@y = (X)




GMDMs: Gaussian Distribution Review

Covariance matrix X =

v

Covariance matrix X =

5% 0

0 o,

e

Covariance matrix X =

v

Using different forms of covariance matrix allows for clusters of different shapes



GMMs

Main 1deas for clustering using GMM:

(*) Initialization: given a data set, fix £, the number of clusters; initialize the mean (p) and
covariance matrices () for the k Gaussian clusters.

(*) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-
step)

(*) Update the parameters (i.e. g, X) for each of the clusters. (update step/M-step)

...repeat until stopping condition/convergence



GMMs

Main 1deas for clustering using GMM:

(*) Initialization: given a data set, fix £, the number of clusters; initialize the mean () and
covariance matrices (X) for the k Gaussian clusters.

(*) Assign the data points to the k clusters (using a soft clustering) (assignment step/E-
step)

(*) Update the parameters (1.e. g, 2) and prior class estimates (P(C,|x) (for each of the
clusters. (update step/M-step)

...repeat until stopping condition/convergence
What makes this problem challenging? There are, ostensibly, many unknowns!

(*) Strictly speaking, we don’t know the cluster assighments nor any of the Gaussian
distribution parameters.




GMMs

What makes this problem challenging? There are, ostensibly, many unknowns!

(*) Strictly speaking, we don’t know the cluster assighments nor any of the Gaussian
distribution parameters.

How can we simplify things?
A nice trick...Solve each subproblem separately!

(1) For instance, to find the optimal class assignments for each datum, use the current
approximations for the Gaussian parameters distributions (i.e. treat p and X as known
for each cluster, as well as each class prior) and compute the class posterior: P(C. | x)
using Bayes’ Rule.

(2) Conversely, to find the optimal estimates for y and > for each cluster, in addition to

the class priors, use the current (soft) class posterior assignments and compute the
MLE.




GMMs

(1) For instance, to find the optimal class assignments for each datum, use the current
approximations for the Gaussian parameters distributions (i.e. treat p and X as known
for each cluster, as well as each class prior) and compute the class posterior: P(C. | x)
using Bayes’ Rule. (assignment step/E-step)

(*) Given the current estimates of both the parameters of each Gaussian cluster:

(H1521)5- - (M), and the prior for each cluster: P(C))=n,,..., P(C,)=n,, we compute the
class posterior P(C,) using Bayes’ Rule as follows:

P(Ci|x)= P(Xlsi&;(ci)




GMMs

(1) For instance, to find the optimal class assignments for each datum, use the current
approximations for the Gaussian parameters distributions (i.e. treat p and X as known
for each cluster, as well as each class prior) and compute the class posterior: P(C. | x)
using Bayes’ Rule. (assignment step /E-step)

(*) Given the current estimates of both the parameters of each Gaussian cluster:

(H1521)5- - (M), and the prior for each cluster: P(C))=n,,..., P(C,)=n,, we compute the
class posterior P(C,) using Bayes’ Rule as follows:

_P(xIC)P(C) 1

1 T
P(Ci|X)— P(x) X7 (Zﬂ)dlz‘z‘uz exp[—g(x—yi) 2 (X_ﬂi)}




GMMs

(2) To find the optimal estimates for u and X for each cluster, in addition to the class
priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

(*) Observe that if we knew which points belong to, say cluster 7 for a hard clustering, we
can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian
parameters (. and X)) for each cluster, in addition to the cluster priors (e.g. P(C)). These
standard parameter estimates are given as follows:

fri:ﬂ leiZXj ii:lZ:(Xj_'&i)(xj_’[li)T

n n; x!eC, n; x!eC,

cluster prior cluster mean cluster covariance matrix

where above, 7, denotes the size of the /th cluster.



GMMs: MIE Parameter Estimates

(2) To find the optimal estimates for p and X for each cluster, in addition to the class
priors, use the current (soft) class posterior assignments and compute the MLE. (update
step/M-step)

(*) Observe that if we knew which points belong to, say cluster 7 for a hard clustering, we
can use the standard MLE estimates (from beginning statistics) to estimate the Gaussian
parameters (. and %) for each cluster, in addition to the cluster priors (e.g. P(C)). These
standard parameter estimates are given as follows:

n 1 e 1 . o o
T =— ﬂi—_zx Zi__Z(X _ﬂi)(x _/Ui)
n r"i x)eC, ni xleC,
cluster prior cluster mean cluster covariance matrix

where above, 7, denotes the size of the /th cluster.

(*) However, because we are executing a soft clustering, these parameter update formulae
must incorporate the class posteriors: P(C, | x), for each i=1,...,k and for each data point x,
respectively.



GMMs: Modified Parameter Estimates

(2) To find the optimal estimates for p and X for each cluster, in addition to the class
priors, use the current (soft) class posterior assignments and compute the MLE. (update

step/M-step)

(*) Here are the parameter estimate formulas, updated to account for the soft clustering
induced by the class posteriors: P(C. | x), for each i=1,... k, for each data point:

b 1 1 o ; ij(Ci|xj)
- SN S \ j :[li:_ XJ_)/:li:J:,..,n -
- n \ K n j=1,..,n P(CI |X ) ni x)eC, 12 P<C| |XJ)
J=1,..,n
cluster prior modified formula cluster mean modified formula

WA A SEAE T
L ) R e N AT

n; x)eC

j=1,..,n

cluster covariance matrix modified formula



GMMs: Summary

Main 1deas for clustering using GMM:

(*) Initialization: given a data set, fix £, the number of clusters; initialize the mean () and
covariance matrices (X) for the &£ Gaussian clusters, and cluster priors (P(C).

(I) Assign the data points to the £ clusters (using a soft clustering) (assignment step/E-
step)

1 T—
P(Ci |X)oc;zi (zﬂ)dlz ‘z_‘uz eXp[_E(X_ﬂi) 2 (X_ﬂi )}

(II) Update the parameters (1.e. u, ) for each of the clusters, including the cluster priors.
(update step/M-step)

x'P(C, |x e[ P
ﬁiziZ P(Ci|xj) I&_:j;n ( ) i.:j;nP(C )X =) (¥ - 1)

Sl g e el

j=1,..,n j=1,..,n

...repeat until stopping condition/convergence



GMMs

* Demo: https://lukapopijac.github.io/gaussian-mixture-model/




Cluster Analysis: Measuring Cluster Validity

* Previously we considered clustering in a commonplace, unsupervised
setting (1.e. no class labels); it 1s also likewise useful to consider clustering

for supervised learning.

When labels are present, we can determine a posz hoc evaluation of cluster
validity (namely, the “goodness” of the clustering model).

Why might we want to do this?



Cluster Analysis: Measuring Cluster Validity

* Previously we considered clustering in a commonplace, unsupervised
setting (1.e. no class labels); it 1s also likewise useful to consider clustering

for supervised learning.

When labels are present, we can determine a posz hoc evaluation of cluster
validity (namely, the “goodness” of the clustering model).

Why might we want to do this? There are a number of reasons, including:
(*) Determining whether non-random structure actually exists in the data
set

(*) Comparing cluster results to externally known results (the labels, for
instance)

(*) Comparing the results of two different clustering algorithms

(*) Determining a good value of the number of clusters (e.g. £)



Cluster Analysis: Measuring Cluster Validity

* There are a great many different numerical measures that can be used to
quantify and assess cluster validity; in general these measures fall into at
least (2) basic categories:

(*) Internal index: Used to measure quality of clustering without reference
to external information, e.g., MSE, MSS.

(*) External index: Used to measure degree to which cluster labels match
class labels, e.g., purity, entropy.




Measuring Cluster Validity: Internal Indices
(MSE)

(*) In an unsupervised setting we can still measure and assess cluster
validity by using internal indices.

For example, let C denote a clustering (1.e. a set of £ clusters resulting from a
clustering algorithm) and let ¢ denote a particular cluster in C, and define |c| as the
number of elements in that cluster.

* We want to minimize the distance between elements of ¢and the centroid u_—
this would give us a naturally plausible clustering; formally we minimize mean

square error (MSE):
2. d(xm)

MSE () = 2

ICI

> mse(c)

Average MSE (C) = =< <




Measuring Cluster Validity: Internal Indices
(MSS)

(*) In an unsupervised setting we can still measure and assess cluster
validity by using internal indices.

For example, let C denote a clustering (1.e. a set of £ clusters resulting from a
clustering algorithm) and let ¢ denote a particular cluster in C, and define |c| as the
number of elements in that cluster.

* On the other hand, we also want to maximize the pairwise separation of each
cluster. That is, maximize mean square separation (MSS):

2
MSS (C) __ all distinct pairs o%usters i,j<C (i%]) | (u' 18 )
K(K-1)/2




Measuring Cluster Validity: Internal Indices

Example

Iteration 1 Iteration 2
7 T T T 7 T T T
3] B
5k 5t
4t gt
@ o
= 4 r=}
m . m
. :: .
3k ¥ 3
> y >
2+ % ¢ 2k
1 «)71‘ 1
+
+
1] of
1 -1 L
1 0 1 2 3 4 5 6 7 -1 0 1 2 3 4 5 6 7
Hananle XV ariable
AMSE (I - -— 4 NACE o+ — ak
IVISE Cluster1 = 1.51 VISE Cluster1 =1.01
MSE Cluster 2 = 3.21 MSE Cluster2 =1.76
Overal|l MSE = 2.57 Overall MSE = 1.38




Measuring Cluster Validity: External Indices
(Entropy)

(*) In an a supervised setting we measure and assess cluster validity by using external

indices.

For example, let C denote a clustering (i.e. a set of £ clusters resulting from a clustering
algorithm) and let ¢ denote a particular cluster in C, and define |c| as the number of
elements in that cluster.

* Entropy of a cluster: The degree to which a cluster consists of objects of a single
class. |

EntmpY(Ci ) R _Z pi,j |Og2 pi,j

=

where p,. denotes the probability that a member of cluster 7 belongs to cluster / (i.e.
Pij P2 y g -4
p;;=1;;/ 0, where n;; represents the number of instances in cluster 7 with class /, and n, is

the number of instances in cluster 7).
K

mean Entropy(C) = Z% Entropy(c; )

i=1

*NB: A “good” clustering will have a small mean entropy value.



Measuring Cluster Validity: External Indices
(Entropy)

* Entropy of a cluster: The degree to which a cluster consists of objects of a single class.
K

|
Entropy (cf) - —Z Di; 10g2p,.,j mean Entropy (C) = ZﬁEntropy (C,.)
= &

i=1

where p;; denotes the probability that a member of cluster 7 belongs to cluster ; (i.e. p;=n;;/n;,
whete n;; represents the number of instances in cluster 7 with class /, and n; is the number of

instances in cluster 7).

Entropy example:

Suppose there are 3 classes: 1, 2, 3

Cluster 1 Cluster 2 Cluster3
e AN 1 A O I I I 1wt G

entropy(c,) = - (g log, ; + % log, % + % log, %) =1.37

- 2 2 4 4) 7 6 7
entropy(c,)=-| 0+ = log, = + B log, E) =0.91 mean entropy(C) = 2—0(1.37) + 2—0(0.91) + 2—0(1.54)

entropy(c,) = - %|0g2%+§|0g2§+%|0g2 %j =1.54




Measuring Cluster Validity: External Indices

(Purity)

* Purity of a cluster: Purity is defined as the percent of the total number of data points that were
classified correctly, in the unit range [0,1]:

k
Purity (C) = %Zm?x‘ci mtj‘
i=1

Where 7 1s the number of data points, £ is the number of clusters, c. is a cluster in C, and t; is the
classification which has the max count for cluster c..

(*) To compute purity, each cluster is assigned to the class which is most frequent in the cluster,
and then the accuracy of this assignment is measured by counting the number of correctly assigned

data and dividing by 7.



Measuring Cluster Validity: External Indices

(Purity)

* Purity of a cluster: Purity is defined as the percent of the total number of data points that were
classified correctly, in the unit range [0,1]:

k
Purity (C) = %ijax‘ci mtj‘
i=1

Where 7 1s the number of data points, £ is the number of clusters, c. is a cluster in C, and t; is the
classification which has the max count for cluster c..

(*) To compute purity, each cluster is assigned to the class which is most frequent in the cluster,
and then the accuracy of this assignment is measured by counting the number of correctly assigned
data and dividing by . cluster 1 cluster 2 cluster 3

Consider the following example:

Purity as an external evaluation criterion for cluster quality. Majority
class and number of members of the majority class for the three clusters are: x, 5 (cluster
1); o, 4 (cluster 2); and ¢, 3 (cluster 3). Purity is (1/17) = (5+4 +3) = 0.71.



Hierarchical Clustering

* One potential disadvantage of K-means clustering is that it requires us to pre-
specify the number of clusters K.

* Hierarchical clustering is an alternative approach which does not require that
we commit to a particular choice of K. In addition, hierarchical clustering has the
advantage over K-means in that it results in an interpretable, tree-based
representation of the data, called a dendrogram.




Hierarchical Clustering: Dendrograms

Cluster Analysis
Seattle

San Francisco

Los Angeles

Houston

Derver

Miarmi

Washington D.C. -——

MWew York ——

Chicago

Atlanta
0.00 0.25 0.50 0.75 1.00 1.25

Average Distance Between Clusters

* Hach /eaf in a dendrogram represents a datum; as we traverse the tree (from left
to right — or equivalently from bottom to top for vertical orientations), some
leaves begin to fuse into branches.

* These fused data correspond to observations that are similar to one another.

Elements that fuse early (farther to the left) are more similar than elements that
fice fFarthetr tao the r1ioht




Hierarchical Clustering: Dendrograms

FIGURE 10.9. Left: dendrogram obtained from hierarchically clustering the data
from Figure 10.8 with complete linkage and Euclidean distance. Center: the den-
drogram from the left-hand panel, cut at a height of nine (indicated by the dashed
line). This cul resulls in two distinct clusters, shouwn in different colors. Right:
the dendrogram from the left-hand panel, now cut at a height of five. This cut
results in three distinct clusters, shown in different colors. Note that the colors

were not used in clustering, but are stmply used for display purposes in this figure.

* One strongly attractive aspect of hierarchical clustering 1s that a single dendrogram can

be used to obtain any number of clusters (see figure) — we slice the tree at various heights
to yield different clusterings (for different numbers of clusters).

* The term hierarchical retfers to the fact that clusters obtained by cutting the dendrogram
at a given height (for a vertical orientation, as shown) are necessarily nested within the
clusters obtained bv cuttinge the dendrogram at anv oreater height.



Hierarchical Clustering: Dendrograms

Cluster Analysis

Seattle |
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* Example above shows three dendrogram “slices” rendering different clusterings; in
case (1) the slice produces 8 clusters; case (2) produces 4 total clusters; case (3)
generates 2 clusters.



Hierarchical Clustering Algorithm

* The hierarchical clustering dendrogram is obtained via an extremely simple (bottom-
up) algorithm.

* We begin by defining some sort of dissimilarity measure between each pair of
observations; most often a Euclidean distance 1s used.

(*) The algorithm proceeds iteratively, in a greedy fashion; starting at the bottom of the
dendrogram, each of the n observations is treated as its own cluster. Two clusters that
are most similar are fused so that now there are n-1 clusters. Next the two clusters that
are most similar are fused again, etc. The algorithm halts when one cluster remains.



Hierarchical Clustering Algorithm

* The hierarchical clustering dendrogram is obtained via an extremely simple (bottom-
up) algorithm.

* We begin by defining some sort of dissimilarity measure between each pair of
observations; most often a Euclidean distance 1s used.

(*) The algorithm proceeds iteratively, in a greedy fashion; starting at the bottom of the
dendrogram, each of the n observations is treated as its own cluster. Two clusters that
are most similar are fused so that now there are n-1 clusters. Next the two clusters that
are most similar are fused again, etc. The algorithm halts when one cluster remains.

Here we need to extend our concept of dissimilarity beyond pairs of observations, and
to dissimilarity between clusters. This extension 1s achieved by developing the notion of
linkage, which defines dissimilarity between to groups of observations.

The (4) most common types of linkage — complete, average, single and centroid are described
next, along with the general hierarchical clustering algorithm.



Hierarchical Clustering Algorithm

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the (’21) = n(n —1)/2 pairwise dissimilarities. Treat each
observation as its own cluster.

2: PFori=m;m— 15,22

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i — 1 remaining clusters.

Linkage

Description

Average Linkage

Complete Linkage

Single Linkage

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid

Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

(4) Common linkage types

FIGURE 10.12. Average, complete, and single linkage applied to an example
data set. Average and complete linkage tend to yield more balanced clusters.




Hierarchical Clustering: Application to
Genomics

* In genomics, it 1s frequently necessary to identify groups of genes with
similar expression profiles across a large number of experiments.

* Hierarchical clustering attempts to group genes into small clusters and to group
clusters into higher-level systems. The resulting hierarchical tree is easily viewed as
a dendrogram.

* Most studies involve comparing a series of experiments to identify genes that
are consistently coregulated under some defined set of circumstances—disease
state, drug dose, etc.



Hierarchical Clustering: Application to Genomics

a

Atypical/benign

M Atypical : 1
Benign m *T—\ I I
S T e — e
Mutation type
W NP2
M Non-NF2 Atypical/benign
CNV status MR
CNV-high CNV status

CNV-low Consensus
Unknown clustering

NF2 CNV-low NF2 CNV-high Non-NF2

Unsupervised hierarchical clustering of 138 meningiomas by genome-wide
expression profiling is shown. Atypical versus benign histology, underlying
meningioma driver mutations, copy number variations, which are color coded, are
shown on the left. Although the expression profile accurately clusters meningioma
samples based on driver mutations, it does not fully differentiate atypical versus
benign tumors. https://www.nature.com/articles/ncomms14433/figures/2

t

https://www.nature.com/articles/ncponc0072




DBSCAN (1996)

* DBSCAN (density-based spatial clustering of applications with noise) 1s one of the most
popular and heavily cited clustering algorithms 1n scientific literature (11,000+

citations).

* It is a density-based clustering algorithm: given a set of points in some space,
DBSCAN groups points that are closely packed together (points with many nearby
neighbors), marking as outliers points that lie alone in low-density regions (whose
nearest neighbors are too far away).
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(*) Original DBSCAN paper: https://www.aaai.org/Papers/KDD/1996/KDD96-037.pdf



DBSCAN: Overview

* Before discussing the details of the algorithm, let’s first consider some of the broader
advantages/disadvantages of DBSCAN as a clustering algorithm.

Advantages:

(*) Unlike k-means, DBSCAN does not require an a priorz specification of the number of clusters
(i.e. the hyperparameter £).

(*) DBSCAN can find arbitrarily shaped clusters. It can even find a cluster completely surrounded by
(but not connected to) a different cluster.

K-means
can’t do
this!

(*) DBSCAN is robust to outliers; and requires the specification of only two total parameters.

Disadvantages:

(*) Algorithm is non-deterministic and often sensitive to the order the data are processed.

(*) The quality of the clustering is highly dependent upon the distance measure/patrameter values.



DBSCAN: Overview

* The basic idea behind DBSCAN is clusters are comprised of dense
groupings of data points.

* The algorithm relies on two parameters: € (eps) — which represents the
maximum radius of a cluster and MinPts — which denotes the wznimmm threshold
for the number of points that form a cluster.

The algorithm classifies all points in the data set into one of (4) categories:



DBSCAN: Overview

* The algorithm relies on two parameters: & (eps) — which represents the
maximum radius of a cluster and MinPts — which denotes the wznimmm threshold
for the number of points that form a cluster.

The algorithm classifies all points in the data set into one of (4) categories:

(1) cotre points: a point p is a core point if at least MinPts points are within
distance ¢ of it (including p itself). These points are said to be directly reachable
from the core point p.

(2) directly density-reachable points: a point ¢ is directly density-
reachable from the core point p if d(p,g)< e.

(3) density-reachable points: a point ¢ is density-reachable from the core
point p 1if there exists a path p->p,->p;->...->q where each p,, is directly
reachable from p,, and all points in the path are core points (with the possible
exception of ¢).

(4) outliers: all points not reachable from any other points are outliers.




DBSCAN: Overview

* The algorithm relies on two parameters: € (eps) — which represents the zaximum radius of a cluster and
MinPts — which denotes the zznimum threshold for the number of points that form a cluster.

(1) core points: a point p is a core point if at least MinPts points are within distance e of it (including p itself).
These points are said to be directly reachable from the core point p.

(2) directly density-reachable points: a point ¢ is directly density-reachable from the core point p it d(p,g)<
.

(3) density-reachable points: a point ¢ is density-reachable from the core point p if there exists a path p-
>p,->ps->...->q where each p;, is directly reachable from p;, and all points in the path are core points (with
the possible exception of q).

(4) outliers: all points not reachable from any other points are outliers.

(*) If pis a core point, then it forms a cluster together with all points (cotre or non-core)
that are reachable from it. Each cluster contains at least one core point; non-core points can be
part of a cluster, but they form its "edge", since they cannot be used to reach more points.

I:T In this diagram, minPts = 4. Point A and the other red points are core points,
/ X because the area surrounding these points in an ¢ radius contain at least 4 points

(including the point itself). Because they are all reachable from one another, they

form a single cluster. Points B and C are not core points, but are reachable from A
f d (via other core points) and thus belong to the cluster as well. Point N is an outlier

B e I~ point that is neither a core point nor directly-reachable.




DBSCAN

(*) If pis a core point, then it forms a cluster together with all points (cotre or non-core)
that are reachable from it. Each cluster contains at least one core point; non-core points can be
part of a cluster, but they form its "edge", since they cannot be used to reach more points.

(E In this diagram, minPts = 4. Point A and the other red points are core
o o

points, because the area surrounding these points in an ¢ radius
contain at least 4 points (including the point itself). Because they are
”A C all reachable from one another, they form a single cluster. Points B

and C are not core points, but are reachable from A (via other core
points) and thus belong to the cluster as well. Point N is an outlier
point that is neither a core point nor directly-reachable.

(*) Note that reachability is not symmetric — since, for instance, no point may be reachable
from a non-core point. However, if we defined two points p and ¢ as density-connected if there
is a point o such that both p and ¢ are reachable from o, then density-connectedness is, in fact,

symmettic.

A DBSCAN cluster consequently satistfies (2) properties:
(1) All points within the cluster are mutually density-connected
(2) It a point is density-reachable from any point of the cluster, it is part of the cluster as well.



DBSCAN

High-level program execution:
(1) Determine the parameters: e>0 and MinPts (a positive natural number)

(2) Pick an arbitrary point in the dataset; if there are more than MinPts points distance epsilon
from that point (including the point itself), these points are part of a cluster.

(3) *Expand this cluster by checking all of the new points and seeing if they too have more than
minPts within distance epsilon — grow cluster recursively.

Repeat this process for new points — if a point is not part of any cluster we deem it an outlier.

*NB: The assignment of “border points” in DBSCAN is dependent upon the order in which the

datapoints are processed. : woefsPomge o
OB Do & @‘ .,
o ? . .
] GL ), x
, -4
f 34 e O

o,
r?;g{-, a % 5 :0 ) o © a ig
I gzng Bq\j"'tq‘“‘ X ,,‘9‘;({9 ;:1 >
@o o J‘Q& O"@BQ% o %[,C
Lé.’%; ¢ %%ﬁ .
[#]
epsilon=1.00 %jﬁa&%b B 92338% b
minPoints = 4
v v

Restart



DBSCAN: Pseudocode & Demo

DBSCAN(DB, dist, eps, minPts) {

C

for each point

e

P in database DB {
if label(P) # undefined then continue
Neighbors N = RangeQuery(DB, dist, P, eps)
if |N| < minPts then {

label(P) = Noise
continue
}
C=C+1
label(P) = C
Seed set S = N \ {P}
for each point Q in S {

if label(Q)
if label(Q) =
label(Q) = C
Neighbors N = RangeQuery(DB, dist, Q, eps)
if |[N| 2 minPts then {

S =S UN
}

Noise then label(Q) = C
undefined then continue

/*

/*
/*
/*
/*

/*
f:l-‘
/*
/:l-‘
f*
/:lf
/’*
/*
/’*
//*

Cluster counter */

Previously processed in inner Lloop */
Find neighbors */
Density check */
Label as Noise */

next cluster Label */

Label initial point */

Neighbors to expand */

Process every seed point */
Change Noise to border point */
Previously processed */

Label neighbor */

Find neighbors */

Density check */

Add new neighbors to seed set */

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/



DBSCAN: Analysis

Complexity:

(*) DBSCAN visits each point of the database, possibly multiple times (e.g., as
candidates to different clusters).

(*) For practical considerations, however, the time complexity is mostly governed by the
number of regionQuery invocations (i.e. determining the neighbors). DBSCAN
executes exactly one such query for each point, and if an efficient indexing structures is
used that executes a neighborhood query in O(log 7), an overall average runtime

complexity of O(zlog #) is obtained.

(*) Without the use of an accelerating index structure the worst case run time
complexity remains O(#?) (this is the result of the computational bottleneck due to
brute force pairwise comparisons of points).




DBSCAN: Analysis

Parameter Tuning:

(*) Ideally, the value of ¢ 1s given by the problem to solve (e.g. a physical distance), and
minPts 1s then the desired minimum cluster size.

MinPts: As a rule of thumb, a minimum minPts can be derived from the number of
dimensions D in the data set, as minPts = D + 1. However, larger values are usually
better for data sets with noise and will yield more significant clusters.

e: if e 1s chosen much too small, a large part of the data will not be clustered; whereas

for a too high value of e, clusters will merge and the majority of objects will be in the

same cluster. In general, small values of e are preferable, and as a rule of thumb only a
small fraction of points should be within this distance of each other.

Distance function: The choice of distance function is tightly coupled to the choice of

e, and has a major impact on the results.



Vector Quantization

(*) It is often usetul to interpret k-means as a greedy algorithm tor approximately
minimizing a loss function related to data compression.

: D
* Suppose we want to perform lossy compression of some real-value vectors: X; € R™ .
* A simple approach to achieve this 1s to use vector quantization (VQ). The basic idea
is to replace each real-valued vector x; with a discrete symbol z; € {1, ..., K}, which is

an index to a codebook of K prototypes: g, € RP,

* Each data vector is encoded by using the index of the most similar prototype, where
similarity 1s measured in terms of Euclidean distance:

encode(x; ) =argmin||x; — ||2
K



Vector Quantization

encode(x; ) =argmin||x; —p, ||2
k

* We can define a natural cost function that measures the quality of a codebook by
computing the reconstruction error or distortion it induces:

(2K, X) ZHX ~decode (encode (x, )| ——Hx |

where decode(k)=pj. The k-means algorithm can be thought of as an iterative scheme

for minimizing this objective.



Vector Quantization: Image Compression Example

* One application of VQ is image compression. Consider N=200x320=64,000 pixel
image in gray-scale so D=1 (shown below). If we use one byte to represent each pixel
(gray-scale intensity ranges [0,255]), we need 512,000 bits to represent the image.

*For the compressed image we need Nlog,K +KC bits; for K=4 this 1s about 128kb, a
factor of 4 compression. Greater compression could be achieved if we modelled spatial
correlation between pixels, e.g., if we encoded 5x5 blocks (as used by jpeg). This is
because the residual errors would be smaller, and would take fewer bits to encode.

Figure 11.12 An image compressed using vector quantization with a codebook of size K. (a) K = 2. (b)
K = 4. Figure generated by vgDemo.



Selt-Organizing Maps (SOMs)

* To date, we have only considered applications of NNs for supervised
learning, however, there exist several applications of NNs for unsupervised

learning, including self-organizing maps (SOMs, 1988, Kohonen).

* In the unsupervised setting (e.g., k-means), we wish to identity
meaningful data patterns in a se/f-organizing fashion (viz.,

Without the use of labels). This process is often referred to as
learning a feature map — that is to say, a compression scheme

that illuminates structurally significant input features.

* Stated concisely, SOMs provide a way of performing dimensionality reduction
using vector quantization. Furthermore, SOMs are unique in that they preserve
topolographic network properties that mimic biological processes in the brain.




Selt-Organization & Complex Systems

(*) Self-organization is a process where some form of overall order arises from local interactions
between parts of an initially disordered system. The process is spontaneous, not needing control by any
external agent. It is often triggered by random fluctuations, amplified by positive feedback. The resulting
organization is wholly decentralized, distributed over all the components of the system. As such, the
organization is typically robust and able to survive or self-repair substantial perturbation.

Self-organization occurs in many physical, chemical, biological, robotic, and cognitive systems. Systems
formed from self-organization processes often exhibit emergent behavior.




Topographic Maps & The Brain

* Neurobiological studies indicate that different sensory inputs (motort, visual, auditory, etc.) are

mapped onto corresponding areas of the cerebral cortex in an orderly fashion. This form of

map, known as a topographic map has (2) important properties:

(1) Each piece of information is kept in its proper context/neighborhood;

(2) neurons dealing with closely-related pieces of information are kept close together so that
they can interact using short synaptic connections.

(*) SOMs train an artificial topographic map through self-organization in a neurobiologically
inspired way, abiding by the principle of topographic map formation: “The spatial location of
an output neuron in a topographic map corresponds to a particular domain or feature drawn
from the input space.”
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SOMs: Overview

* The goal of a SOM is to transform the incoming signal pattern into a lower dimensional
discrete map, and to perform this transformation adaptively in a topographically-ordered fashion
(so that neurons that are close together represent inputs that are close together, while neurons

that are far apart represent inputs that are far apart).

* SOMs utilize a class of unsupervised learning techniques known as competitive learning, in
which output neurons compete amongst themselves to be activated, with the result being that

only one is activated for a given input.

* This activated neuron is called a winner-takes-all neuron (also: winning neuron). Neurons
become selectively tuned to various input patterns during the course of competitive learning.

We have points x in the input space mapping to points /(x) in the output space:

Continuous Feature e s ’ '
Map @ O O O O O O e O R0

High Dimensional
Input Space 0 R/ O-—0 .O .O O .O
O 0-0-0 00

00000000

Discrete

Low Dimensional
Output Space

Each point / in the output space will map to a corresponding point w(/) in the input space.



SOMs

* Note that with SOMs, the relative locations of the neurons in the network matters (nearby
neuron correspond to similar input patterns) and the neurons are arranged in a lattice /grid
(usually in 1-D or 2-D) with connections between the neurons, rather than in layers with
connections only between different layers (as with the previous NNs we’ve seen). Each neuron 1s
fully connected to all the source nodes in the input layer.

* Each node has a specific topological position (an (x,y) coordinate in the lattice) and contains a
vector of weights.

* For training, neurons are tuned to conform with the topographic map criteria; in this way, the
winning neuron should pull other neurons that are close to it in the network closer to itself in
weight space, whereas neurons that are very far away should be ignored.
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SOM Algorithm

The Self-Organising Feature Map Algorithm

¢ Initialisation
— choose a size (munber of nenrons) and mnober of dimensions d for
the map
— FEitlwer:

* choose random values for the weight vectors so that they are
all differemt OR
* set the weight values to increase in the direction of the first
principal components of the dataset
s Learning

— repeat;
# [or each {lat.upnillt.:
- select the best-matching neuron ny, using the minimum Eu-

clidean distance between the weights and the input,

rg = inin ||x - w:" (9.8)
¥

« update the weight vector of the best-matching node using:

w) —wi +a(t)x—w]), (9.9)
where n(t) is the learning rate.
+ update the weight vector of all other neurons using:

w! — wlr + () h(ng, t)(x - w)-T).

: (9.10)

where 1,,(1) is the learning rate for neighbourhood nodes, and
h(ng, ) is the neighbourhood function, which decides whether
each neuron should be included in the neighbourhood of the
winning neuron (so h = 1 for neighbours and h = 0 for non-
neighbours)

+ reduce the learning rates and adjust the neighbourhood fune-
tion, typically by n(t + 1) an(t)*/ ke where 0 < a < 1
decides how fast the size decreases, k is the number of itera-
tions the algorithm has been running for, and k.. is when you
want the learning to stop. The same equation is used for both
learning rates (17, 1, ) and the neighbourhood function h(ng, ¢).

— until the map stops changing or some maximum number of itera-
tions is exceeded

¢ Usage

~ for each test point;

+ select the best-matching neuron ny using the minimum Eu-
clidean distance between the weights and the input:

my = min [x = w] | (9.11)
J




SOM Algorithm: Overview

(D) Initialization: network parameters: determine number of neurons, dimension for the map (d)

-- can use a random initialization or begin with, say the PCA algorithm, using first 4 principal

components.



SOM Algorithm: Overview

(D) Initialization: network parameters: determine number of neurons, dimension for the map (d)
-- can use a random initialization or begin with, say the PCA algorithm, using first 4 principal

components.

(II) Learning: P

(a) For each data point, select best-matching neuron (1), using minimum
Huclidean distance.

(b) Update weight vector of n,: WTJ- S WTJ- o 79 (t) (X E WTj )
this update has the effect of moving the weight vector of n, closer to the datum), the learnin
% g g b g

rate 7(t) 1s decreased over time.




, SOM Algorithm: Recap
(IT) Learning:

(a) For each data point, select best-matching nenron (), using minimum
Euclidean distance.

(b) Update weight vector of ny: WTJ- - WTj i n(t)(x —WTj )
(this update has the effect of moving the weight vector of n, closer to the datum), the learning

rate 7)(t) is decreased over time. g g

(c) Update the weight vector of all other neurons using: W «— W +n, (t)h(n,,t)(x —WE )

where 7, (t) 1s the learning rate for the neighborhood nodes, and A(ny,t) is the neighborhood
function with respect to node n;, which decides whether each neuron should be included in the

neighborhood of the winning neuron (e.g. n=1 for neighbors and n=0 for non-neighbors — or a
Gaussian function can be used).



, SOM Algorithm: Recap
(IT) Learning:

a) For each data point, select best-matching neuron (n,), using minimum
(2) point, 4 b)> USING
Euclidean distance.

(b) Update weight vector of ny: WTJ- - WI i (t) (X — WTj )
(this update has the effect of moving the weight vector of n, closer to the datum), the learning

rate 7)(t) is decreased over time. g g

(c) Update the weight vector of all other neurons using: W «— W +n, (t)h(n,,t)(x —WE )

where 7, (t) 1s the learning rate for the neighborhood nodes, and A(ny,t) is the neighborhood
function with respect to node n;, which decides whether each neuron should be included in the
neighborhood of the winning neuron (e.g: n=1 for neighbors and n=0 for non-neighbods — or a
Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size
decreases over time).
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, SOM Algorithm: Recap
(IT) Learning:

a) For each data point, select best-matching neuron (n,), using minimum
(2) point, 4 b)> USING
Euclidean distance.

(b) Update weight vector of ny: WTJ- - WTj i n(t)(x —WTj )
(this update has the effect of moving the weight vector of n, closer to the datum), the learning

rate 7(t) is decreased over time. §

(c) Update the weight vector of all other neurons using: W «— W +n, (t)h(n,, t)(X —WE )

where 7, (t) 1s the learning rate for the neighborhood nodes, and A(ny,t) is the neighborhood
function with respect to node n;, which decides whether each neuron should be included in the
neighborhood of the winning neuron (e.g: n=1 for neighbors and n=0 for non-neighbods — or a
Gaussian function can be used).

(d) Reduce the learning rates and adjust the neighborhood function (neighborhood size
decreases over time).
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(III) Testing:

For each test point select best-matching neuron: SORRERRPY - o

i, = m_ion—wTj H
J

neighboorhood size

. decreases over time
h(n,,t) function



SOM vs PCA

YWariance
LUnexplaine
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One-dimensional SOM versus principal component analysis (PCA) for data
approximation. SOM is a red broken line with squares, 20 nodes. The first principal
component is presented by a blue line. Data points are the small grey circles. For
PCA, the fraction of variance unexplained in this example is 23.23%, for SOM it is

6.86%.




SOM for Semantic Maps

sells visits works . phones . Mary
buys . speaks . Jim
eats cat
Bah
runs dog
. drinks . horse .
bread
meat
much :
poorly . little often fast
well . seldem slowly .

Semantic network (SOM) detects “logical similarity” between words based on
statistics of their contexts (e.g. word order).

https://www.semanticscholar.org/paper/Self-organizing-semantic-maps-Ritter-
Kohonen/7e6429291b65b4984a461350f7a07a3aflaf7029



SOM for Atmospheric Science

30
0

(@)

SOM of sea level pressure anomaly patterns; different days fall into different

categories, allowing researchers to attribute causes for variation with greater

specificity.
https://www.intechopen.com/books/applications-of-self-organizing-maps/self-
organizing-maps-a-powerful-tool-for-the-atmospheric-sciences



SOM tfor Medical Diagnosis

Feature Extraction Clustering Classification

MRI acqu|smon Input vectors Defining regions of interest
Calculation of 7 DTls [ X1, X2, X, X0, X5, Xe, X7] <— 3D-T1
Intensity Normalization ‘
Batch-Learning ——
‘ o 0 o ‘ ’

Calculation of a class ratio

l Self-organizing map (SOM) 1 Log scaling

K-means clustering on SOM .:.:ED
R |:> . }

J Leave-one out cross validation

Log-Ratio Value
Subjects 1,....n

- Feature Extraction

Support Vector Machine (SVM)

Subjects 1,...,n 1 Calculation of clustering maps
eg.K=6

l Stacking

Input vectors for clustering
[ X1, X2, X3, X4, X5, Xe, X7]

DTl-based clustered Image (DTcl) | | L> Decision (Low or High)

Pipeline used to predict glioma (tumor) grade and subsequently guide therapeutic
strategies. First MRI data is acquired, the data was clustered in (2) steps beginning
with an SOM, followed by k-means; lastly classification between high and low
gliomas was done using an SVM.

https://www.nature.com/articles/srep30344






