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Bayesian and Frequentist Probability

• (2) General paradigms for statistics and statistical inference: frequentist vs. Bayesian.

• Frequentists: Parameters are fixed; there is a (Platonic) model; parameters 
remain constant.

• Bayesians: Data are fixed; data are observed from realized sample; we encode 
prior beliefs; parameters are described probabilistically.  
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Potential issues with frequentist approach: philosophical reliance on long-term ‘frequencies’, 
the problem of  induction (Hume) and the black swan paradox, as well as the presence of  
limited exact solutions for a small class of  settings. 



Bayesian and Frequentist Probability
• In the Bayesian framework, conversely, probability is regarded as a measure of  uncertainty 

pertaining to the practitioner’s knowledge about a particular phenomenon.

• The prior belief  of  the experimenter is not ignored but rather encoded in the process of  

calculating probability.



Bayesian and Frequentist Probability
• As the Bayesian gathers new information from experiments, this information is used, in 

conjunction with prior beliefs, to update the measure of  certainty related to a specific outcome. 

These ideas are summarized elegantly in the familiar Bayes’ Theorem:

• Where H here connotes ‘hypothesis’ and D connotes ‘data’; the leftmost probability is referred 

to as the posterior (of  the hypothesis), and the numerator factors are called the likelihood (of  the 

data) and the prior (on the hypothesis), respectively; the denominator expression is referred to 

as the marginal likelihood. 
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As the Bayesian gathers new information from experiments, this information is used, in 

conjunction with prior beliefs, to update the measure of  certainty related to a specific outcome. 

These ideas are summarized elegantly in the familiar Bayes’ Theorem:

Where H here connotes ‘hypothesis’ and D connotes ‘data’; the leftmost probability is referred to 

as the posterior (of  the hypothesis), and the numerator factors are called the likelihood (of  the 

data) and the prior (on the hypothesis), respectively; the denominator expression is referred to 

as the marginal likelihood. 

Typically, the point estimate for a parameter used in Bayesian statistics is the mode of  the 

posterior distribution, known as the maximum a posterior (MAP) estimate, which is given as:



Conditional Probability

• Probability of an event given the occurrence of 

some other event. 
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P(X |Y ) =
P(XÇY )

P(Y )

P(Y | X) =
P(XÇY )

P(X)

Bayes rule : 

P(X |Y ) =
P(Y | X)P(X)

P(Y )

Deriving Bayes Rule



Independence and Conditional 

Independence

• Recall that two random variables, X and Y, are 

independent if

• Two random variables, X and Y, are independent 

given C if  

)()(),( YPXPYXP 

)|()|()|,( CYPCXPCYXP 



Inclusion-Exclusion Principle

• Probability of  a disjunction:

• If   a and b are independent events: 
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General Application to Data 

Models

• In machine learning we have a space H of 

hypotheses: 

h1 , h2 , ... , hn     (possibly infinite)

• We also have a set D of data

• We want to calculate P(h | D)

• Bayes rule gives us: 
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– Prior probability of h: 

• P(h): Probability that hypothesis h is true given our prior 

knowledge

• If no prior knowledge, all h  H are equally probable

– Posterior probability of h:

• P(h | D): Probability that hypothesis h is true, given the data D. 

– Likelihood of D:

• P(D | h): Probability that we will see data D, given hypothesis h is 

true. 

– Marginal likelihood of D

•

Terminology

P(D) = P(D | h)P(h)
h

å



You’ve been keeping track of the last 1000 emails you received.    You find that 

100 of them are spam.     You also find that 200 of them were put in your junk 

folder, of which 90 were spam.  

What is the probability an email you receive is spam? 
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P(XÇY )

P(Y )
= .09 /.2 = .45

P(Y | X) =
P(XÇY )

P(X)
= .09 /.1= .9



Testing the Validity of ESP 

Your friend returns from a trip to New York City, reporting that he saw Madame 

Blavatsky, the famous clairvoyant, successfully predict the outcome of  100 coin tosses. 

Should we believe in ESP, the theory that some people have a magical ability to sense 

the future? 
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predicts perfectly} given the truth of  the theory ESP?” 

Let’s say that if  ESP is real, Madame Blavatsky almost certainly has it, and if  she has it, 

she can do amazing predictions like these, so we set that at 0.9—i.e., only a 10% chance 

she’ll screw up using her (real) magic powers. 
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P(predict|ESP) means “what’s the chance that we get the data {Madame Blavatsky 

predicts perfectly} given the truth of  the theory ESP.” 

Let’s say that if  ESP is real, Madame Blavatsky almost certainly has it, and if  she has it, 

she can do amazing predictions like these, so we set that at 0.9—i.e., only a 10% chance 

she’ll screw up using her (real) magic powers. 

P(ESP) is the prior belief  you have in ESP—the degree of  belief  you attribute to the 

possibility before hearing about the new data. Let’s say you’re a scientist; you attribute 

low value to these kinds of  things, but (you’re a scientist)—nothing is impossible, so 

we’ll say 10−12. You’re more confident that ESP is fake than you are about surviving 

your next airline flight.



Testing the Validity of ESP 

We want to know the following: given that Madame Blavatsky did this amazing thing, 

what should I believe about ESP? More formally, “conditional on predict, what 

degree of  belief  should I have in ESP?”

Finally, P(predict): the probability this prediction event happens; recall that 

P(ESP|predict)+P(∼ ESP|predict)=1. 
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Testing the Validity of ESP 

We want to know the following: given that Madame Blavatsky did this amazing thing, 

what should I believe about ESP? More formally, “conditional on predict, what 

degree of  belief  should I have in ESP?”

Finally, P(predict): the probability this prediction event happens; recall that 

P(ESP|predict)+P(∼ ESP|predict)=1. 

Thus, ESP is most certainly true, conditional on Madame B’s ability to predict 100 

consecutive coin flips. 
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Testing the Validity of ESP 

Thus, ESP is most certainly true, conditional on Madame B’s ability to predict 100 

consecutive coin flips. 

Or is it? 

Let’s redo the previous problem with an expanded theory set:

T= {“ESP is real, your friend is not delusional”, “ESP is not real, your friend is not

delusional’, “ESP is real, your friend is delusional”, “ESP is not real, your friend is

delusional”}.

We’ll abbreviate as before: {ESP&~D, ∼ESP&~D, ESP&D, ∼ESP&D}. 
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Testing the Validity of ESP 

T= {“ESP is real, your friend is not delusional”, “ESP is not real, your friend is not

delusional’, “ESP is real, your friend is delusional”, “ESP is not real, your friend is

delusional”}.

We’ll abbreviate as before: {ESP & ~D, ∼ESP & ~D, ESP & D, ∼ESP & D}. 

It’s probably safe to assume that these events are independent, so that: 
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Testing the Validity of ESP 

Consider: 

If  we compute this quantity directly using Bayes’ rule, the calculation is tedious, as the 

denominator requires four individual terms. 

Alternatively, we can compare the odds-ratio of  ESP & ~D vs. ~ESP & D. 
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Testing the Validity of ESP 

Alternatively, we can compare the odds-ratio of  ESP & ~D vs. ~ESP & D. In other 

words: How much more likely is it that ESP is false, and your friend is delusional, 

rather than ESP is true and your friend is not delusional?

The only quantity we still need to specify is P(predict|~ESP & D). Let’s say this value 

is 0.9, meaning the probability of  perceived perfect prediction given that ESP is not 

real and your friend is delusional is quite high (naturally). 
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Testing the Validity of ESP 

Alternatively, we can compare the odds-ratio of  ESP & ~D vs. ~ESP & D. In other 

words: How much more likely is it that ESP is false, and your friend is delusional, 

rather than ESP is true and your friend is not delusional?

The only quantity we still need to specify is P(predict|~ESP & D). Let’s say this value 

is 0.9, meaning the probability of  perceived perfect prediction given that ESP is not 

real and your friend is delusional is quite high (naturally). 

In other words: it’s a million times more likely that your friend is delusional, than 

it is that ESP is real! 
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Testing the Validity of ESP 

In other words: it’s a million times more likely that your friend is delusional, than 

it is that ESP is real! 

D. Hume, “of  Miracles”, from an *Enquiry… (1748): 
The plain consequence is (and it is a general maxim worthy of  our attention), “That no

testimony is sufficient to establish a miracle, unless the testimony be of  such a kind, that

its falsehood would be more miraculous, than the fact, which it endeavours to establish:

And even in that case, there is a mutual destruction of  arguments, and the superior only

gives us an assurance suitable to that degree of  force, which remains, after deducting

the inferior.”

When anyone tells me, that he saw a dead man restored to life, I immediately consider

with myself, whether it be more probable, that this person should either deceive or

be deceived, or that the fact, which he relates, should really have happened. I weigh

the one miracle against the other; and according to the superiority, which I discover, I

pronounce my decision, and always reject the greater miracle. If  the falsehood of  his

testimony would be more miraculous, than the event which he relates; then, and not till

then, can he pretend to command my belief  or opinion.

*Recommended reading: “An Enquiry Concerning Human Understanding,” Hume, 1748. 
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On the Matter of Priors

• A prior probability of  an uncertain quantity is the probability distribution 

that would express one's beliefs about this quantity before some evidence 

is taken into account.

(*) Priors can be created using a myriad of  methods. A prior can be 

determined from past information, such as previous experiments. A prior can 

also be elicited from the purely subjective assessment of  an experienced 

expert.



On the Matter of Priors
• A prior probability of  an uncertain quantity is the probability distribution that would 

express one's beliefs about this quantity before some evidence is taken into 

account.

(*) Priors can be created using a myriad of  methods. A prior can be determined from 

past information, such as previous experiments. A prior can also be elicited from the 

purely subjective assessment of  an experienced expert.

(*) The principle of  insufficient reason (PIR, Jackob Bernoulli, Laplace) (also 

called: the principle of  indifference, Keynes) states that if  we are ignorant of  the ways 

an event can occur (and therefore have no reason to believe that one way will occur 

preferentially compared to another), the event will occur equally likely in any way.



Digression: The Monty Hall Problem

• Suppose you're on a game show, and you're given the choice of  
three doors: 

Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what's behind 
the doors, opens another door, say No. 3, which has a goat. He then 
says to you, "Do you want to pick door No. 2?" Is it to your advantage 
to switch your choice?
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Bayesian probability 

formulation

Hypothesis space H:  

h1 = Car is behind door A

h2 = Car is behind door B 

h3 = Car is behind door C

Data D: After you picked door A,

Monty opened B to show a goat

What is P(h1 | D)? 

What is P(h2 | D)? 

What is P(h3 | D)? 

Prior probability: 

P(h1) = 1/3 P(h2) =1/3 P(h3) =1/3 

Likelihood:

P(D | h1) = 1/2    

P(D | h2) = 0       

P(D | h3) = 1

Marginal likelihood:

P(D) = p(D|h1)p(h1) + p(D|h2)p(h2) +

p(D|h3)p(h3) = 1/6 + 0 + 1/3 = 1/2



By Bayes rule:

So you should switch!

P(h1 |D) =
P(D | h1)P(h1)

P(D)
=

1
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MAP (“maximum a posteriori”) Learning

Bayes rule: 

Goal of learning:  Find maximum a posteriori hypothesis hMAP:

hMAP = argmax
hÎH

P(h |D)

= argmax
hÎH

P(D | h)P(h)

P(D)

= argmax
hÎH

P(D | h)P(h)

because P(D) is a constant independent of h.



Note: If every h  H is equally probable, then 

)|(argmaxMAP hDPh
Hh



hMAP is called the “maximum likelihood hypothesis”.



A Medical Example

Toby takes a test for leukemia.  The test has two 

outcomes:  positive and negative.  It is known that if 

the patient has leukemia, the test is positive 98% of 

the time.  If the patient does not have leukemia, the 

test is positive 3% of the time.    It is also known that 

0.008 of the population has leukemia.  

Toby’s test is positive.    

Which is more likely:  Toby has leukemia or Toby 

does not have leukemia?



• Hypothesis space: 

h1 = T. has leukemia

h2 = T. does not have leukemia

• Prior: 0.008 of the population has leukemia.  Thus

P(h1) = 0.008

P(h2) = 0.992

• Likelihood:

P(+ | h1) = 0.98, P(− | h1) = 0.02

P(+ | h2) = 0.03, P(− | h2) = 0.97

• Posterior knowledge: 

Blood test is + for this patient. 



• In summary

P(h1) = 0.008, P(h2) = 0.992

P(+ | h1) = 0.98, P(− | h1) = 0.02

P(+ | h2) = 0.03, P(− | h2) = 0.97

• Thus:

   

hMAP =
hÎH

argmax P(D | h)P(h)

P(+ | leukemia)P(leukemia) = (0.98)(0.008) = 0.0078

P(+ | Øleukemia)P(Øleukemia) = (0.03)(0.992) = 0.0298

hMAP = Øleukemia



• What is P(leukemia|+)? 

So, 

)(

)()|(
)|(

DP

hPhDP
DhP 

   

P(leukemia | +) =
0.0078

0.0078 + 0.0298
= 0.21

P(Øleukemia | +) =
0.0298

0.0078 + 0.0298
= 0.79

These are called the “posterior” probabilities.



Naive Bayes Classifier

Let f (x) be a target function for classification:  f 

(x)  {+1, −1}.

Let x = (x1, x2, ..., xn)

We want to find the most probable class value, hMAP,

given the data x:
classMAP =  

class Î {+1,-1}

argmax P(class |D)

=
class Î {+1,-1}

argmax P(class | x1, x2,..., xn )



By Bayes Theorem: 

P(class) can be estimated from the training data.  

How? 

However, in general, not practical to use training data to 

estimate  P(x1, x2, ..., xn | class).    Why not? 

classMAP =  
classÎ {+1,-1}

argmax
P(x1, x2,..., xn | class)P(class)

P(x1, x2,..., xn )

=
class Î {+1,-1}

argmax P(x1, x2,..., xn | class)P(class)



• Naive Bayes classifier:  Assume

(*) In other words, with the naïve Bayes classifier, we 

assume the features are conditionally independent, given 

the class. 

Is this a good assumption? 

P(x1, x2,..., xn | class) = P(x1 | class)P(x2 | class) P(xn | class)



• Naive Bayes classifier:  Assume

Is this a good assumption? 

Given this assumption, here’s how to 

classify an instance x = (x1, x2, ...,xn):

Naive Bayes classifier: 

P(x1, x2,..., xn | class) = P(x1 | class)P(x2 | class) P(xn | class)

classNB(x) =
classÎ {+1,-1}

argmax P(class) P(xi
i

Õ | class)

To train: Estimate the values of these various probabilities over the training set. 



Day Outlook     Temp    Humidity     Wind     PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal         Weak Yes

D6 Rain Cool Normal         Strong No

D7 Overcast        Cool Normal         Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal         Weak Yes

D10 Rain Mild Normal         Weak Yes

D11 Sunny Mild Normal         Strong Yes

D12 Overcast         Mild High Strong Yes

D13 Overcast         Hot Normal         Weak Yes

D14 Rain Mild High Strong No

Training data:

D15 Sunny Cool High Strong ?

Test data:



P(Outlook = Sunny |Yes) = 2 / 9 P(Outlook = Sunny | No) = 3 / 5

P(Outlook =Overcast |Yes) = 4 / 9 P(Outlook =Overcast | No) = 0

P(Outlook = Rain |Yes) = 3 / 9 P(Outlook = Rain | No) = 2 / 5

P(Temperature = Hot |Yes) = 2 / 9 P(Temperature = Hot | No) = 2 / 5

P(Temperature =Mild |Yes) = 4 / 9 P(Temperature =Mild | No) = 2 / 5

P(Temperature =Cool |Yes) = 3 / 9 P(Temperature =Cool | No) =1/ 5

P(Humidity = High |Yes) = 3 / 9 P(Humidity = High | No) = 4 / 5

P(Humidity = Normal |Yes) = 6 / 9 P(Humidity = Normal | No) =1/ 5

P(Wind = Strong |Yes) = 3 / 9 P(Wind = Strong | No) = 3 / 5

P(Wind =Weak |Yes) = 6 / 9 P(Wind =Weak | No) = 2 / 5

Use training data to compute a probabilistic model:  



P(Outlook = Sunny |Yes) = 2 / 9 P(Outlook = Sunny | No) = 3 / 5

P(Outlook =Overcast |Yes) = 4 / 9 P(Outlook =Overcast | No) = 0

P(Outlook = Rain |Yes) = 3 / 9 P(Outlook = Rain | No) = 2 / 5

P(Temperature = Hot |Yes) = 2 / 9 P(Temperature = Hot | No) = 2 / 5

P(Temperature =Mild |Yes) = 4 / 9 P(Temperature =Mild | No) = 2 / 5

P(Temperature =Cool |Yes) = 3 / 9 P(Temperature =Cool | No) =1/ 5

P(Humidity = High |Yes) = 3 / 9 P(Humidity = High | No) = 4 / 5

P(Humidity = Normal |Yes) = 6 / 9 P(Humidity = Normal | No) =1/ 5

P(Wind = Strong |Yes) = 3 / 9 P(Wind = Strong | No) = 3 / 5

P(Wind =Weak |Yes) = 6 / 9 P(Wind =Weak | No) = 2 / 5

Use training data to compute a probabilistic model:  

D15 Sunny Cool High Strong ?

Day Outlook     Temp    Humidity     Wind     PlayTennis



P(Outlook = Sunny |Yes) = 2 / 9 P(Outlook = Sunny | No) = 3 / 5

P(Outlook =Overcast |Yes) = 4 / 9 P(Outlook =Overcast | No) = 0

P(Outlook = Rain |Yes) = 3 / 9 P(Outlook = Rain | No) = 2 / 5

P(Temperature = Hot |Yes) = 2 / 9 P(Temperature = Hot | No) = 2 / 5

P(Temperature =Mild |Yes) = 4 / 9 P(Temperature =Mild | No) = 2 / 5

P(Temperature =Cool |Yes) = 3 / 9 P(Temperature =Cool | No) =1/ 5

P(Humidity = High |Yes) = 3 / 9 P(Humidity = High | No) = 4 / 5

P(Humidity = Normal |Yes) = 6 / 9 P(Humidity = Normal | No) =1/ 5

P(Wind = Strong |Yes) = 3 / 9 P(Wind = Strong | No) = 3 / 5

P(Wind =Weak |Yes) = 6 / 9 P(Wind =Weak | No) = 2 / 5

D15 Sunny Cool High Strong ?

Day Outlook     Temp    Humidity     Wind     PlayTennis

Use training data to compute a probabilistic model:  

classNB(x) =
classÎ {+1,-1}

argmax P(class) P(xi
i

Õ | class)



Estimating probabilities / 

Smoothing
• Recap: In previous example, we had a training set and a new example, 

(Outlook=sunny, Temperature=cool, Humidity=high, Wind=strong)

• We asked:  What classification is given by a naive Bayes classifier?

• Let nc be the number of training instances with class c.

• Let                 be the number of training instances with attribute     value 

xi=ak and class c. 

Then:

nc
xi=ak

P(xi = ai | c) =
nc
xi=ak

nc



• Problem with this method: If nc is very 

small, gives a poor estimate.  

• E.g., P(Outlook = Overcast | no) = 0.    



• Now suppose we want to classify a new 

instance:  

(Outlook=overcast, Temperature=cool, Humidity=high, Wind=strong)

Then: 

This incorrectly gives us zero probability due to small 

sample. 

P(no) P(xi
i

Õ | no) = 0



One solution:  Laplace smoothing* (also called “add-one” 

smoothing)

For each class c and attribute xi with value ak, add one 

“virtual” instance. 

That is, for each class c, recalculate:

where K is the number of  possible values of  attribute a.  

*NB: Laplace smoothing can be derived using Bayesian 

statistics by using a multinomial likelihood and an 

uninformative Dirichlet prior.   

P(xi = ai | c) =
nc
xi=ak +1

nc +K



Day Outlook     Temp    Humidity     Wind     PlayTennis

D1 Sunny Hot High Weak No

D2 Sunny Hot High Strong No

D3 Overcast Hot High Weak Yes

D4 Rain Mild High Weak Yes

D5 Rain Cool Normal           Weak Yes

D6 Rain Cool Normal           Strong No

D7 Overcast        Cool Normal           Strong Yes

D8 Sunny Mild High Weak No

D9 Sunny Cool Normal           Weak Yes

D10 Rain Mild Normal           Weak Yes

D11 Sunny Mild Normal           Strong Yes

D12 Overcast         Mild High Strong Yes

D13 Overcast         Hot Normal           Weak Yes

D14 Rain Mild High Strong No

Training data:

Outlook=Sunny:  Yes Outlook=Overcast: Yes Outlook=Rain: Yes

Outlook=Sunny: No Outlook=Overcast: No Outlook=Rain: No

P(Outlook = overcast | No) =
0

5
  ®   

nc
xi=ak +1

nc +K
=

0 +1

5+3
=

1

8

Laplace smoothing: Add the following virtual instances for Outlook: 

P(Outlook = overcast | Yes) =
4

9
  ®   

nc
xi=ak +1

nc +K
=

4 +1

9 +3
=

5

12



P(Outlook = Sunny |Yes) = 2 / 9® 3 /12 P(Outlook = Sunny | No) = 3 / 5® 4 / 8

P(Outlook =Overcast |Yes) = 4 / 9® 5 /12 P(Outlook =Overcast | No) = 0 / 5®1/ 8

P(Outlook = Rain |Yes) = 3 / 9® 4 /12 P(Outlook = Rain | No) = 2 / 5® 3 / 8

Etc.



Naive Bayes on continuous-

valued attributes
• How to deal with continuous-valued 

attributes? 

Two possible solutions: 

– Discretize   

– Assume particular probability distribution of 

classes over values (estimate parameters from 

training data)



Discretization: Equal-Width 

Binning
For each attribute xi , create k equal-width bins in interval 

from min(xi ) to max(xi).    

The discrete “attribute values” are now the bins. 

Questions:  What should k be?   What if some bins have very 

few instances? 

Problem with balance between discretization bias and 

variance. 

The more bins, the lower the bias, but the higher the variance, 

due to small sample size.  



Discretization: Equal-Frequency 

Binning
For each attribute xi , create k bins so that each bin contains an equal number of 

values.

Also has problems:  What should k be?   Hides outliers.  Can group together 

instances that are far apart.  



Gaussian Naïve Bayes

Assume that within each class, values of each 

numeric feature are normally distributed:

where μi,c is the mean of feature i given the class c,

and σi,c is the standard deviation of feature i given the 

class c

We estimate μi,c and σi,c from training data.  



Example
x1 x2 Class

3.0 5.1 POS

4.1 6.3 POS

7.2 9.8 POS

2.0 1.1 NEG

4.1 2.0 NEG

8.1 9.4 NEG



Example
x1 x2 Class

3.0 5.1 POS

4.1 6.3 POS

7.2 9.8 POS

2.0 1.1 NEG

4.1 2.0 NEG

8.1 9.4 NEG

P(POS) = 0.5

P(NEG) = 0.5



N1,POS = N(x; 4.8, 1.8)

N1,NEG = N(x; 4.7, 2.5)

http://homepage.stat.uiowa.edu/~mbognar/applets/normal.html

N2,POS = N(x; 7.1, 2.0)

N2,NEG = N(x; 4.2, 3.7)

http://homepage.stat.uiowa.edu/~mbognar/applets/normal.html


Now, suppose you have a new example x, with  x1 = 5.2, x2 = 6.3.

What is classNB (x) ? 



Now, suppose you have a new example x, with  x1 = 5.2, x2 = 6.3.

What is classNB (x) ? 

classNB(x) =
classÎ {+1,-1}

argmax P(class) P(xi
i

Õ | class)

Note:  N is the probability density function, but can be used analogously to probability 

in Naïve Bayes calculations.  



Now, suppose you have a new example x, with  x1 = 5.2, x2 = 6.3.

What is classNB (x) ? 

classNB(x) =
classÎ {+1,-1}

argmax P(class) P(xi
i

Õ | class)



Positive :

P(POS)P(x1 | POS)P(x2 | POS) = (.5)(.22)(.18) = .02

Negative :

P(NEG)P(x1 | NEG)P(x2 | NEG) = (.5)(.16)(.09) = .0072

classNB (x) = POS



Use logarithms to avoid 

underflow

classNB (x) =
classÎ {+1,-1}

argmax P(class) P(xi
i

Õ | class)

=
class Î {+1,-1}

argmax log P(class) P(xi
i

Õ | class)
æ

è
ç

ö

ø
÷

=
class Î {+1,-1}

argmax logP(class)+ logP(xi | class)
i

å
æ

è
ç
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Learning conditional probabilities

• In general, random variables are not binary, but real-valued

• Conditional probability tables             conditional probability 

distributions

• Estimate parameters of  these distributions from data

• If  data is missing on one or more variables, use “expectation 

maximization” algorithm



Approximate inference via sampling

• Recall: We can calculate full joint probability distribution 

from network. 

where parents(Xi) denotes specific values of parents of Xi.

• We can do diagnostic, causal, and inter-causal inference

• But if there are a lot of nodes in the network, this can be 

very slow!

Need efficient algorithms to do approximate calculations!

))(|(),...,(
1
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Applying Bayesian Reasoning to 

Speech Recognition

• Task:  Identify sequence of  words uttered by speaker, given acoustic 

signal. 

• Uncertainty introduced by noise, speaker error, variation in 

pronunciation, homonyms, etc. 

• Thus speech recognition is viewed as problem of  probabilistic 

inference. 



• So far, we’ve looked at probabilistic reasoning 

in static environments.   

• Speech:   Time sequence of   “static 

environments”.  

– Let X be the “state variables” (i.e., set of  non-

evidence variables) describing the environment  

(e.g., Words said during time step t)

– Let E be the set of  evidence variables  (e.g., S = 

features of  acoustic signal).



– The E values and X joint probability distribution 

changes over time. 

t1: X1, e1

t2: X2 , e2

etc. 



• At each t, we want to compute P(Words | S).

• We know from Bayes rule:

• P(S | Words), for all words, is a previously learned “acoustic 

model”.  

– E.g. For each word, probability distribution over phones, and 

for each phone, probability distribution over acoustic signals 

(which can vary in pitch, speed, volume).

• P(Words), for all words, is the “language model”, which specifies 

prior probability of  each utterance. 

– E.g. “bigram model”:  probability of  each word following 

each other word.

)()|()|( WordsPWordsPWordsP SS 



• Speech recognition typically makes three assumptions:

1. Process underlying change is itself  “stationary” 

i.e., state transition probabilities don’t change

2. Current state X depends on only a finite history of  previous 

states (“Markov assumption”).

– Markov process of  order n:  Current state depends only 

on n previous states. 

3. Values et of  evidence variables depend only on current state 

Xt. (“Sensor model”)







Hidden Markov Models

• Markov model:  Given state Xt, what is probability of 

transitioning to next state Xt+1 ?

• E.g., word bigram probabilities give 

P (wordt+1 | wordt )

• Hidden Markov model: There are observable states (e.g., 

signal S) and  “hidden” states (e.g., Words). HMM

represents probabilities of hidden states given observable 

states.  







Example:  “I’m firsty, um, can I have something to dwink?”




