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What can I do with a NN?
A short list of  applications:

(*) Binary classification, 1-in-K classification, regression

(*) General pattern recognition /  statistical learning 

(*) Character recognition, facial recognition

(*) Computer Vision: image classification, localization, scene 

recognition, captioning 

(*) Signal Processing: noise suppression, signal analysis

(*) Data compression

(*) NLP: machine translation, sentiment analysis 

(*) Finance: statistical arbitrage, risk analysis

(*) AI: Q-Learning (reinforcement learning) 

(*) Medicine: diagnosis, imaging, genomics 

(*) Law: information retrieval 

(*) Computational creativity applications



A bit of  history
• 1960s:  Rosenblatt proved that the perceptron learning rule converges 

to correct weights in a finite number of  steps, provided the training 

examples are linearly separable.

• 1969: Minsky and Papert proved that perceptrons cannot represent 

non-linearly separable target functions.

• However, they showed that adding a fully connected hidden layer makes 

the network more powerful.

– I.e., Multi-layer neural networks can represent non-linear decision 

surfaces.

• Later it was shown that by using continuous activation functions (rather 

than thresholds), a fully connected network with a single hidden layer can 

in principle represent any function.

• 1986: “rediscovery” of  backprop algorithm: Hinton et al.



A bit of  history



Linear separability

Feature 1

Feature 2

Hyperplane

In 2D:  

w1x1 +w2x2 +w0 = 0

x2 = -
w1

w2

x1 -
w0

w2

A perceptron can separate data that is linearly separable.



Decision regions of a multilayer feedforward network. (From T. M. Mitchell, Machine Learning)

The network was trained to recognize 1 of 10 vowel sounds occurring in the context “h_d” (e.g., “had”, “hid”)

The network input consists of two parameters, F1 and F2, obtained from a spectral analysis of the sound.

The 10 network outputs correspond to the 10 possible vowel sounds.

Multi-layer neural network example



• Good news: Adding hidden layer allows more target functions to be 

represented. 

• Bad news: No algorithm for learning in multi-layered networks, and no 

convergence theorem!

• Quote from Minsky and Papert’s book, Perceptrons (1969): 

“[The perceptron] has many features to attract attention:  its linearity; its intriguing 

learning theorem; its clear paradigmatic simplicity as a kind of  parallel computation.  

There is no reason to suppose that any of  these virtues carry over to the many-layered 

version.  Nevertheless, we consider it to be an important research problem to elucidate (or 

reject) our intuitive judgment that the extension is sterile.”  



• Two major problems they saw were:

1. How can the learning algorithm apportion credit (or blame) 

to individual weights for incorrect classifications depending 

on a (sometimes) large number of  weights?

2. How can such a network learn useful higher-order features?

• Good news: Successful credit-apportionment learning algorithms 

developed soon afterwards (e.g., back-propagation).   

• Bad news: However, in multi-layer networks, there is no 

guarantee of  convergence to minimal error weight vector.

But in practice, multi-layer networks often work very well.   



Summary

• Perceptrons can only be 100% accurate only on linearly separable problems.  

• Multi-layer networks (often called multi-layer perceptrons, or MLPs) can represent 

any target function.  

• However, in multi-layer networks, there is no guarantee of  convergence to 

minimal error weight vector. 

• One can show, mathematically, that one hidden layer is sufficient to 

approximate any function to arbitrary accuracy with a NN. This is known as 

the Universal Approximation Theorem (1989) (we say: “NNs are universal 

function approximators”); RNNs are Turing Complete. 

 

FIGURE 4.10  Schematic of the effective learning shape at each stage of the MLP. 



A “two”-layer neural network

(activation 

represents

classification)

(internal 

representation)

(activations represent

feature vector for one 

training example)

inputs      

hidden layer

output layer

•Input layer — It contains those units (artificial neurons) which receive input from the outside 
world on which network will learn, recognize about or otherwise process.
•Output layer — It contains units that respond to the information about how it’s learned any 
task.
•Hidden layer — These units are in between input and output layers. The job of hidden layer is 
to transform the input into something that output unit can use in some way.
Most neural networks are fully connected that means to say each hidden neuron is fully 
connected to the every neuron in its previous layer(input) and to the next layer (output) layer.



Classification Pipeline 



Different Types of  Neural Networks

Perceptron — Neural Network having two input units and one output units with no hidden layers. These 
are also known as ‘single layer perceptrons.
Radial Basis Function Network — These networks are similar to the feed forward neural network except 
radial basis function is used as activation function of these neurons.
Multilayer Perceptron — These networks use more than one hidden layer of neurons, unlike single layer 
perceptron. These are also known as deep feedforward neural networks.
Recurrent Neural Network — Type of neural network in which hidden layer neurons has self-connections. 
Recurrent neural networks possess memory. At any instance, hidden layer neuron receives activation from 
the lower layer as well as it previous activation value.
Long /Short Term Memory Network (LSTM) — Type of neural network in which memory cell is 
incorporated inside hidden layer neurons is called LSTM network.
Convolutional Neural Network — Get a complete overview of Convolutional Neural Networks through our 
blog Log Analytics with Machine Learning and Deep Learning.

https://www.xenonstack.com/blog/log-analytics-with-deep-learning-and-machine-learning


Example:  ALVINN 
(Pomerleau, 1993)

• ALVINN learns to drive an autonomous vehicle 

at normal speeds on public highways.

• Input:  30 x 32 grid of  pixel intensities from 

camera



Each output unit correspond to a particular steering direction.  The 

most highly activated one gives the direction to steer.  

(Note: bias units and

weights not shown)



Example: DeepMind (Deep Q learning for 

Atari, 2014)



Activation functions

• Advantages of  sigmoid function:  nonlinear, differentiable, has 

real-valued outputs, and approximates a threshold function.  



Sigmoid activation function:
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• The derivative of  the sigmoid activation function is easily 

expressed in terms of  the function itself: 

This is useful in deriving the back-propagation algorithm.
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Neural network notation

(activation 

represents

classification)

(internal 

representation)

(activations represent

feature vector for one 

training example)

xi : activation of input node i. 

hj : activation of hidden node j. 

ok : activation of output node k. 

wji : weight from node i to node j. 

σ : sigmoid function.  

For each node j in hidden layer,

For each node k in output layer, 
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Sigmoid function:



Classification with a two-layer neural network
(“Forward propagation”)

Assume two-layer networks (i.e., one hidden layer): 

1. Present input to the input layer. 

2. Forward propagate the activations times the weights to each node 

in the hidden layer.   

3. Apply activation function (sigmoid) to sum of weights times inputs 

to each hidden unit. 

4. Forward propagate the activations times weights from the hidden 

layer to the output layer.

5. Apply activation function (sigmoid) to sum of weights times inputs 

to each output unit. 

6. Interpret the output layer as a classification.  



Simple Example

Input: Hidden Layer:

x1 x2

h1

1

h2
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Output Layer:

x1 x21
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“Softmax” operation
Often used to turn output values into a probability 

distribution

x1 x21
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where K  is the number of output units. 

ysm = 

.501

ysm = 

.499



What kinds of  problems are suitable for 

neural networks? 

• Have sufficient training data

• Long training times are acceptable

• Not necessary for humans to understand learned target 

function or hypothesis



Advantages of  neural networks

• Designed to be parallelized (e.g. split minibatches, use 

GPUs)

• Robust on noisy training data

• Fast to evaluate new examples



Training a multi-layer neural network
Repeat for a given number of   epochs or until accuracy on training data is 

acceptable:

For each training example: 

1. Present input to the input layer. 

2. Forward propagate the activations times the weights to each node 

in the hidden layer. 

3. Forward propagate the activations times weights from the hidden 

layer to the output layer.

4. At each output unit, determine the error.

5. Run the back-propagation algorithm one layer at a time to update 

all weights in the network.  



Training a multilayer neural network with back-

propagation 

(stochastic gradient descent)

• Suppose training example has form (x, t)  

(i.e., both input and target are vectors). 

• Error (or “loss”) E is sum-squared error over all output units:

• Goal of  learning is to minimize the mean sum-squared error 

over the training set.  

E(w) =
1

2
(tk

kÎoutput layer

å -ok )
2



Training a multilayer neural network with back-

propagation 

(stochastic gradient descent)

• Idea -- Minimize sum-of-squares error  

over the entire training data set. 

• Note that we “tune” the parameters of  the NN (the weights) during 

training.

E(w) =
1

2
(tk

kÎoutput layer

å -ok )
2

 

The weights of the network are trained so that the error goes downhill until it reaches a local minimum, 
just like a ball rolling under gravity. 



Geoffrey Hinton: NN training with MNIST



Aiva: AI Composed Music (2017)



Later in the slides we will derive the back-propagation 

equations (you can also find a derivation in the text). 

The derivation can be somewhat challenging, however, you 

only need one basic tool to derive them: multi-variate 

differentiation (e.g. chain rule, partial derivatives). 

For now, let’s just walk through the basic algorithm. 



• Initialize the network weights w to small random numbers (e.g., 

between −0.05 and 0.05). 

• Until the termination condition is met, Do: 

– For each (x,t)  training set, Do: 

1. Propagate the input forward:

– Input x to the network and compute the activation hj of  

each hidden unit j.

– Compute the activation ok of  each output unit k.

Backpropagation algorithm

(Stochastic Gradient Descent)



2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj ) wkj
kÎoutput units
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2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj ) wkj
kÎoutput units
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3. Update weights

Hidden to Output layer: For each weight wkj

where 

Input to Hidden layer: For each weight wji

where 

wkj¬wkj +Dwkj

Dwkj =hdkhj

wji¬wji +Dwji

Dw ji =hd jxi



– Forwards Phase: compute the activation of  each neuron in the 

hidden layers and outputs using: 

– Backwards pass

– Compute the error at the output using:

– Compute the error at the hidden layer(s) using:

– Update the output layer weights using:

where

– Update the hidden layer weights using: 

where

– (If  using sequential updating) randomize the order of  the input 

vectors so that you don’t train in exactly the same order each 

iteration. 

– Train until stopping condition satisfied. 

d j ¬ hj (1-hj ) wkj
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wkj¬wkj +Dwkj
Dwkj =hdkhj

wji¬wji +Dwji
Dw ji =hd jxi

Backpropagation Algorithm (BP)
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• The Aim is to balance between Generalization & Memorization

( Minimizing cost function is not necessarily good idea ).

– Using two (or three) disjoint sets:

• Training-Testing Sets

• Training-Testing-Validation Sets

– As long as the error for the training-testing set decreases, 

training continues (unless max # iterations achieved).

– When the error begins to increase , the net is starting to 

memorize.

Training Time 



• Connectionism

– Biological Issues

• No excitatory or inhibitory for real neurons

• No Global connection in MLP

• No backward propagation in real neurons

– Useful in parallel hardware implementation

• Computational Efficiency

– Learning Algorithm is said to be computationally efficient , when 

its complexity is polynomial.

– The BP algorithm is computationally efficient.

• In MLP with a total of  W weights, its complexity is linear in W

• Local Minima

– Presence of  local minima is a significant issue, 

particularly for high dimensional data. 

Some Pros and Cons of  BP 



Batch (or “True”) Gradient Descent:  Change weights 

only after averaging gradients from all training examples:

Weights from hidden units to output units: 

Weights from input units to hidden units: 



Mini-Batch Gradient Descent:  Change weights only after 

averaging gradients from a subset of  B training examples:

At each iteration t: Get next subset of  B training examples, Bt , 

until all examples have been processed.   

Weights from hidden units to output units: 

Weights from input units to hidden units: 



• Recall that BP is an instance of  “hill climbing” (e.g. gradient descent). 

With non-convex problems we are not guaranteed to settle into a 

global minimum. 

• If  we think of  the analogy of  a ball rolling down a hill, we can 

consider giving the ball some “weight” by implementing a 

momentum term. 

• The purpose of  the momentum term is to mitigate the instance of  

getting “stuck” in a local minimum (i.e. a “valley”) and to avoid 

performance oscillations during training. 

Local Minima, Momentum, etc.



Momentum

Introduce a momentum term, in which change in weight is dependent on 

past weight change: 

(hidden-to-output)

(input-to-hidden)

where t is the iteration through the main loop of  back-propagation.   

α is a parameter between 0 and 1; α determines the “strength” of  

the momentum term. 

The idea is to keep weight changes moving in the same direction.



Update weights, with momentum

Hidden to Output layer: For each weight wkj

where 

Input to Hidden layer: For each weight wji

where 

wkj¬wkj +Dwkj

wji¬wji +Dwji



Backprop Example
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x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

Target: .9



1 0

1 0 Label: .9
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“Forward Phase” – hidden layers
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“Forward Phase” – output layer
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“Forward Phase” – output layer
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Hidden weight Updates

“Backward Phase”
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“Backward Phase”

Output weight Updates
Hidden weight Updates
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“Backward Phase”

Output weight Updates
Hidden weight Updates



1 0

1 0 Label: Positive

0 1 Label: Negative

Training set: Test set:

1 1 Label: Positive

x1 x21

.1 .1

.1

.1

.1

.1
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.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):
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Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9): Hidden 

unit j=1
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Target: .9 Calculate error terms:

wk=1, j=1

1 = .1+.0095 = .1095

wk=1, j=2

1 = .1+.0095 = .1095

wk=1, j=0

1 = .1+.0172 = .1172

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):
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Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

wk=1, j=1

1 = .1+.0095 = .1095

wk=1, j=2

1 = .1+.0095 = .1095

wk=1, j=0

1 = .1+.0172 = .1172
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x1 x21

.1 .1

.1

.1
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.1

1
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.1
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.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum = 

0.9): wj=1,i=0

1 = .1+.0004 = .1004

wj=1,i=1

1 = .1+.0004 = .1004

Dw j=1,i=2

1 = (.2) .002( )(0)+ (.9)(0) = 0 w j=1,i=2

1 = .1



1 0

x1 x21
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.1

.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum = 

0.9): wj=1,i=0

1 = .1+.0004 = .1004

Dw j=1,i=2

1 = (.2) .002( )(0)+ (.9)(0) = 0

wj=1,i=1

1 = .1+.0004 = .1004

w j=1,i=2

1 = .1



1 0

x1 x21
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.1

.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum = 0.9): Hidden 

unit j=2

Dw j=2,i=1

1 = (.2) .002( )(1)+ (.9)(0) = .0004

Dw j=2,i=0

1 = (.2) .002( )(1)+ (.9)(0) = .0004 wj=2,i=0

1 = .1+.0004 = .1004

Dw j=2,i=2

1 = (.2) .002( )(0)+ (.9)(0) = 0

wj=2,i=1

1 = .1+.0004 = .1004

w j=2,i=2

1 = .1



1 0

x1 x21

.1004
.1004

.1004
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.1095

.1

1

.1172

.1
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.55 .55

.552

Target: .9 Calculate error terms:



0 1

x1 x21

.1004
.1004

.1004

.1004

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: -.3

Note:  This is time step 2, so momentum

term will be nonzero… 

Another detailed backprop example: 

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/



Play with a Neural Network 

http://playground.tensorflow.org/



Example:  Face recognition

(From T. M. Mitchell, Machine Learning, Chapter 4)

Code (C) and data at http://www.cs.cmu.edu/~tom/faces.html

• Task: classify camera images of  various people in various poses.  

• Data: Photos, varying: 

– Facial expression:  happy, sad, angry, neutral

– Direction person is facing:  left, right, straight ahead, up

– Wearing sunglasses?:  yes, no

Within these, variation in background, clothes, position of  face 

for a given person. 



an2i_right_sad_sunglasses_4

an2i_left_angry_open_4

glickman_left_angry_open_4



Design Choices

• Input encoding

• Output encoding

• Network topology

• Learning rate

• Momentum



(Note: bias unit and

weights not shown)



• Preprocessing of  photo: 

– Create 30x32 coarse resolution version of  120x128 image  

– This makes size of  neural network more manageable

• Input to neural network:  

– Photo is encoded as 30x32 = 960 pixel intensity values, 

scaled to be in [0,1]

– One input unit per pixel

• Output units:

– Encode classification of  input photo



• Possible target functions for neural network:

– Direction person is facing 

– Identity of  person

– Gender of  person

– Facial expression

– etc. 

• As an example, consider target of  “direction 

person is facing”. 



Target function
• Target function is: 

– Output unit should have activation 0.9 if  it corresponds to 

correct classification

– Otherwise output unit should have activation 0.1

• Use these values instead of  1 and 0, since sigmoid units can’t 

produce 1 and 0 activation. 



Other parameters

• Learning rate  = 0.3

• Momentum  = 0.3

• If  these are set too high, training fails to converge on network 

with acceptable error over training set.

• If  these are set too low, training takes much longer. 



Training

• For maximum number of  epochs: 

– For each training example

• Input photo to network

• Propagate activations to output units

• Determine error in output units

• Adjust weights using back-propagation algorithm

• Demo of code  
(from http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html )

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html)


Weights from each pixel to hidden

units 1, 2, 3  (white = high, black = low)

Weights from each hidden unit 

to four output units

Not shown: bias

unit (connected

to all non-input units)

After 100 epochs of  training.  

(From T. M. Mitchell, Machine Learning)

• Hidden unit 2 has high positive weights from right side of  face.

• If  person is looking to the right, this will cause unit 2 to have high activation.  

• Output unit right has high positive weight from hidden unit 2. 



Understanding weight values

• After training: 

– Weights from input to hidden layer:  high positive in certain 

facial regions

– “Right” output unit has strong positive from second hidden 

unit, strong negative from third hidden unit. 

• Second hidden unit has positive weights on right side of  

face (aligns with bright skin of  person turned to right) and 

negative weights on top of  head (aligns with dark hair of  

person turned to right)

• Third hidden unit has negative weights on right side of  

face, so will output value close to zero for person turned to 

right. 



Hidden Units

• Two few – can’t represent target function

• Too many – leads to overfitting

Use “cross-validation” to decide number of  hidden units. 



Weight decay

• Modify error function to add a penalty for magnitude of  

weight vector, to decrease overfitting.   

• This modifies weight update formula (with momentum) to: 

where λ is a parameter between 0 and 1. 

This kind of  penalty is called “regularization”; common to use 

L1 or L2 regularization (references norm used for “penalty” 

term – if  you’re a “Bayesian” this is equivalent to putting a prior 

centered at zero on the network weights). 



Other important topics for NNs
Please feel free to talk to me about any of  these more advanced topics or 

investigate them on your own: 

• Q: What does a NN “learn”? Should it be treated as a black box or should 

it be interpretable? 

• Deep Learning and Hierarchical Models Learning 

• Other methods for training the weights; different loss functions and 

optimization techniques (e.g. GAs) 

• Different architectures: RNNs, CNN, LSTMs, etc. 

• Sparse models (e.g. using “dropout”) 

• Adversarial Networks/Generative Networks



Other important topics for NNs



(*) Here is a derivation (later slides contain a derivation with 

visuals) of  BP (note our text also has a derivation pp. 101-

108). Time permitting, I’ll walk us through this. If  you require 

further details don’t hesitate to ask for help. 

(*) “Will this be on the exam?” No, but understanding the 

material at this level makes you a better person – moreover, it 

will make your friends envious, your mother will love you 

more, and strangers at cocktail parties will be drawn to you 

like a magnet. You’re welcome. 





Backprop Derivation

What do we need to derive the backpropagation (BP) algorithm?

Only a basic knowledge of  differential Calculus!

(*) Recall that we will use BP to update weights in both the 

hidden layer(s) and the output layer of  our NN. 

(*) We use the chain rule to “propagate” the error back

through the network (following the “forward phase”). 

obligatory backprop 

meme 



Backprop Derivation

(*) We’ll call the current input x (a vector) and the output y; the activation

function (throughout the network) will be denoted g(∙).

(*) For simplicity, let’s assume the NN contains only a single hidden layer (BP 

extends naturally for more layers); denote the weights of the network v and

w, for the first and second layers respectively. 

(*) Recall that “learning” entails tuning the weights of  the network. 



Backprop Derivation

(*) We wish to minimize the error function:

Where y is the output, t is the target; N is the data set size and L is the 

number of  nodes (in a given layer). 

(*) We use gradient descent. In particular, we wish to know how the error 

function changes with respect to the different weights: 

*Note:                  are fixed indices.
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Backprop Derivation

(*) Let                          (the sigmoid function); recall that:  

(*) Using the chain rule, we have: 

where:

The equation above says that the error at the output changes as we vary

the second-layer weights as a function of  the error change with respect to 

the input to the output neurons and the change in the input with respect to 

the weights. 
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Backprop Derivation

(*) Consider the (2)nd factor: 
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Backprop Derivation

(*) Consider the (2)nd factor: 

(*) Last step holds because                 , except in the case: 
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Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows: 

(*) By the chain rule, we have: 
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Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows: 

(*) By the chain rule, we have: 

(*) Also, note that:   
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Backprop Derivation

Continuing…
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Backprop Derivation

Continuing…
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Backprop Derivation

Continuing…
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Backprop Derivation

Continuing…
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Backprop Derivation

In Summary…
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Backprop Derivation
In Summary…

(*) Recall, a “gradient descent” based weight update has the form: 

(*) Cool, but this doesn’t look like the formulas for BP you showed us before. 
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Backprop Derivation

(*) Recall that g is the sigmoid! So what’s our new formula?
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Backprop Derivation
E
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ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!



Backprop Derivation
E

w w
w
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   1k k k kw y t y y a    

   

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!

Hold on a second.

You still need to derive the hidden 

layer weight updates! 



Backprop Derivation
(*)Short version of  input-to-hidden layer weight updates for BP: 

We compute: 

(*) This formula comes from the fact that each hidden node contributes to 

the activation of  all the output nodes, and so we need to consider all of  these 

contributions.   

(*) From here, using the chain rule, differential properties of  the sigmoid and 

the NN topology, it is not difficult (as we did before, analogously), to show:
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Backprop Derivation

(*)This yields the following update rule for vertex     :

Derivation complete! (at least for NNs with one hidden layer)
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Backprop Derivation Redux (with visuals)



Types of Neurons

Linear Neuron

Logistic Neuron

Perceptron

Potentially more.  Require a convex 
loss function for gradient descent training.
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Multilayer Networks

• Cascade Neurons together

• The output from one layer is the input to the next

• Each Layer has its own sets of weights
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Linear Regression Neural Networks

• What happens when we arrange linear 
neurons in a multilayer network?
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Linear Regression Neural Networks

109

• Nothing special happens.
– The product of two linear transformations is itself a linear 

transformation.



Neural Networks

• We want to introduce non-linearities to the network.
– Non-linearities allow a network to identify complex regions 

in space
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Linear Separability

• 1-layer cannot handle XOR

• More layers can handle more complicated spaces – but 
require more parameters

• Each node splits the feature space with a hyperplane

• If the second layer is AND a 2-layer network can 
represent any convex hull.
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Feed-Forward Networks

• Predictions are fed forward through the 
network to classify
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Feed-Forward Networks

• Predictions are fed forward through the 
network to classify
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Feed-Forward Networks

• Predictions are fed forward through the 
network to classify
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Feed-Forward Networks

• Predictions are fed forward through the 
network to classify
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Feed-Forward Networks

• Predictions are fed forward through the 
network to classify
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Feed-Forward Networks

• Predictions are fed forward through the 
network to classify
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Error Backpropagation

• We will do gradient descent on the whole 
network.

• Training will proceed from the last layer to the 
first.
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Error Backpropagation

• Introduce variables over the neural network
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Error Backpropagation

• Introduce variables over the neural network

– Distinguish the input and output of each node
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Error Backpropagation
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Error Backpropagation

122

Training: Take the gradient of the last component and iterate backwards



Error Backpropagation
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Empirical Risk Function



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last layer weights wkl

Calculus chain rule



Error Backpropagation
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Optimize last hidden weights wjk



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation
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Optimize last hidden weights wjk

Multivariate chain rule



Error Backpropagation

134

Repeat for all previous layers



Error Backpropagation
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Now that we have well defined gradients for each parameter, update using Gradient Descent



Error Back-propagation

• Error backprop unravels the multivariate chain rule and 
solves the gradient for each partial component separately.

• The target values for each layer come from the next layer.
• This feeds the errors back along the network.
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