
Neural Networks! (MLPs)

CS 445/545

What can I do with a NN?
A short list of applications:

(*) Binary classification, 1-in-K classification, regression

(*) General pattern recognition / statistical learning

(*) Character recognition, facial recognition

(*) Computer Vision: image classification, localization, scene

recognition, captioning

(*) Signal Processing: noise suppression, signal analysis

(*) Data compression

(*) NLP: machine translation, sentiment analysis

(*) Finance: statistical arbitrage, risk analysis

(*) AI: Q-Learning (reinforcement learning)

(*) Medicine: diagnosis, imaging, genomics

(*) Law: information retrieval

(*) Computational creativity applications

A bit of history
• 1960s: Rosenblatt proved that the perceptron learning rule converges

to correct weights in a finite number of steps, provided the training

examples are linearly separable.

• 1969: Minsky and Papert proved that perceptrons cannot represent

non-linearly separable target functions.

• However, they showed that adding a fully connected hidden layer makes

the network more powerful.

– I.e., Multi-layer neural networks can represent non-linear decision

surfaces.

• Later it was shown that by using continuous activation functions (rather

than thresholds), a fully connected network with a single hidden layer can

in principle represent any function.

• 1986: “rediscovery” of backprop algorithm: Hinton et al.

A bit of history

Linear separability

Feature 1

Feature 2

Hyperplane

In 2D:

w1x1 +w2x2 +w0 = 0

x2 = -
w1

w2

x1 -
w0

w2

A perceptron can separate data that is linearly separable.

Decision regions of a multilayer feedforward network. (From T. M. Mitchell, Machine Learning)

The network was trained to recognize 1 of 10 vowel sounds occurring in the context “h_d” (e.g., “had”, “hid”)

The network input consists of two parameters, F1 and F2, obtained from a spectral analysis of the sound.

The 10 network outputs correspond to the 10 possible vowel sounds.

Multi-layer neural network example

• Good news: Adding hidden layer allows more target functions to be

represented.

• Bad news: No algorithm for learning in multi-layered networks, and no

convergence theorem!

• Quote from Minsky and Papert’s book, Perceptrons (1969):

“[The perceptron] has many features to attract attention: its linearity; its intriguing

learning theorem; its clear paradigmatic simplicity as a kind of parallel computation.

There is no reason to suppose that any of these virtues carry over to the many-layered

version. Nevertheless, we consider it to be an important research problem to elucidate (or

reject) our intuitive judgment that the extension is sterile.”

• Two major problems they saw were:

1. How can the learning algorithm apportion credit (or blame)

to individual weights for incorrect classifications depending

on a (sometimes) large number of weights?

2. How can such a network learn useful higher-order features?

• Good news: Successful credit-apportionment learning algorithms

developed soon afterwards (e.g., back-propagation).

• Bad news: However, in multi-layer networks, there is no

guarantee of convergence to minimal error weight vector.

But in practice, multi-layer networks often work very well.

Summary

• Perceptrons can only be 100% accurate only on linearly separable problems.

• Multi-layer networks (often called multi-layer perceptrons, or MLPs) can represent

any target function.

• However, in multi-layer networks, there is no guarantee of convergence to

minimal error weight vector.

• One can show, mathematically, that one hidden layer is sufficient to

approximate any function to arbitrary accuracy with a NN. This is known as

the Universal Approximation Theorem (1989) (we say: “NNs are universal

function approximators”); RNNs are Turing Complete.

FIGURE 4.10 Schematic of the effective learning shape at each stage of the MLP.

A “two”-layer neural network

(activation

represents

classification)

(internal

representation)

(activations represent

feature vector for one

training example)

inputs

hidden layer

output layer

•Input layer — It contains those units (artificial neurons) which receive input from the outside
world on which network will learn, recognize about or otherwise process.
•Output layer — It contains units that respond to the information about how it’s learned any
task.
•Hidden layer — These units are in between input and output layers. The job of hidden layer is
to transform the input into something that output unit can use in some way.
Most neural networks are fully connected that means to say each hidden neuron is fully
connected to the every neuron in its previous layer(input) and to the next layer (output) layer.

Classification Pipeline

Different Types of Neural Networks

Perceptron — Neural Network having two input units and one output units with no hidden layers. These
are also known as ‘single layer perceptrons.
Radial Basis Function Network — These networks are similar to the feed forward neural network except
radial basis function is used as activation function of these neurons.
Multilayer Perceptron — These networks use more than one hidden layer of neurons, unlike single layer
perceptron. These are also known as deep feedforward neural networks.
Recurrent Neural Network — Type of neural network in which hidden layer neurons has self-connections.
Recurrent neural networks possess memory. At any instance, hidden layer neuron receives activation from
the lower layer as well as it previous activation value.
Long /Short Term Memory Network (LSTM) — Type of neural network in which memory cell is
incorporated inside hidden layer neurons is called LSTM network.
Convolutional Neural Network — Get a complete overview of Convolutional Neural Networks through our
blog Log Analytics with Machine Learning and Deep Learning.

https://www.xenonstack.com/blog/log-analytics-with-deep-learning-and-machine-learning

Example: ALVINN
(Pomerleau, 1993)

• ALVINN learns to drive an autonomous vehicle

at normal speeds on public highways.

• Input: 30 x 32 grid of pixel intensities from

camera

Each output unit correspond to a particular steering direction. The

most highly activated one gives the direction to steer.

(Note: bias units and

weights not shown)

Example: DeepMind (Deep Q learning for

Atari, 2014)

Activation functions

• Advantages of sigmoid function: nonlinear, differentiable, has

real-valued outputs, and approximates a threshold function.

Sigmoid activation function:

o = s(w× x), where s(z) =
1

1+ e-z

-2 .12

-1.5 .18

-1 .27

-.5 .38

0 .50

.5 .62

1 .73

1.5 .82

2 .88

w ×x s w ×x()

• The derivative of the sigmoid activation function is easily

expressed in terms of the function itself:

This is useful in deriving the back-propagation algorithm.

ds(z)

dz
= s(z)× (1-s(z))

s (z) =
1

1+ e-z
= (1+ e-z)-1

ds

dz
= -1(1+ e-z)-2 d

dz
(1+ e-z)

= -
1

(1+ e-z)2
-e-z()

=
e-z

(1+ e-z)2

s (z) × (1-s (z))

=
1

1+ e-z

æ

è
ç

ö

ø
÷ 1-

1

1+ e-z

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

=
1

1+ e-z

æ

è
ç

ö

ø
÷-

1

1+ e-z

æ

è
ç

ö

ø
÷

2

=
1

1+ e-z

æ

è
ç

ö

ø
÷-

1

(1+ e-z)2

æ

è
ç

ö

ø
÷

=
1+ e-z

(1+ e-z)2

æ

è
ç

ö

ø
÷-

1

(1+ e-z)2

æ

è
ç

ö

ø
÷

=
e-z

(1+ e-z)2

And thus the math Gods said…

ds(z)

dz
= s(z)× (1-s(z))

(activation

represents

classification)

(internal

representation)

(activations represent

feature vector for one

training example)

Neural network notation

(activation

represents

classification)

(internal

representation)

(activations represent

feature vector for one

training example)

Sigmoid function:

Neural network notation

Neural network notation

(activation

represents

classification)

(internal

representation)

(activations represent

feature vector for one

training example)

xi : activation of input node i.

hj : activation of hidden node j.

ok : activation of output node k.

wji : weight from node i to node j.

σ : sigmoid function.

For each node j in hidden layer,

For each node k in output layer,

hj = s w jixi +w j0
iÎ input layer

å
æ

è

ç
ç

ö

ø

÷
÷

ok = s wkjhj +wk0

jÎhidden layer

å
æ

è

ç
ç

ö

ø

÷
÷

Sigmoid function:

Classification with a two-layer neural network
(“Forward propagation”)

Assume two-layer networks (i.e., one hidden layer):

1. Present input to the input layer.

2. Forward propagate the activations times the weights to each node

in the hidden layer.

3. Apply activation function (sigmoid) to sum of weights times inputs

to each hidden unit.

4. Forward propagate the activations times weights from the hidden

layer to the output layer.

5. Apply activation function (sigmoid) to sum of weights times inputs

to each output unit.

6. Interpret the output layer as a classification.

Simple Example

Input: Hidden Layer:

x1 x2

h1

1

h2

0.4 0.1

.1 .2
−.2

.3
.1

−.4

o1

−.1−.2

o1
.1

−.5

x1 x21

0.4 0.1

.1 .2
−.2

.3
.1

−.4

0.547 0.470

o1

−.1−.2

o1
.1

−.5

Output Layer:

x1 x21

0.4 0.1

.1 .2
−.2

.3
.1

−.4

0.547 0.470

−.1−.2

.1

−.5

0.461 0.455

“Softmax” operation
Often used to turn output values into a probability

distribution

x1 x21

0.4 0.1

.1 .2
−.2

.3
.1

−.4

0.547 0.470

−.1−.2

.1

−.5

0.461 0.455

ysm (oi) =
eoi

eok

k=1

K

å
,

where K is the number of output units.

ysm =

.501

ysm =

.499

What kinds of problems are suitable for

neural networks?

• Have sufficient training data

• Long training times are acceptable

• Not necessary for humans to understand learned target

function or hypothesis

Advantages of neural networks

• Designed to be parallelized (e.g. split minibatches, use

GPUs)

• Robust on noisy training data

• Fast to evaluate new examples

Training a multi-layer neural network
Repeat for a given number of epochs or until accuracy on training data is

acceptable:

For each training example:

1. Present input to the input layer.

2. Forward propagate the activations times the weights to each node

in the hidden layer.

3. Forward propagate the activations times weights from the hidden

layer to the output layer.

4. At each output unit, determine the error.

5. Run the back-propagation algorithm one layer at a time to update

all weights in the network.

Training a multilayer neural network with back-

propagation

(stochastic gradient descent)

• Suppose training example has form (x, t)

(i.e., both input and target are vectors).

• Error (or “loss”) E is sum-squared error over all output units:

• Goal of learning is to minimize the mean sum-squared error

over the training set.

E(w) =
1

2
(tk

kÎoutput layer

å -ok)
2

Training a multilayer neural network with back-

propagation

(stochastic gradient descent)

• Idea -- Minimize sum-of-squares error

over the entire training data set.

• Note that we “tune” the parameters of the NN (the weights) during

training.

E(w) =
1

2
(tk

kÎoutput layer

å -ok)
2

The weights of the network are trained so that the error goes downhill until it reaches a local minimum,
just like a ball rolling under gravity.

Geoffrey Hinton: NN training with MNIST

Aiva: AI Composed Music (2017)

Later in the slides we will derive the back-propagation

equations (you can also find a derivation in the text).

The derivation can be somewhat challenging, however, you

only need one basic tool to derive them: multi-variate

differentiation (e.g. chain rule, partial derivatives).

For now, let’s just walk through the basic algorithm.

• Initialize the network weights w to small random numbers (e.g.,

between −0.05 and 0.05).

• Until the termination condition is met, Do:

– For each (x,t) training set, Do:

1. Propagate the input forward:

– Input x to the network and compute the activation hj of

each hidden unit j.

– Compute the activation ok of each output unit k.

Backpropagation algorithm

(Stochastic Gradient Descent)

2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

2. Calculate error terms

For each output unit k, calculate error term k :

For each hidden unit j, calculate error term j :

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

3. Update weights

Hidden to Output layer: For each weight wkj

where

Input to Hidden layer: For each weight wji

where

wkj¬wkj +Dwkj

Dwkj =hdkhj

wji¬wji +Dwji

Dw ji =hd jxi

– Forwards Phase: compute the activation of each neuron in the

hidden layers and outputs using:

– Backwards pass

– Compute the error at the output using:

– Compute the error at the hidden layer(s) using:

– Update the output layer weights using:

where

– Update the hidden layer weights using:

where

– (If using sequential updating) randomize the order of the input

vectors so that you don’t train in exactly the same order each

iteration.

– Train until stopping condition satisfied.

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

wkj¬wkj +Dwkj
Dwkj =hdkhj

wji¬wji +Dwji
Dw ji =hd jxi

Backpropagation Algorithm (BP)

hj = s w jixi +w j0
iÎ input layer

å
æ

è

ç
ç

ö

ø

÷
÷

ok = s wkjhj +wk0

jÎhidden layer

å
æ

è

ç
ç

ö

ø

÷
÷

• The Aim is to balance between Generalization & Memorization

(Minimizing cost function is not necessarily good idea).

– Using two (or three) disjoint sets:

• Training-Testing Sets

• Training-Testing-Validation Sets

– As long as the error for the training-testing set decreases,

training continues (unless max # iterations achieved).

– When the error begins to increase , the net is starting to

memorize.

Training Time

• Connectionism

– Biological Issues

• No excitatory or inhibitory for real neurons

• No Global connection in MLP

• No backward propagation in real neurons

– Useful in parallel hardware implementation

• Computational Efficiency

– Learning Algorithm is said to be computationally efficient , when

its complexity is polynomial.

– The BP algorithm is computationally efficient.

• In MLP with a total of W weights, its complexity is linear in W

• Local Minima

– Presence of local minima is a significant issue,

particularly for high dimensional data.

Some Pros and Cons of BP

Batch (or “True”) Gradient Descent: Change weights

only after averaging gradients from all training examples:

Weights from hidden units to output units:

Weights from input units to hidden units:

Mini-Batch Gradient Descent: Change weights only after

averaging gradients from a subset of B training examples:

At each iteration t: Get next subset of B training examples, Bt ,

until all examples have been processed.

Weights from hidden units to output units:

Weights from input units to hidden units:

• Recall that BP is an instance of “hill climbing” (e.g. gradient descent).

With non-convex problems we are not guaranteed to settle into a

global minimum.

• If we think of the analogy of a ball rolling down a hill, we can

consider giving the ball some “weight” by implementing a

momentum term.

• The purpose of the momentum term is to mitigate the instance of

getting “stuck” in a local minimum (i.e. a “valley”) and to avoid

performance oscillations during training.

Local Minima, Momentum, etc.

Momentum

Introduce a momentum term, in which change in weight is dependent on

past weight change:

(hidden-to-output)

(input-to-hidden)

where t is the iteration through the main loop of back-propagation.

α is a parameter between 0 and 1; α determines the “strength” of

the momentum term.

The idea is to keep weight changes moving in the same direction.

Update weights, with momentum

Hidden to Output layer: For each weight wkj

where

Input to Hidden layer: For each weight wji

where

wkj¬wkj +Dwkj

wji¬wji +Dwji

Backprop Example

1 0 Label: 0.9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

Target: .9

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x2

h1

1

h2

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

Target: .9

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9

“Forward Phase” – hidden layers

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

o1

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

Target: .9

“Forward Phase” – output layer

1 0

1 0 Label: .9

0 1 Label: -.3

Training set: Test set:

1 1 Label: .8

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9

“Forward Phase” – output layer

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55
Output weight Updates

.552

Target: .9

d j ¬ hj (1-hj) wkj
kÎoutput units

å dk

æ

è

ç
ç

ö

ø

÷
÷

Hidden weight Updates

“Backward Phase”

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

“Backward Phase”

Output weight Updates
Hidden weight Updates

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

“Backward Phase”

Output weight Updates
Hidden weight Updates

1 0

1 0 Label: Positive

0 1 Label: Negative

Training set: Test set:

1 1 Label: Positive

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9): Hidden

unit j=1

1 0

x1 x21

.1 .1

.1

.1

.1

.1

1

.1

.1

.1

.55 .55

.552

Target: .9 Calculate error terms:

wk=1, j=1

1 = .1+.0095 = .1095

wk=1, j=2

1 = .1+.0095 = .1095

wk=1, j=0

1 = .1+.0172 = .1172

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

1 0

x1 x21

.1 .1

.1

.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

Update hidden-to-output weights (learning rate = 0.2; momentum = 0.9):

wk=1, j=1

1 = .1+.0095 = .1095

wk=1, j=2

1 = .1+.0095 = .1095

wk=1, j=0

1 = .1+.0172 = .1172

1 0

x1 x21

.1 .1

.1

.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum =

0.9): wj=1,i=0

1 = .1+.0004 = .1004

wj=1,i=1

1 = .1+.0004 = .1004

Dw j=1,i=2

1 = (.2) .002()(0)+ (.9)(0) = 0 w j=1,i=2

1 = .1

1 0

x1 x21

.1004
.1004

.1

.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum =

0.9): wj=1,i=0

1 = .1+.0004 = .1004

Dw j=1,i=2

1 = (.2) .002()(0)+ (.9)(0) = 0

wj=1,i=1

1 = .1+.0004 = .1004

w j=1,i=2

1 = .1

1 0

x1 x21

.1004
.1004

.1

.1

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

Update input-to-hidden weights (learning rate = 0.2; momentum = 0.9): Hidden

unit j=2

Dw j=2,i=1

1 = (.2) .002()(1)+ (.9)(0) = .0004

Dw j=2,i=0

1 = (.2) .002()(1)+ (.9)(0) = .0004 wj=2,i=0

1 = .1+.0004 = .1004

Dw j=2,i=2

1 = (.2) .002()(0)+ (.9)(0) = 0

wj=2,i=1

1 = .1+.0004 = .1004

w j=2,i=2

1 = .1

1 0

x1 x21

.1004
.1004

.1004

.1004

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: .9 Calculate error terms:

0 1

x1 x21

.1004
.1004

.1004

.1004

.1095

.1

1

.1172

.1

.1095

.55 .55

.552

Target: -.3

Note: This is time step 2, so momentum

term will be nonzero…

Another detailed backprop example:

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/

Play with a Neural Network

http://playground.tensorflow.org/

Example: Face recognition

(From T. M. Mitchell, Machine Learning, Chapter 4)

Code (C) and data at http://www.cs.cmu.edu/~tom/faces.html

• Task: classify camera images of various people in various poses.

• Data: Photos, varying:

– Facial expression: happy, sad, angry, neutral

– Direction person is facing: left, right, straight ahead, up

– Wearing sunglasses?: yes, no

Within these, variation in background, clothes, position of face

for a given person.

an2i_right_sad_sunglasses_4

an2i_left_angry_open_4

glickman_left_angry_open_4

Design Choices

• Input encoding

• Output encoding

• Network topology

• Learning rate

• Momentum

(Note: bias unit and

weights not shown)

• Preprocessing of photo:

– Create 30x32 coarse resolution version of 120x128 image

– This makes size of neural network more manageable

• Input to neural network:

– Photo is encoded as 30x32 = 960 pixel intensity values,

scaled to be in [0,1]

– One input unit per pixel

• Output units:

– Encode classification of input photo

• Possible target functions for neural network:

– Direction person is facing

– Identity of person

– Gender of person

– Facial expression

– etc.

• As an example, consider target of “direction

person is facing”.

Target function
• Target function is:

– Output unit should have activation 0.9 if it corresponds to

correct classification

– Otherwise output unit should have activation 0.1

• Use these values instead of 1 and 0, since sigmoid units can’t

produce 1 and 0 activation.

Other parameters

• Learning rate = 0.3

• Momentum = 0.3

• If these are set too high, training fails to converge on network

with acceptable error over training set.

• If these are set too low, training takes much longer.

Training

• For maximum number of epochs:

– For each training example

• Input photo to network

• Propagate activations to output units

• Determine error in output units

• Adjust weights using back-propagation algorithm

• Demo of code
(from http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html)

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html)

Weights from each pixel to hidden

units 1, 2, 3 (white = high, black = low)

Weights from each hidden unit

to four output units

Not shown: bias

unit (connected

to all non-input units)

After 100 epochs of training.

(From T. M. Mitchell, Machine Learning)

• Hidden unit 2 has high positive weights from right side of face.

• If person is looking to the right, this will cause unit 2 to have high activation.

• Output unit right has high positive weight from hidden unit 2.

Understanding weight values

• After training:

– Weights from input to hidden layer: high positive in certain

facial regions

– “Right” output unit has strong positive from second hidden

unit, strong negative from third hidden unit.

• Second hidden unit has positive weights on right side of

face (aligns with bright skin of person turned to right) and

negative weights on top of head (aligns with dark hair of

person turned to right)

• Third hidden unit has negative weights on right side of

face, so will output value close to zero for person turned to

right.

Hidden Units

• Two few – can’t represent target function

• Too many – leads to overfitting

Use “cross-validation” to decide number of hidden units.

Weight decay

• Modify error function to add a penalty for magnitude of

weight vector, to decrease overfitting.

• This modifies weight update formula (with momentum) to:

where λ is a parameter between 0 and 1.

This kind of penalty is called “regularization”; common to use

L1 or L2 regularization (references norm used for “penalty”

term – if you’re a “Bayesian” this is equivalent to putting a prior

centered at zero on the network weights).

Other important topics for NNs
Please feel free to talk to me about any of these more advanced topics or

investigate them on your own:

• Q: What does a NN “learn”? Should it be treated as a black box or should

it be interpretable?

• Deep Learning and Hierarchical Models Learning

• Other methods for training the weights; different loss functions and

optimization techniques (e.g. GAs)

• Different architectures: RNNs, CNN, LSTMs, etc.

• Sparse models (e.g. using “dropout”)

• Adversarial Networks/Generative Networks

Other important topics for NNs

(*) Here is a derivation (later slides contain a derivation with

visuals) of BP (note our text also has a derivation pp. 101-

108). Time permitting, I’ll walk us through this. If you require

further details don’t hesitate to ask for help.

(*) “Will this be on the exam?” No, but understanding the

material at this level makes you a better person – moreover, it

will make your friends envious, your mother will love you

more, and strangers at cocktail parties will be drawn to you

like a magnet. You’re welcome.

Backprop Derivation

What do we need to derive the backpropagation (BP) algorithm?

Only a basic knowledge of differential Calculus!

(*) Recall that we will use BP to update weights in both the

hidden layer(s) and the output layer of our NN.

(*) We use the chain rule to “propagate” the error back

through the network (following the “forward phase”).

obligatory backprop

meme

Backprop Derivation

(*) We’ll call the current input x (a vector) and the output y; the activation

function (throughout the network) will be denoted g(∙).

(*) For simplicity, let’s assume the NN contains only a single hidden layer (BP

extends naturally for more layers); denote the weights of the network v and

w, for the first and second layers respectively.

(*) Recall that “learning” entails tuning the weights of the network.

Backprop Derivation

(*) We wish to minimize the error function:

Where y is the output, t is the target; N is the data set size and L is the

number of nodes (in a given layer).

(*) We use gradient descent. In particular, we wish to know how the error

function changes with respect to the different weights:

*Note: are fixed indices.

2

2

1 1 0

1 1

2 2

N N L

k k ik i k

k k i

E w y t g w x t

E

w

,j k

Backprop Derivation

(*) Let (the sigmoid function); recall that:

(*) Using the chain rule, we have:

where:

The equation above says that the error at the output changes as we vary

the second-layer weights as a function of the error change with respect to

the input to the output neurons and the change in the input with respect to

the weights.

1
()

1 h
a g h

e

 1a a a

hE E

w h w

0

M

j

j

h w a

The input to output-layer

neuron

Backprop Derivation

(*) Consider the (2)nd factor:

hE E

w h w

Why?

0

0

M

j j M
j j j

j

w a
w ah

a
w w w

Backprop Derivation

(*) Consider the (2)nd factor:

(*) Last step holds because , except in the case:

hE E

w h w

0
jw

w

j

h
a

w

Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows:

(*) By the chain rule, we have:

hE E

w h w

 O

E

h

 O

yE E

h y h

Backprop Derivation

(*) Consider the (1)st factor, which we short-hand as follows:

(*) By the chain rule, we have:

(*) Also, note that:

hE E

w h w

 O

E

h

 O

yE E

h y h

0

M
output hidden

j j

j

y g h g w a

Backprop Derivation

Continuing…

hE E

w h w

 O

yE E

h y h

output

output

O output output output

g hE E
g h

g h h g h

Backprop Derivation

Continuing…

hE E

w h w

 O

yE E

h y h

output

output

O output output output

g hE E
g h

g h h g h

2

1

1

2

N
output output

koutput
k

g h t g h
g h

Backprop Derivation

Continuing…

hE E

w h w

 O

yE E

h y h

output

output

O output output output

g hE E
g h

g h h g h

2

1

1

2

N
output output

koutput
k

g h t g h
g h

 output output

kg h t g h

Backprop Derivation

Continuing…

hE E

w h w

 O

yE E

h y h

output

output

O output output output

g hE E
g h

g h h g h

2

1

1

2

N
output output

koutput
k

g h t g h
g h

 output output output

k k kg h t g h y t g h

Backprop Derivation

In Summary…
hE E

w h w

 output

k ky t g h a

Backprop Derivation
In Summary…

(*) Recall, a “gradient descent” based weight update has the form:

(*) Cool, but this doesn’t look like the formulas for BP you showed us before.

hE E

w h w

 output

k ky t g h a

E
w w

w

 output

k kw y t g h a

Backprop Derivation

(*) Recall that g is the sigmoid! So what’s our new formula?

E
w w

w

 output

k kw y t g h a

Backprop Derivation
E

w w
w

 output

k kw y t g h a

 1k k k kw y t y y a

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!

Backprop Derivation
E

w w
w

 output

k kw y t g h a

 1k k k kw y t y y a

ds(z)

dz
= s(z)× (1-s(z))

(*) This is the final formula for the BP update for the output layer weights!

Hold on a second.

You still need to derive the hidden

layer weight updates!

Backprop Derivation
(*)Short version of input-to-hidden layer weight updates for BP:

We compute:

(*) This formula comes from the fact that each hidden node contributes to

the activation of all the output nodes, and so we need to consider all of these

contributions.

(*) From here, using the chain rule, differential properties of the sigmoid and

the NN topology, it is not difficult (as we did before, analogously), to show:

1 1

output outputN N
k k

h Ohidden output hidden hidden
k kk

h hE E
k

h h h h

1

1
N

h O

k

a a w

Backprop Derivation

(*)This yields the following update rule for vertex :

Derivation complete! (at least for NNs with one hidden layer)

1

1
N

h O

k

a a w

v

1

1
N

O

k

E
v v

v

v a a w x

Backprop Derivation Redux (with visuals)

Types of Neurons

Linear Neuron

Logistic Neuron

Perceptron

Potentially more. Require a convex
loss function for gradient descent training.

106

Multilayer Networks

• Cascade Neurons together

• The output from one layer is the input to the next

• Each Layer has its own sets of weights

107

Linear Regression Neural Networks

• What happens when we arrange linear
neurons in a multilayer network?

108

Linear Regression Neural Networks

109

• Nothing special happens.
– The product of two linear transformations is itself a linear

transformation.

Neural Networks

• We want to introduce non-linearities to the network.
– Non-linearities allow a network to identify complex regions

in space

110

Linear Separability

• 1-layer cannot handle XOR

• More layers can handle more complicated spaces – but
require more parameters

• Each node splits the feature space with a hyperplane

• If the second layer is AND a 2-layer network can
represent any convex hull.

111

Feed-Forward Networks

• Predictions are fed forward through the
network to classify

112

Feed-Forward Networks

• Predictions are fed forward through the
network to classify

113

Feed-Forward Networks

• Predictions are fed forward through the
network to classify

114

Feed-Forward Networks

• Predictions are fed forward through the
network to classify

115

Feed-Forward Networks

• Predictions are fed forward through the
network to classify

116

Feed-Forward Networks

• Predictions are fed forward through the
network to classify

117

Error Backpropagation

• We will do gradient descent on the whole
network.

• Training will proceed from the last layer to the
first.

118

Error Backpropagation

• Introduce variables over the neural network

119

Error Backpropagation

• Introduce variables over the neural network

– Distinguish the input and output of each node

120

Error Backpropagation

121

Error Backpropagation

122

Training: Take the gradient of the last component and iterate backwards

Error Backpropagation

123

Empirical Risk Function

Error Backpropagation

124

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

125

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

126

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

127

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

128

Optimize last layer weights wkl

Calculus chain rule

Error Backpropagation

129

Optimize last hidden weights wjk

Error Backpropagation

130

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

131

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

132

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

133

Optimize last hidden weights wjk

Multivariate chain rule

Error Backpropagation

134

Repeat for all previous layers

Error Backpropagation

135

Now that we have well defined gradients for each parameter, update using Gradient Descent

Error Back-propagation

• Error backprop unravels the multivariate chain rule and
solves the gradient for each partial component separately.

• The target values for each layer come from the next layer.
• This feeds the errors back along the network.

136

