

_ 500 Service Unavallable Error - Windows Internet Explorer

\ - r - .
gg'l. Wi/ o, omazon.com Duopined £nlrepresieir s Steps-Sutteisiu-Star 20 /0o 11 18052804 e fur 1L slTFEEG 'lﬁ N4 Xl. VG Sedwre Seard

Me Edt Vew Favorites Took Meb

f Fawetes 3 | EdtoriUnks v | News v | SewchEngnes* P BestoftheWed B IntemetStyt o SugpestedGies v @ Weblinterfacelogin B Vieh
. 500 Service Unavalable Error | | I S N

amazoncom

Oops!

We're very sorry, but we're having trouble doing what you just
asked us to do, Please give us another chance--ciick the Back
button on your browser and try your request agamn. Or start

from the beginning on our homapage.

) 500 Service Unavallable Error - Windows Internet Explorer

NN
€19 ML omazon com

Me Edt Vew Favorites Took Meb
¢ Faveites Editonal Links v News v

& 500 Service Unavalkable Error j

dmazon.com

el
VOpS!

We're very sorry, but we're
asked us to do, Please give
button on your browser and
from the beginning on our holld

.3

%

f Q
1 N "
. ; b

)

|¢“‘. fC%":

Ui 's

Al

QT (Vi "

A\
v o ‘l‘\'v

Neurons & the Brain

neuron cell body

ason of nucleus

previous
neuron

axon dendrites of
tips next neuron

synapse electrical
signal
dendrites
%
o (2) =(1+e) i
1.0 - - - - %
= X, = LI
‘./\'F’ q_/ 0 (;
N S~
X3
humans don’t
Yy, =0 b. + Wr.. X,
need features J J et e

Copyright © 2014 Victor Lavrenko b 4

Dendrites
Collect
electrical
signals

Cell body
Contains
nucleus and
organelles

Information flow through neurons

Axon

Passes electrical signals
on to dendrites of another
cell or to an effector cell

2nd-order

neuron

3rd-order
neuron in
mantle

4

\

U]

Neurons & the Brain

Presynaptic
(2nd order)

ganglion

Stellate
nerve with
giant axon

Postsynaptic
(3rd order)

]
Squid giant axon = 800 pm diameter

———06——— Mammalian axon = 2 pm diameter

Hebb’s Postulate

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”

» In other words: if two neurons fire “close in time”
then strength of synaptic connection between
them increases.

Aw; () =nvy,; 8@, .1,)

“close” |
‘r—H time

V, 4
! v)

« Weights reflect correlation between firing events.

Neurons & the Brain

— Human brain contains ~10! neurons
— Each individiaul neuron connects to ~10% neuron

— ~10% total synapses!

Brain Computer
Number of Processing Units ~ 10" ~ 10?
Type of Processing Units Neurons Transistors

Form of Calculation

Data Storage

Response Time

Processing Speed

Potential Processing Speed
Real Processing Speed

Resilience

Power Consumption per Day

Massively Parallel
Associative
~ 107%s
Very Variable
~ 10'* FLOPS ™
~ 10'* FLOPS
Very High
200

Generally Serial
Address-based
~ 107"
Fixed
~ 10'®* FLOPS
~ 10" FLOPS
Almost None

300W 12

Neurons & the Brain

— Is the singularity near?

.
o The accelerating pace of change... 1 2045
10 — SU!DZISSCS
World H brainpower
P— — O uman lent
Agricultural 8,000 Industrial [1, Lght | 1 Moon ‘ equiva
ti - ti 120 years - 90 YOS 22 yours Wide «— 9jous =—e gonome to that of
et = oo . tending Web sequenced all human
brains
combined
Surpasses
bragnpower
- -
@) ... and exponential growth € ... will lead of raman
- - "
in computing power... to the
Computer technology, shown Singularity [E—
here climbingdramaticaly JiSSS 44443 N a4 . R (L R
by powers of 10, Is now
progressing more each Apple Il
hour than it did in its At @ price of $1,208, Noddia Tedla
entire first 90 years the compact GPUAPC
machine was one of Mac P
UNIVAC 1 the first massively " e Surpasses
The first commer- popular personal * 10,000,000,000 brainpower of
cially marketed computers mouse in 2015
computer, used to m«w
tabulate the U.S.
COMPUTER RANKINGS The electronic Census, occupied
D:,’ $1.000 sk computer, with 943 cu. f.
1,500 vacuum
tubes, helped the + 100,000
Analytical engine British crack German) w::"m" 386
Never fully built, codes during WW Il
Charles Bsbbage's
Invention was
designed to solve S Power Mac G4
computational and The first personal
logical problems DMC B e o 1 computer to deliver X
‘ Bu EDWC poa more than 1 billion
O3 SSEC floating-point
1M Tatuiator operations per
Mallesith 2use 2
Tabutator ° ©® Natonal second
o £lks 3000
- ~ 0.00001
ELECTROMECHANICAL s = RELAYS o= VACUUM TUBES == «—TRANSISTORS ~= s INTEGRATED CIRCUITS ——rrrep

T T T T

T T T T
1900 192¢ 1940 1960 1980 2000 2011 2020 2045

Neurons & the Brain

Revolution aemes wie e CS dodlds Omew
1N EZYPE Moo bt W s vt | e onars

TYPE | CIVILIZATION hamessesall TYPE Il CIVILIZATION TYPE 11l CIVILIZATION

the resources of a planet. Carl Sagan harnesses all the radiation of astar. harnesses all the resources of a

estimated that Earth rates about 0.7 Humans might reach Typellin a galaxy. Humans might reach Type Il

on the scale, few thousand years. in a few hundred thousand to a
million years.

— The Kardashev Scale ——

McCulloch & Pitts Neuron Model (1943)

Fixed input x] O—t

Activation
function

Output

[nputs < el+) ——b

Summing
junction

Synaptic
weights
(including bias)

(3) Components:
(1) Set of weighted inputs {w;} that correspond to synapses
(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects
the electrical charge)
(3) An activation function (initially a threshold function) that decides whether the neuron
fires (“spikes”) for the current inputs.

McCulloch & Pitts Neuron Model (1943)

— Limitations & Deviations of the M-P Neuron Model:

(*) Summing is linear.

(*) No explicit model of “spike trains” (sequence of pulses that
encodes information in biological neuron).

(*) Threshold value is usually fixed.

(*) Sequential updating implicit (biological neurons usually update
themselves asynchronously)

(*) Weights can be positive (excitatory) or negative (inhibitory);
biological neurons do not change in this way.

(*) Real neurons can have synapses that link back to themselves
(e.g. feedback loop) — see RNNSs (recurrent neural networks).

(*) Other biological aspects ignored: chemical concentrations,
refractory periods, etc.

Perceptrons as simplified “neurons”
Input is (X4, Xy, ... X,)
Weights are (wy, W, ... W,)

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

Perceptrons as simplified “neurons”

Input is (X4, Xy, ... X,)
Weights are (wy, W, ... W,)

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold

then y=1, else y =0

Perceptrons as simplified “neurons”

Input is (X4, Xy, ... X,)
Weights are (wy, W, ... W,)

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold

then y=1, else y =0

Perceptrons as simplified “neurons”

W, is called the “bias” i
o is called the Input is (Xy, X, ... X;)

—W, is called the “threshold” -
W, 1s called the Weights are (wy, Wy, ... W,)

input

3 Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold

then y=1, else y =0

Perceptrons as simplified “neurons”

W, is called the “bias” i
o is called the Input is (Xy, X, ... X;)

—W, is called the “threshold” -
W, 1s called the Weights are (wy, Wy, ... W,)

input

3 Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold
then y=1, else y=0
If wixg +wox, +.+w,x, >=w,

then y =1, else y=0

Perceptrons as simplified “neurons”

W, is called the “bias”

—W, is called the “threshold”

input

Input is (X4, Xy, ... X,)
Weights are (wy, W, ... W,)

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold
then y=1, else y=0
If wixg +wyx, +..+w,x, >-w,
then y =1, else y=0
If wy +wixg +wox, +..+w,x, >0

then y=1, else y=0

Q: Why do we introduce a bias term?

Perceptrons as simplified “neurons”

W, is called the “bias” i
o is called the Input is (Xy, X, ... X;)

—W, is called the “threshold” -
W, 1s called the Weights are (wy, Wy, ... W,)

input

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold
then y=1, else y=0
If wixg +wyx, +..+w,x, >-w,
then y =1, else y=0
If wy +wixg +wox, +..+w,x, >0

then y=1, else y=0

Perceptrons as simplified “neurons”

W, is called the “bias” i
o is called the Input is (Xy, X, ... X;)

—W, is called the “threshold” -
W, 1s called the Weights are (wy, Wy, ... W,)

input

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

If wx, +w,x,+...+w x >threshold
then y=1, else y=0
If wixg +wyx, +..+w,x, >-w,
then y =1, else y=0
If wy +wixg +wox, +..+w,x, >0

then y=1, else y=0

If wex, twx, +w,x, +...+wx >0

then y =1, else y=0

Perceptrons as simplified “neurons”

W, is called the “bias” i
o is called the Input is (Xy, X, ... X;)

—W, is called the “threshold” -
W, 1s called the Weights are (wy, Wy, ... W,)

input

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

output = y(x) = a(wex, t wix; + w,x, +...+w,x,)

0 if z<0

where a(z):{ 1 if 20

Perceptrons as simplified “neurons”

W, is called the “bias” i
o is called the Input is (Xy, X, ... X;)

—W, is called the “threshold” -
W, 1s called the Weights are (wy, Wy, ... W,)

input

Output y is 1 (“the neuron fires”) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

output = y(x) = a(wex, t wix; + w,x, +...+w,x,)

0 if z<0

where a(z) = iz
1ifz>0
Let X = (Xgy Xq, Xpy ooe X))

W = (Wo, Wy, Wy, ... Wy)

Perceptrons as simplified “neurons”

W, is called the “bias”

—W, is called the “threshold”

input

Input is (X4, Xy, ... X,)
Weights are (wy, W, ... W,)

Outputy is +1 (“the neuron fires™) if the sum of the
Inputs times the weights is greater or equal to the
threshold:

output = y(x) = a(wex, + wix; + w,x, +...+w,x,)

0 if z<0

where a(z) = 2
1ifz>0
Let X = (Xgy Xq, Xpy ooe X))

W = (Wo, Wy, Wy, ... Wy)

Then:
y=a(wx)

Decision Surfaces

« Assume data can be separated into two classes, positive and
negative, by a linear decision surface.

« Assuming data is n-dimensional, a perception represents a
(n—1)-dimensional hyperplane that separates the data into two
classes, positive (1) and negative (0).

Feature 1

Feature 2

Feature 1

Feature 2

M

Feature 1

Feature 2

Example where line won’t work?
N

Feature 1

Feature 2

Example

* What Is the predicted class y?

Example

 What is the predicted class y?

>

y=a(w-

) =a((—1)(1) +.4010) + (—4)(-1) =a(0.7) =1

Geometry of the perceptron

Hyperplane

In 2D:
wyx, T w,x, +w, =0

Feature 1

Feature 2

Input instance: XX = (X4, X5, ... X,),
with target class ¢ T {0,1}

Input instance: XX = (X4, X5, ... X,),
with target class ¢ T {0,1}

Goal is to use the training data to learn a set
of weights that will:

(1) correctly classify the training data

(2) generalize to unseen data

Perceptron Learning

Learning is often framed as an optimization problem:

* Find w that minimizes average “loss”:

12 b i
J(W)_—aL(W1X A)
M k=1
where M is number of training examples and L is a “loss” function.

One part of the “art” of ML 1s to define a good loss function.

 Here, define the loss function as follows:
Let y = a(wxx)

L(w,x*,)= %(t" —y)2 "squared loss"

How to solve this minimization problem? Gradient descent.

Aside: Convex Regions

* Convex: for any pair of points x, and x, within
a region, every point x. on a line between x,
and x, is in the region

Aside: Convex Functions

* Convex: for any pair of points x, and x, within
a region, every point x. on a line between x,
and x, is in the region

Aside: Convex Functions

* Convex: for any pair of points x, and x, within
a region, every point x. on a line between x,
and x, is in the region

Aside: Convex Functions

e Convex functions have a single maximum and
minimum!

* How does this help us?

. (early) GUAranteed optimality of Gradient
Descent

Gradient Descent

 The Gradient is defined (though we can’t solve
directly) vir = 55 3 2t~ g (-5 07 m)r: =0
e Points in the direction of fastest increase

Vol

Gradient Descent

* Gradient points in the direction of fastest
increase e % ; o i Ee . e
 To minimize R, move in the opposite direction

Vol

Gradient Descent

* Gradient points in the direction of fastest
increase e % ; o i Ee . e
 To minimize R, move in the opposite direction

y

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* (nearly) guaranteed to converge to the

minimum
4

Gradient Descent

* Initialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,

* (nearly) guaranteed to converge to the
minimum

Gradient Descent

* Initialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,

* (nearly) guaranteed to converge to the
minimum

Gradient Descent

* Initialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,

* (nearly) guaranteed to converge to the
minimum

Gradient Descent

* Initialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,

* (nearly) guaranteed to converge to the
minimum

Gradient Descent

* Initialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,

* (nearly) guaranteed to converge to the
minimum

Gradient Descent

* Initialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,

* (nearly) guaranteed to converge to the
minimum

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

y

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

YR

N
N—-1

1 & = 1T
VoR = N %3 2(t; — g(0° x;))(—1)g' (6" z;)x; =10

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

v7

N—-1

1 & = 1T
VoR = N %3 2(t; — g(0° x;))(—=1)g' (6" z;)x; =20

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

YR

N
N—-1

1 & = 1T
VoR = N %3 2(t; — g(0° x;))(—1)g' (6" z;)x; =0

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

v7

N—-1

1 & = 1T
VoR = N %3 2(t; — g(0° x;))(—=1)g' (6" z;)z; =60

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
* Can oscillate if n is too large

Gradient Descent

* |nitialize Randomly 0o = random
* Update with small steps 6,.1 =6, — nVR|s,
 Can stall if -v,r is ever 0 not at the minimum

—VoR =0

Perceptron Learning

* Find w that minimizes average “loss”:

i 1 Aé[i g
M k=1
where M is number of training examples and L is a “loss” function.

* Here, define the loss function as follows:

Let y = a(w¥x)

L(w,x*,¢") = %(tk —y)2 "squared loss"

How to solve this minimization problem? Gradient descent.

Gradient descent

 To find direction of steepest descent, take
the derivative of J(w) with respect to w.

A vector derivative 1s called a “eradient’:
VI(w) V.J(W) :{ oJ oJ a‘]j

ow, ow, Ow

» Here is how we change each weight:

Fori=0ton:
w, <—w, +Dw,
where
Dw. = - a_J

“True” (or "batch”) gradient
descent

One epoch = one iteration through the training data.

After each epoch, compute average loss over the training set:

158 ol & 4 2
J(W)—MaL(W’katk)—Ma—(tk‘y)

k=1 k=1 2

Change the weights to move in direction of steepest descent in
the average-loss surface:

J(w) A

From T. M. Mitchell, Machine Learning

 Problem with true gradient descent:

Training process is slow.

Training process can land in local optimum.

« Common approach to this: use stochastic
gradient descent:

— Instead of doing weight update after all training examples have
been processed, do weight update after each training example has
been processed (i.e., perceptron output has been calculated).

— Stochastic gradient descent approximates true gradient descent
Increasingly well as n — 1/o0.

Derivation of perceptron learning rule

(stochastic gradient descent)
We defined J = (1 -)’

Here, use

J=%(t—(w><x))2

e = y=a(w><xk)

- y=wrx*

%(- (Wyx, +W,x, + S+ W x))

Then,

17
Tw,

=—(1-(wrx))x/

oJ
. AW, =20 = @ -)t
But we'll use naw n Y

=~ (¢-y)xt This 1s called the “perceptron learning rule”

Perceptron Learning Algorithm

Start with small random weights, w = (W, Wy, W,, ..., W,)), where W, T[—.05, .05]

Repeat until accuracy on the training data stops increasing or for a maximum
number of epochs (iterations through training set):

For k = 1 to M (total number in training set):
1. Select next training example (x, t¢).
2. Run the perceptron with input x€ and weights w to obtain y.

3. If y#1¢k, update weights:

fori=0,...,n: ; Note that bias weight w, is changed just like all other
weights!

W <— W + Aw.
where

AW, =77 (t - y“)x* (orequivalently : Aw, = -7 (y“ —t“)x)

1. Gotol.

Example: logical OR OR
Training set:
((0, 0), 0)
(0,1),1)
(1,0), 1)

(1,1),1))

O
O—»

W, <— W, +Aw,
Initial weights: where

{wg, Wy, Wy} ={-.05, 0.2, 0.2) AW, =7 (y* —t*)x

Apply perceptron learning rule for one epoch with n = 0.25

(*) Please note that the text uses “-1” for the extra input weight that
corresponds with the bias (w,). It is slightly more conventional to
use “+1” so please note we will also use this convention from time to
time. (Either value generates a model of comparable expressive
nower)

Example: logical OR

OR
LS
()r—»

Training set:
(0.0),0) 1
(0,1), 1)
(1,0), 1) 5
(1,1),1)) QL £ .~
02
Initial weights:
{wy, wy, w,y} = {-.05, -0.2, 0.2)
Input : (0,0) Input : (0,1)

W, :—0.05-0.25x(1-0)x-1=0.2 w,:0.2-0.25x(0-1)x-1=—.05

W, :=0.02-0.25x (1-0)x0=—0.02 w, ;~0.02—0.25x (0—1)x 0 = —0.02
W, :0.02-0.25x (1-0)x0=0.02 w,:0.02—0.25x(0—1)x1=0.27

No weight updates are needed for inputs: (1,0) and (1,1); why?

Perceptron Learning

Does the Perceptron Learning Algorithm (PLA) always work?

Q: Will the PLA yield a solution to the logical XOR problem?

Why/why not? ‘

Perceptron Learning

Does the Perceptron Learning Algorithm (PLA) always work?
Q: Will the PLA yield a solution to the logical XOR problem?

Why/why not? ‘

The PLA will not yield a solution, since the data is X
2
not linearly separable.

1 _

0 -

Perceptron Learning

Does the Perceptron Learning Algorithm (PLA) always work?

Q: Will the PLA yield a solution to the logical XOR problem?

Why/why not? ‘

The PLA will not yield a solution, since the data is

not linearly separable. 0 -

Q: Does this mean the classification problem is hopeless?

Perceptron Learning f

Q: Does this mean the classification problem is hopeless? A

No! There are at least (3) remedies: Ly 4
(1) Project the XOR problem into a higher dimensional spaceﬂpace)

where it is linearly separable!

1

(2) Use a kernel/polynomial decision boundary in 2-space. K ‘
(3) Use a multi-layer perceptron (i.e. a neural network). I‘ B 2
X

Ty =5
(*) Minsky and Papert (1969) published an influential (viz. notorious) 4 8

text, “Perceptrons”, that identified the learning capabilities and limitations of
Perceptrons.

(*) The major effect of this text, unfortunately, was to set back NN research for
two decades (see: “Al Winter”)

(*) What brought it back? LeCun, et al. 1990s MNIST results, etc.

Recognizing Handwritten
» MNIST dataset DIQItS

— 60,000 training O 2344567 8 92
examples 0\c73‘-‘5’6?9?
— 10,000 test examples o/ 0 3 f c ¢ v < 9
ach example is a 28x28- 0/9\37/5[9784
Eixe?imagel,mwhereZe?':u:f]8 Cl 2924560 7§89

pixel is a grayscale value
in [0,255].

See csv files. et ﬁ' Label: <“2”

First value in each row Is
the target class.

28 pixels

Perceptron architecture for handwritten digits classification

bias input
— @
S
iy
3>
785 Inputs ‘4

(= 28x28 + 1) —

0 9 N D

LOOOOOOOOO

Preprocessing
(To keep weights from growing very large)

Scale each feature to a fraction between 0O
and 1:

Processing an input

LOOOOOOOOO

o
N
=
N
”
N
-
-
>

695

At each output,
compute:

o
awx,

i=0

The output with highest
value is the prediction.

If correct, do nothing.

If not correct, adjust
weights according to
perceptron learning rule.

See assignment for
details.

Example

For each output,

For each calculate
training Xo @ Q ‘0’
example k, '3 3
Input ! Q @ 1 AW,
Xk to the Q c29 i=0
perceptron. Q 3
g Sety = 1 for outputs that are
Q greater than 0. Sety =0
Slinpose Q 5> otherwise.
XK isa ‘2’.
Q 6 Then for all weights coming
tk=1 for @ T into each output:
the ‘2’ (Q?
8
output. Xo-1 @ @ W, < w, +Aw,
X Q Q < where

tk=0 for

gk kYK
all other outputs. Aw; =n (" =y)x;

Homework 1

Implement perceptron (785 inputs, 10 outputs) and
perceptron learning algorithm in any programming
language you would like.

Download MNIST data from website

Preprocess MNIST data: Scale each feature to a fraction
between 0 and 1.

Homework 1 Experiments

Train perceptrons with three different learning rates:
n=0.001, 0.01, and 0.1

For each learning rate:

1. Choose small random weights w; T [-.05,.05]

2. Repeat cycling through the training data until the accuracy on the
training data has essentially stopped improving (i.e., the difference
between training accuracy from one epoch to the next is less than
some small number, like 0.01.)

After the initialization, and after each epoch (one cycle through
training data), compute accuracy on training and test set (for plot),
without changing weights.

Homework 1: Presenting

_results
For each experiment, plot training and

test accuracy over epochs:

100

Accuracy (%)

— Accuracy on the test data
Accuracy on the training data

90

0 5 10 15 20 25 30
Epoch

Epoch

For each experiment, give confusion
matrix:

Actual class

Predicted class

0

1

2

OO0 |IN[O|(|O|A~|W|IN|F|O

In each cell (i,j). put
number of test
examples that were
predicted (classified)
as class i1, and whose
actual class is class j.

Homework 1 FAQ

Q: Can I use code for perceptrons from another sourcer

A: No, you need to write your own code.

Q: How long will it take to train the perceptrons?

A: Depends on your computer and your code, but probably an hour or more.

Q: What accuracy should I expect on the test set?
A: It depends on 1nitial weights, but probably over 80%.

Q: Should I wait until the last minute?

A: Nolll Start as soon as possible.

Perceptron Convergence Theorem
(*) Rosenblatt (1962) proved that:

Given a linearly separable dataset, the Perceptron will converge to a solution
that separates the classes, and that it will do it after a finite number of
iterations.

Pf. Let: y := the distance between separating hyperplane and

Closest data point; let w* be a unit weight vector that separates

the data (known to exist by assumption of linear separability).

AR A RS ST e
S WL T P
S o B G

WLOG, assume ||x|| < 1 for all input data.

Recall to check “similarity” of two vectors (in particular, “perfect alignment”
connotes parallel).

Perceptron Convergence Theorem

Recall: to check “similarity” of two vectors we take their dot product (in
particular, “perfect alignment” connotes parallel); when two vectors are

patallel, their innet product is maximal. \ == - === === !
" la@|||bl | cos@ =a-b !

If we therefore show that at each weight update, w* - w

Increases, then we have nearly show that the algorithm will converge.

However, we do need to check that the length of w does not increase too
much as well, since W* - w = ||[w*||||W||cos®.

In summary, we need (2) checks:

—

1) w* - w
@ lIwll

Perceptron Convergence Theorem

Suppose that at the /th iteration of the algorithm, the network sees a particular
x that should output y, and that it gets this input wrong, so:

— (t_l) . —

yws - X <0

(*) This means that the weights need to be updated.
) The weight update will be: W = W™ + yX (where n=1, WLOG
o 1B yX "

Consider: yy*.gw® — w*.(\r\,(t—l) 4 y)—(’)

Perceptron Convergence Theorem

Suppose that at the /th iteration of the algorithm, the network sees a particular
x that should output y, and that it gets this input wrong, so:

— (t_l) . —

yws - X <0

(*) This means that the weights need to be updated.
) The weight update will be: W = W™ + yX (where n=1, WLOG
o 1B yX "

Consider: Ww*. W = W*.(W(t‘l) I y*)

) oS _ P~ Why?
— w*x.w 1)+yw*-x ? y

Perceptron Convergence Theorem

Suppose that at the /th iteration of the algorithm, the network sees a particular
x that should output y, and that it gets this input wrong, so:

— (t_l) . —

yws - X <0

(*) This means that the weights need to be updated.
) The weight update will be: W = W™ + yX (where n=1, WLOG
o 1B yX "

Consider: yy*.jy® = W*.(w(t—l) b y)—(')

2WEW D) g Why?

Perceptron Convergence Theorem
w*aw® = W*-(W(t_l) b y)—(')
=W*- W' 4+ yw*-X
> wr w4 4

This means that at each update of the weights, this inner product increases by
at least y, and so after t updates of the weights:

w* W >ty

(*) We can use this to put a bound on the length of ||w(t)[| using the Cauchy-
Schwartz inequality, which tells us:

W W < W |[w®| and so, || >ty

Perceptron Convergence Theorem

o] =ty

The length of the weight vector after 7 steps is:
RAE 12
W] =+ 3]

=[]+ y? R 2y @D X — Why?

o112
<[w9 +1

(*) The last inequality holds: since y*=1, IX|] < 1, and the network made an
error so WD and X yield a negative value (when we assume y=1, WLOG).

(*) The inequality above shows that: “W(t) HZ <t

(*) If we put these two inequalities together, we get:

<t

Perceptron Convergence Theorem

el

() So t<1/y°
(*) Thus after this many updates the algorithm must have converged. QED

(*) We showed that the quantity: w* - w = ||[w*|||[W]|cos8 increases
monotonically and it is upper-bounded.

Summary: We demonstrated that if the data are linearly separable, then the
algorithm will converge and that the time this takes is a function of the
distance between the separating hyperplane and the nearest data point (this
distance 1s called the margin).

If the data are not linearly separable, then the algorithm is not guaranteed to
converge and may oscillate infinitely.

Neuron 1nspires Regression

* Edges multiply the signal (x,) by some weight (6,).

* Nodes sum inputs

D
. : . z,0) =Y 02%+6
* Equivalent to Linear Regression 48 dz:; ! |

Sort of what a neuron 'I:l ., -
looks like H l J_
“xmxm |
. - :Ell} -HI H""\.H | 9
Dendmes = J ‘xﬁm [0
(.ﬂ—-‘-l - — . -.%___ w-"‘\ :
gp— Ly B — f(X)
ﬁ 0,
Call Body
Synap - 4
-:-L' D"' D

90

