
Machine Learning: Perceptrons!
CS 445/545

Neurons & the Brain

Neurons & the Brain

Hebb’s Postulate

Neurons & the Brain
– Human brain contains ~1011 neurons

– Each individiaul neuron connects to ~104 neuron

– ~1014 total synapses!

Neurons & the Brain
– Is the singularity near?

Neurons & the Brain

McCulloch & Pitts Neuron Model (1943)

(3) Components:

(1) Set of weighted inputs {wi} that correspond to synapses

(2) An “adder” that sums the input signals (equivalent to membrane of the cell that collects

the electrical charge)

(3) An activation function (initially a threshold function) that decides whether the neuron

fires (“spikes”) for the current inputs.

McCulloch & Pitts Neuron Model (1943)

– Limitations & Deviations of the M-P Neuron Model:

(*) Summing is linear.

(*) No explicit model of “spike trains” (sequence of pulses that

encodes information in biological neuron).

(*) Threshold value is usually fixed.

(*) Sequential updating implicit (biological neurons usually update

themselves asynchronously)

(*) Weights can be positive (excitatory) or negative (inhibitory);

biological neurons do not change in this way.

(*) Real neurons can have synapses that link back to themselves

(e.g. feedback loop) – see RNNs (recurrent neural networks).

(*) Other biological aspects ignored: chemical concentrations,

refractory periods, etc.

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

Perceptrons as simplified “neurons”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

Perceptrons as simplified “neurons”

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

Perceptrons as simplified “neurons”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

Perceptrons as simplified “neurons”
w0 is called the “bias”

−w0 is called the “threshold”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

If w1x1 +w2x2 +...+wnxn >-w0

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

Q: Why do we introduce a bias term?

If w0 +w1x1 +w2x2 +...+wnxn > 0

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >-w0

then y =1, else y = 0

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

x0

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

If w0 +w1x1 +w2x2 +...+wnxn > 0

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >-w0

then y =1, else y = 0

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

x0

If w0x0 +w1x1 +w2x2 +...+wnxn > 0

then y =1, else y = 0

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

If w0 +w1x1 +w2x2 +...+wnxn > 0

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >threshold

then y =1, else y = 0

If w1x1 +w2x2 +...+wnxn >-w0

then y =1, else y = 0

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

x0

output = y(x) = a(w0x0 +w1x1 +w2x2 +... +wnxn)

where a(z) =
0 if z £ 0

 1 if z > 0

ì
í
ï

îï

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is 1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

Let x = (x0, x1, x2, ... xn)

w = (w0, w1, w2, ... wn)

x0

output = y(x) = a(w0x0 +w1x1 +w2x2 +... +wnxn)

where a(z) =
0 if z £ 0

 1 if z > 0

ì
í
ï

îï

Perceptrons as simplified “neurons”

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

w0 is called the “bias”

−w0 is called the “threshold”

Input is (x1, x2, ... xn)

Weights are (w1, w2, ... wn)

Output y is +1 (“the neuron fires”) if the sum of the

inputs times the weights is greater or equal to the

threshold:

Let x = (x0, x1, x2, ... xn)

w = (w0, w1, w2, ... wn)

Then:

x0

y = a(w ×x)

output = y(x) = a(w0x0 +w1x1 +w2x2 +... +wnxn)

where a(z) =
0 if z £ 0

 1 if z > 0

ì
í
ï

îï

Decision Surfaces

• Assume data can be separated into two classes, positive and

negative, by a linear decision surface.

• Assuming data is n-dimensional, a perception represents a

(n−1)-dimensional hyperplane that separates the data into two

classes, positive (1) and negative (0).

Feature 1

Feature 2

Feature 2

Feature 1

Feature 2

Feature 1

Example where line won’t work?

Feature 2

Feature 1

Example

• What is the predicted class y?

.4

−.4

−.1

+1

y

1

−1

Example

• What is the predicted class y?

.4

−.4

−.1

+1

y

1

−1

  ((.1)(1) .4(1) (.4)(1)) (0.7) 1y a w x a a         

Geometry of the perceptron

Feature 1

Feature 2

Hyperplane

In 2D:

w1x1 +w2x2 +w0 = 0

x2 = -
w1

w2

x1 -
w0

w2

Perceptron Learning

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

x0

Perceptron Learning

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

x0

Input instance: xk = (x1, x2, ... xn),

with target class tk Î {0,1}

Perceptron Learning

w0

+1

output.

.

.

w1

w2

wn

y

x1

x2

xn

input

x0

Goal is to use the training data to learn a set

of weights that will:

(1) correctly classify the training data

(2) generalize to unseen data

Input instance: xk = (x1, x2, ... xn),

with target class tk Î {0,1}

Perceptron Learning
Learning is often framed as an optimization problem:

• Find w that minimizes average “loss”:

where M is number of training examples and L is a “loss” function.

One part of the “art” of ML is to define a good loss function.

• Here, define the loss function as follows:

Let y = a(w ×x)

L(w,xk, tk) =
1

2
tk - y()

2

 "squared loss"

How to solve this minimization problem? Gradient descent.

J(w) =
1

M
L(w,

k=1

M

å x
k, t k)

Aside: Convex Regions

• Convex: for any pair of points xa and xb within
a region, every point xc on a line between xa

and xb is in the region

Aside: Convex Functions

• Convex: for any pair of points xa and xb within
a region, every point xc on a line between xa

and xb is in the region

Aside: Convex Functions

• Convex: for any pair of points xa and xb within
a region, every point xc on a line between xa

and xb is in the region

Aside: Convex Functions

• Convex functions have a single maximum and
minimum!

• How does this help us?

• (nearly) Guaranteed optimality of Gradient
Descent

Gradient Descent

• The Gradient is defined (though we can’t solve
directly)

• Points in the direction of fastest increase

39

Gradient Descent

• Gradient points in the direction of fastest
increase

• To minimize R, move in the opposite direction

40

Gradient Descent

• Gradient points in the direction of fastest
increase

• To minimize R, move in the opposite direction

41

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

42

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

43

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

44

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

45

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

46

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

47

Gradient Descent

• Initialize Randomly

• Update with small steps

• (nearly) guaranteed to converge to the
minimum

48

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

49

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

50

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

51

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

52

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

53

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

54

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

55

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

56

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can oscillate if η is too large

57

Gradient Descent

• Initialize Randomly

• Update with small steps

• Can stall if is ever 0 not at the minimum

58

Perceptron Learning

• Find w that minimizes average “loss”:

where M is number of training examples and L is a “loss” function.

• Here, define the loss function as follows:

Let y = a(w ×x)

L(w,xk, tk) =
1

2
tk - y()

2

 "squared loss"

How to solve this minimization problem? Gradient descent.

J(w) =
1

M
L(w,

k=1

M

å x
k, t k)

Gradient descent

• To find direction of steepest descent, take

the derivative of J(w) with respect to w.

• A vector derivative is called a “gradient”:

J(w) ÑJ(w) =
¶J

¶w0

,
¶J

¶w1

,...,
¶J

¶wn

é

ë
ê

ù

û
ú

• Here is how we change each weight:

For i = 0 to n:
wi¬ wi + Dwi

where

Dwi = -h
¶J

¶wi

“True” (or “batch”) gradient

descent
• One epoch = one iteration through the training data.

• After each epoch, compute average loss over the training set:

• Change the weights to move in direction of steepest descent in

the average-loss surface:

From T. M. Mitchell, Machine Learning

J(w)

w1 w2

J(w) =
1

M
L(w,

k=1

M

å x
k, tk) =

1

M

1

2
k=1

M

å tk - y()
2

• Problem with true gradient descent:

Training process is slow.

Training process can land in local optimum.

• Common approach to this: use stochastic

gradient descent:
– Instead of doing weight update after all training examples have

been processed, do weight update after each training example has

been processed (i.e., perceptron output has been calculated).

– Stochastic gradient descent approximates true gradient descent

increasingly well as   1/.

Derivation of perceptron learning rule

(stochastic gradient descent)

This is called the “perceptron learning rule”

We defined J =
1

2
t - y()

2

Here, use

J =
1

2
t - (w ×x)()

2

=
1

2
t - (w1x1 + w2x2 +…+ wnxn)()

2

Then,

¶J

¶wi
= - t - (w ×x)() xi

k

But we'll use

¶J

¶wi
= - t - y() xi

k

y =w ×xk

1

0

0

y = a w ×xk()

Perceptron Learning Algorithm

Start with small random weights, w = (w0, w1, w2, ... , wn), where .

Repeat until accuracy on the training data stops increasing or for a maximum

number of epochs (iterations through training set):

For k = 1 to M (total number in training set):

1. Select next training example (xk, tk).

2. Run the perceptron with input xk and weights w to obtain y.

3. If y ≠ t k , update weights:

for i = 0, ..., n: ; Note that bias weight w0 is changed just like all other

weights!

1. Go to 1.

where

() (: ())

i i i

k k k k k k

i i i i

w w w

w t y x or equivalently w y t x 

 

      

wi Î -.05,.05[]

where

()

i i i

k k k

i i

w w w

w y t x

 

   

Example: logical OR
Training set:

((0, 0), 0)

(0, 1), 1)

(1, 0), 1)

(1,1),1))

Initial weights:

{w0, w1, w2} = {-.05, −0.2, 0.2)

Apply perceptron learning rule for one epoch with η = 0.25

(*) Please note that the text uses “-1” for the extra input weight that

corresponds with the bias (w0). It is slightly more conventional to

use “+1” so please note we will also use this convention from time to

time. (Either value generates a model of comparable expressive

power)

−.02

.02

-.05

-1

y

x1

x2

where

()

i i i

k k k

i i

w w w

w y t x

 

   

Example: logical OR
Training set:

((0, 0), 0)

(0, 1), 1)

(1, 0), 1)

(1,1),1))

Initial weights:

{w0, w1, w2} = {-.05, −0.2, 0.2)

No weight updates are needed for inputs: (1,0) and (1,1); why?

−.02

.02

-.05

-1

y

x1

x2

0

1

2

: (0,1)

: 0.2 0.25 (0 1) 1 .05

: 0.02 0.25 (0 1) 0 0.02

: 0.02 0.25 (0 1) 1 0.27

Input

w

w

w

     

      

    

0

1

2

: (0,0)

: 0.05 0.25 (1 0) 1 0.2

: 0.02 0.25 (1 0) 0 0.02

: 0.02 0.25 (1 0) 0 0.02

Input

w

w

w

     

      

    

Perceptron Learning

Does the Perceptron Learning Algorithm (PLA) always work?

Q: Will the PLA yield a solution to the logical XOR problem?

Why/why not?

Perceptron Learning

Does the Perceptron Learning Algorithm (PLA) always work?

Q: Will the PLA yield a solution to the logical XOR problem?

Why/why not?

The PLA will not yield a solution, since the data is

not linearly separable.

Perceptron Learning

Does the Perceptron Learning Algorithm (PLA) always work?

Q: Will the PLA yield a solution to the logical XOR problem?

Why/why not?

The PLA will not yield a solution, since the data is

not linearly separable.

Q: Does this mean the classification problem is hopeless?

Perceptron Learning

Q: Does this mean the classification problem is hopeless?

No! There are at least (3) remedies:

(1) Project the XOR problem into a higher dimensional space (e.g. 3-space)

where it is linearly separable!

(2) Use a kernel/polynomial decision boundary in 2-space.

(3) Use a multi-layer perceptron (i.e. a neural network).

(*) Minsky and Papert (1969) published an influential (viz. notorious)

text, “Perceptrons”, that identified the learning capabilities and limitations of

Perceptrons.

(*) The major effect of this text, unfortunately, was to set back NN research for

two decades (see: “AI Winter”)

(*) What brought it back? LeCun, et al. 1990s MNIST results, etc.

Recognizing Handwritten

Digits• MNIST dataset
– 60,000 training

examples

– 10,000 test examples

Each example is a 28×28-

pixel image, where each

pixel is a grayscale value

in [0,255].

See csv files.

First value in each row is

the target class.

28 pixels

28 pixels

Label: “2”

Perceptron architecture for handwritten digits classification

785 inputs

(= 28×28 + 1)

1
‘0’

‘1’

‘2’

‘3’

‘4’

‘5’

‘6’

‘7’

‘8’

‘9’

Fully

connected

bias input

Preprocessing

(To keep weights from growing very large)

Scale each feature to a fraction between 0

and 1:

xi¢ =
xi

255

Processing an input

At each output,

compute:

The output with highest

value is the prediction.

If correct, do nothing.

If not correct, adjust

weights according to

perceptron learning rule.

See assignment for

details.

wi
i=0

n

å xi
1

‘0’

‘1’

‘2’

‘3’

‘4’

‘5’

‘6’

‘7’

‘8’

‘9’

Fully

connected

x0

x1

xn−1

xn

Example

1
‘0’

‘1’

‘2’

‘3’

‘4’

‘5’

‘6’

‘7’

‘8’

‘9’

Fully

connected

x0

x1

xn−1

xn

Suppose

xk is a ‘2’.

tk = 1 for

the ‘2’

output.

tk = 0 for

all other outputs.

For each output,

calculate

Set y = 1 for outputs that are

greater than 0. Set y = 0

otherwise.

Then for all weights coming

into each output:

wi
i=0

735

å xi

For each

training

example k,

input

xk to the

perceptron.

Homework 1

• Implement perceptron (785 inputs, 10 outputs) and

perceptron learning algorithm in any programming

language you would like.

• Download MNIST data from website

• Preprocess MNIST data: Scale each feature to a fraction

between 0 and 1.

Train perceptrons with three different learning rates:

η = 0.001, 0.01, and 0.1

For each learning rate:

1. Choose small random weights

2. Repeat cycling through the training data until the accuracy on the

training data has essentially stopped improving (i.e., the difference

between training accuracy from one epoch to the next is less than

some small number, like 0.01.)

After the initialization, and after each epoch (one cycle through

training data), compute accuracy on training and test set (for plot),

without changing weights.

Homework 1 Experiments

wi Î -.05,.05[]

Homework 1: Presenting

results
For each experiment, plot training and

test accuracy over epochs:
A

cc
u

ra
cy

 (
%

)

Epoch

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

Actual class

Predicted class

In each cell (i,j). put

number of test

examples that were

predicted (classified)

as class i, and whose

actual class is class j.

For each experiment, give confusion

matrix:

Homework 1 FAQ

Q: Can I use code for perceptrons from another source?

A: No, you need to write your own code.

Q: How long will it take to train the perceptrons?

A: Depends on your computer and your code, but probably an hour or more.

Q: What accuracy should I expect on the test set?

A: It depends on initial weights, but probably over 80%.

Q: Should I wait until the last minute?

A: No!!! Start as soon as possible.

Perceptron Convergence Theorem

(*) Rosenblatt (1962) proved that:

Given a linearly separable dataset, the Perceptron will converge to a solution

that separates the classes, and that it will do it after a finite number of

iterations.

Pf. Let: γ := the distance between separating hyperplane and

Closest data point; let w* be a unit weight vector that separates

the data (known to exist by assumption of linear separability).

WLOG, assume 𝑥 ≤ 1 for all input data.

Recall to check “similarity” of two vectors (in particular, “perfect alignment”

connotes parallel).

Perceptron Convergence Theorem

Recall: to check “similarity” of two vectors we take their dot product (in

particular, “perfect alignment” connotes parallel); when two vectors are

parallel, their inner product is maximal.

If we therefore show that at each weight update, 𝑤∗ ∙ 𝑤

Increases, then we have nearly show that the algorithm will converge.

However, we do need to check that the length of w does not increase too

much as well, since 𝑤∗ ∙ 𝑤 = 𝑤∗ 𝑤 cosθ.

In summary, we need (2) checks:

(1) 𝑤∗ ∙ 𝑤

(2) 𝑤

Perceptron Convergence Theorem

Suppose that at the tth iteration of the algorithm, the network sees a particular

x that should output y, and that it gets this input wrong, so:

(*) This means that the weights need to be updated.

(*) The weight update will be: (where η=1, WLOG)

Consider:

(1) 0tyw x  

() (1)t tw w yx 

 () (1)* *t tw w w w yx   

Perceptron Convergence Theorem

Suppose that at the tth iteration of the algorithm, the network sees a particular

x that should output y, and that it gets this input wrong, so:

(*) This means that the weights need to be updated.

(*) The weight update will be: (where η=1, WLOG)

Consider:

Why?

(1) 0tyw x  

() (1)t tw w yx 

 () (1)

(1)

* *

* *

t t

t

w w w w yx

w w yw x





   

   

Perceptron Convergence Theorem

Suppose that at the tth iteration of the algorithm, the network sees a particular

x that should output y, and that it gets this input wrong, so:

(*) This means that the weights need to be updated.

(*) The weight update will be: (where η=1, WLOG)

Consider:

Why?

(1) 0tyw x  

() (1)t tw w yx 

 () (1)

(1)

(1)

* *

* *

*

t t

t

t

w w w w yx

w w yw x

w w 







   

   

  

Perceptron Convergence Theorem

This means that at each update of the weights, this inner product increases by

at least γ, and so after t updates of the weights:

(*) We can use this to put a bound on the length of 𝑤(𝑡) using the Cauchy-

Schwartz inequality, which tells us:

 () (1)

(1)

(1)

* *

* *

*

t t

t

t

w w w w yx

w w yw x

w w 







   

   

  

()* tw w t 

() () ()* * ,t t tw w w w and so w t  

Perceptron Convergence Theorem

The length of the weight vector after t steps is:

Why?

(*) The last inequality holds: since y2=1, Ԧ𝑥 ≤ 1, and the network made an

error so 𝑤(t-1) and Ԧ𝑥 yield a negative value (when we assume y=1, WLOG).

(*) The inequality above shows that:

(*) If we put these two inequalities together, we get:

2 2
() (1)

2 2(1) 2 (1)

2
(1)

2

1

t t

t t

t

w w yx

w y x yw x

w



 



 

   

 

(1)tt w t  

2
()tw t

()tw t

Perceptron Convergence Theorem

(*) So

(*) Thus after this many updates the algorithm must have converged. QED

(*) We showed that the quantity: 𝑤∗ ∙ 𝑤 = 𝑤∗ 𝑤 cosθ increases

monotonically and it is upper-bounded.

Summary: We demonstrated that if the data are linearly separable, then the

algorithm will converge and that the time this takes is a function of the

distance between the separating hyperplane and the nearest data point (this

distance is called the margin).

If the data are not linearly separable, then the algorithm is not guaranteed to

converge and may oscillate infinitely.

21/t 

Neuron inspires Regression

• Edges multiply the signal (xi) by some weight (θi).

• Nodes sum inputs

• Equivalent to Linear Regression

90

