
A Brief  Intellectual History of  Computing



• Mathematics is commonly seen as embodying certainty – forming the bedrock of  most scientific 

disciplines, and ultimately emblematic of  the pinnacle of  humanity’s intellectual achievements. 

• Despite this revered status, the history of  mathematics is fraught with instability, and at times its entire 

edifice has teetered on the brink of  total collapse– and along with it, perhaps, the certitude of  human 

knowledge. 

• Incredibly, the last widespread assault on mathematical certainty which began at the close of  the 19th

century, led, in due course, to one of  the greatest inventions in our history: the computer. 

Mathematical (Un)Certainty



• One of  the first known historical instances of  the “loss of  mathematical 

certainty” dates to the 5th century BCE and the cult of  Pythagoras (named for 

Pythagoras, the ancient Greek philosopher best-known to modern students 

for the eponymous Pythagorean Theorem), 

• The philosophy of  the Pythagoreans centered around the belief  that universe 

is inherently ordered – and that this order is knowable through natural laws.

• The Pythagoreans are additionally credited with discovering foundational 

ideas in music harmony (e.g. absolute intervals); the cult also adhered to 

vegetarianism, believed in reincarnation, and proposed the notion of  the 

“transmigration of  the soul.”

Pythagoras



• The Pythagoreans were generally dogmatic mystics; as such, they believed strongly in harmonies 

discoverable in mathematics (e.g. arithmetic and geometry) as having echoes in broad philosophical and 

metaphysical concepts, such as Justice and Cosmology. 

• Numbers were accordingly laden with deep, symbolic meaning. Unconventionally, the Pythagoreans 

represented numbers graphically; this enabled a visual comprehension of  mathematics that dovetailed with 

geometric concepts.

Pythagoras



• The Pythagoreans were generally dogmatic mystics; as such, they believed strongly in harmonies 

discoverable in mathematics (e.g. arithmetic and geometry) as having echoes in broad philosophical and 

metaphysical concepts, such as Justice and Cosmology. 

• Numbers were accordingly laden with deep, symbolic meaning. Unconventionally, the Pythagoreans 

represented numbers graphically; this enabled a visual comprehension of  mathematics that dovetailed with 

Geometric concepts.

• In the fifth century BCE, Hippasus a disciple of  Pythagoras, is said 

to have provided proof  that 2 is irrational (and hence incommensurable).

• It is alleged (possibly apocryphally) that Hippasus was murdered as a 

result of  this discovery.

Pythagoras



• The birth of  formal systems of  mathematics dates to the third century

BCE with Euclid’s Elements (some say: the most influential textbook every 

written).

• The Elements consists of  13 books, largely covering geometry and number

theory; perhaps most significantly, Euclid provides a schematic for a general, 

“axiomatic approach.” 

• This approach gives the impression of  mathematical certainty: beginning with axioms or postulates, 

one derives results using logical deductions. If  the axioms are true and the logical deductions are valid, 

then we are guaranteed that the conclusions are likewise true.

Euclid



• Euclid’s demonstration of  this axiomatic approach seems to suggest that “new” mathematics 

(moreover: new knowledge) could be generated – perhaps indefinitely – in this manner. 

• By the midpoint of  the 19th century, however, mathematicians began to discover that this method was 

flawed. Certain claims (see: the parallel postulate) that seemed self-evident by perception could not –

despite mathematicians’ best efforts – be proven from the axioms. 

The parallel postulate states (paraphrasing): In a plane, given a line and a point 

not on it, at most one line parallel to the given line can be drawn through the point.

Euclid



• Interestingly, at this time it was shown that, despite their counter-intuitive nature, consistent

geometries – non-Euclidean geometries – exist for which the parallel postulate is assumed false. 

• This discovery spurred a bona fide paradigm shift – not only in mathematics and logic (as we shall see) 

– but across all intellectual culture in the 19th century. 
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• Interestingly, at this time it was shown that, despite their counter-intuitive nature, consistent

geometries – non-Euclidean geometries – exist for which the parallel postulate is assumed false. 

• This discovery spurred a bona fide paradigm shift – not only in mathematics and logic (as we shall see) 

– but across all intellectual culture in the 19th century. 

• Two giants were seemingly felled at once: (1) mathematical certainty as a whole was called into 

question and (2) the self-evident notion that the universe was inherently Euclidean now seemed in doubt 

as well.

• In one of  the greatest scientific discoveries in modern history, the 

observation of  the 1919 total solar eclipse which showed that rays of  

starlight are bent by gravity (as predicted by Einstein’s general theory of  relativity),

provided proof, in fact, of  the the non-Euclidean nature of  the universe.

Euclid



• Euclid’s Elements was highly influential not only for its mathematical results, 

but also for its logical arguments that demonstrated how these results could

be obtained from simpler ones. 

• Elements is a text that not only teaches you mathematics, but also how to

argue logically.

• As a discipline, Logic represents an attempt to codify human “reasoning”; 

it generally centers on the study of  valid forms of  inference. 

• The work of  Aristotle (Organon) in the 4th century BCE exerted a tremendous 

influence on the study of  Logic from antiquity through the 19th century; 

in particular, Aristotle’s work was influential for its introduction of  variables and

comprehensive analysis of  syllogistic forms. 

Logic



• In the mid 19th century, George Boole established a strong consonance between 

logic and mathematics. In particular, he determined that logical deductions 

involving the connectives: AND, OR and NOT could be reduced to algebraic 

manipulation of  symbols. 

• Boole’s results were later extended to encompass a comprehensive system now 

know as Boolean algebra. 

• Boolean algebra provides a foundation for logic gates and modern circuit design. 

Boole



• Boolean algebra only pertained to propositional logic (i.e. zero-order

logic) – meaning that it didn’t include quantifiers such as “all” and “some.”  

Crucially, the logic that underlies the usual foundations of  mathematics requires

quantifiers – that is to say, it needs be a first-order logic. 

• For instance, the natural numbers 𝑁 = {1,2,3, … } can be described using the 

so-called first-order Peano axioms, which built upon Boole’s work: 

• Following the revelation that mathematics could – potentially – be built upon the scaffolding of  Logic, 

many mathematicians and logicians (see: Frege, Peirce) in the second half  of  the 19th century undertook 

to build a complete, first-order axiomatic system (à la Euclid) from which all of  mathematics could be 

derived (Logicism). 

Boole



• In part, the interest in solving this grandiose problem stemmed from a centuries-old dream to build a 

“logic machine” – or better still: an omniscient oracle. 

• In the early 17th century, Pascal developed one of  the first functioning mechanical 

calculators (ostensibly it performed addition and subtraction), known today as the 

Pascaline. 

• Inspired by Pascal’s work, Leibniz later designed the stepped reckoner, which could also

perform multiplication and division operations. 

Logic Machines



• In the early 19th century, Charles Babbage designed the Difference Engine which simulated Newton’s 

“Divided Difference” algorithm for computing coefficients of  interpolating polynomials. 

• Babbage later proposed (1837) the Analytical Engine, a general-purpose computer (never built due to 

inadequate funding) that incorporated an arithmetic logic unit, control flow (e.g. for loops) and 

integrated memory. Note that the first physically-realized, general-purpose computer did not appear 

until over a century later, in 1941, with the ‘Z3’ designed by Konrad Zuse. 

• Ada Lovelace, considered by some to be the first “programmer” in history, provided extensive notes 

on the Analytical Engine, including the first published algorithm using the Analytical Engine to compute 

Bernoulli numbers. Lovelace also wrote precociously regarding the potential limits of  logic machines 

vis-à-vis human creativity, and the bounds of  what we today call Artificial Intelligence. 

Logic Machines



• As mentioned previously, the latter half  of  the 19th century saw the introduction of

various non-Euclidean geometries. Given the primacy given to Euclidean geometry 

at this time (due to its seemingly natural correspondence with our experience of  reality),

theorists began to wonder whether these new systems were consistent. 

• Informally, an axiomatic system is consistent if  it lacks contradiction, i.e., the ability to derive both a 

statement and its denial from the axioms of  this system. This notion of  consistency spawned directly 

from Aristotle’s notion of  the law of  the excluded middle. 

• David Hilbert, one of  the most influential mathematicians of  the last half  of  the 19th century and 

early part of  the 20th, proved in 1899 that Euclidean geometry was consistent if  arithmetic was 

consistent (subsequent mathematicians proved that non-Euclidean geometries were consistent if  

Euclidean geometry was!). 

• From this starting point, much of  mathematics in the 20th century evolved into a network of  axiomatic 

formal systems (i.e. metamathematics). 

Hilbert 



• These proofs of  relative consistency were comforting, but it was realized that a proof

of  consistency shouldn’t depend on the assumption that another area of  mathematics

was consistent. 

• Instead, what was needed was a proof  of  consistency and completeness (meaning that 

every statement could be either proven or disproven from the axioms) of  a foundational axiomatic

system for mathematics.

• The idea that mathematics could be built on a system of  axioms that were complete, consistent and 

admitted of  a proof  of  consistency from within the system became known as Hilbert’s Program (1920).

• In 1928,  Hilbert added what is know as the Entscheidungsproblem (“decision problem”) to his 

program, the problem that asks for an algorithm that takes as input a statement of  first-order logic and 

answers “Yes” or “No” according to whether the statement can be deduced from the axioms. Hilbert 

was certain that such an algorithm existed. 

Hilbert 

“We must know, 

we will know.”



• In 1902, just as he was about to publish the second volume to his magnum opus (Basic Laws of  Arithmetic), 

the German logician Gottlob Frege received a letter from Bertrand Russell informing 

him of  a fundamental paradox lying at the heart of  Frege’s theory of  sets. 

• The paradox (derivable from Frege’s basic laws) concerns the notion of  the “set of  all sets.” The paradox 

today is known as Russell’s Paradox (sometimes expressed colloquially as the Barber Paradox):

Consider any definable collection to be a set. Let R be the set of  all sets that are not members of  themselves. 

If R is not a member of  itself, then its definition dictates that it must contain itself, and if  it contains itself, 

then it contradicts its own definition as the set of  all sets that are not members of  themselves.

Russell & Whitehead



• In spite of the discovery of  this paradox, Russell believed that Frege had the right approach and 

that the flaw could be remedied. 

• Russell famously undertook one of  the most monumental efforts in the history of  mathematics, 

with Alfred North Whitehead,  in writing the massive, three volume Principia Mathematica.

• The aim of  this work was to once and for all place mathematics on a firm (i.e. an axiomatically 

consistent and complete) foundation of  logic using a minimum of  axioms and inference rules. 

• This endeavor was notoriously laborious and incorporated the lapidary use of  Russell’s theory of  

types (to replace sets). Incredibly, it is not until p. 379 of  volume 1 that the authors establish the 

proof  of  the proposition: 1+1=2. Citing intellectual exhaustion, the authors finally abandoned 

plans for additional volumes, including the treatment of  geometry. 

Russell & Whitehead



• In 1931, Kurt Gödel published his first (of  two) landmark Incompleteness Theorems.

In essence, Gödel showed that for systems of  axioms that were strong enough to prove results 

about numbers (e.g. the Principia), if  the axioms were consistent, then they could not be 

complete (in this way Gödel “out-Russelled” Russell).

• In other words, there would always be statements that could be neither proven nor disproven 

from the axioms; he additionally showed that it was impossible to prove the consistency of  the 

axioms from within the system itself. 

•  This result is widely understood to have shown that Hilbert’s program for finding a complete 

and consistent set of  axioms for all mathematics is impossible – however, there was still the 

matter of  the resolution of  the Entscheidungsproblem.

Gödel



• Briefly: How did Gödel prove the first Incompleteness Theorem? 

i. Gödel defines an encoding scheme that assigns each symbol in a well-formed-

formula of  some formal language a unique natural number, called its Gödel number –

this was a highly original and subsequently influential idea at the time (think of  ASCII). 

• The significance of  this (reversible) encoding scheme was that determining properties of  statements (e.g. 

their truth or falsehood) would be equivalent to determining whether their Gödel numbers had certain 

properties. 

ii. Next, Gödel constructs a statement G “this statement is not demonstrable in S” (S is the formal system) akin 

to the Liar’s Paradox (“this statement is false”). This implies G iff ~G.  Importantly, this indicates that if  

if S is consistent, it is necessarily undecidable (because G iff ~G).

Gödel



i. Gödel defines an encoding scheme that assigns a wff to its Gödel number. 

ii. Construct statement G so that: G iff ~G. We conclude that if  S is consistent, then it is 

undecidable. 

iii. The remarkable aspect of  (ii) is that Gödel subsequently shows, using metamathematical reasoning 

that G is in fact true.

Consider, more concretely, the statement G “this statement is not demonstrable in S” in the spirit of  Gödel’s 

formalism: 

Where DemS(x,z) denotes the claim: for the statements P and Q in S with respective Gödel numbers x and 

z (i.e. x=enc(P), z=enc(Q)), z is demonstrated using proof  x.  

• Gödel uses a clever self-reference trick to show that on the level of  metamathematics (i.e. relationships 

between Gödel encodings), the undecidability of  G shows that G in fact is not demonstrable in S, meaning 

that G is true! 

In conclusion: contrary to all prior belief, arithmetical (and moreover, mathematical) truth cannot be 

brought into systematic order once and for all with a fixed set of  axioms and rules for inference from 

which every true statement can be formally derived. 

Gödel

( ) ( )~ ,sx Dem x z



• In 1935, while at Cambridge, Turing was exposed to both Gödel’s proof  and the

Entscheidungsproblem. 

• Strongly influenced by Gödel, Turing was convinced that the assumption underlying 

the Entscheidungsproblem was wrong, and that there was no general, mechanical procedure 

to decide all problems in mathematics. 

• First, though, Turing had to give a formal definition of  computation and even the 

notion of  an algorithm (some contemporaries believed this concept intrinsically eluded 

formalization), as these concepts had yet to be defined rigorously by the beginning of  

the 20th century. 

• In 1936, Turing published his seminal paper “On Computable Numbers, with an 

Application to the Entscheidungsproblem.” In this paper he formalized the idea of  

computation (via what we now call Turing Machines) and importantly proved the 

general infeasibility of  the Entscheidungsproblem by providing several concrete examples 

of  computationally undecidable problems (e.g. the Halting Problem). 

*Note that Turing in fact was not the first to prove undecidability, as Alonzo Church 

proved an equivalent result using λ-calculus. 

Turing



• Turing’s fresh insight was to define algorithms in terms of  theoretical computing machines. 

• Borrowing from Gödel, Turing devised a procedure to encode machines as binary

strings. 

• Crucially, using this construction, Turing conceived of  a universal machine (i.e. a universal Turing 

machine) that could simulate any other Turing machine – the universal machine UM could simply 

ingest both an input string s and the encoding of  a Turing machine M (one could merely concatenate 

these encodings). In this way, the universal machine could simulate machine M running the input s. 

• Turing uses an argument analogous to Cantor’s diagonalization argument to prove that the Halting 

Problem is undecidable. The gist of  this argument has close parallels with arguments provided by 

Russell and Gödel. 

Turing



Sketch of  Turing’s Proof  of  the Undecidability of  the Halting Problem: 

Pf. Suppose not, and so suppose that the Halting is decidable (this form of  proof  is called proof  by 

contradiction). Consequently, we assume that there exists an algorithm halts(·) where halts(f) returns 

true if  subroutine f  halts (when run with no inputs) and halts(f) returns false otherwise, in general. 

Now define the subroutine g:

Consider now what happens when we run halts(g). By assumption of  the decidability of  the Halting 

Problem, halts(g) must return True or False (but not both). 

Case 1: If  we suppose halts(g) is True, then halts(g) runs forever, so halts(g) is also False, a 

contradiction.

Conversely, Case 2: If  we suppose halts(g) is False, then halts(g) halts, indicating that it is a True, a 

contradiction. 

Because both causes yield a contradiction, it follows that the Halting problem is undecidable. 

Turing



• Turing’s paper can be viewed in two fundamental ways: 

(1) It is a paper on the logical foundations of  mathematics that helped end Hilbert’s program by 

showing that the Entscheidungsproblem was critically flawed. 

(2) It can be viewed also as the paper that started the study of  the theory of  computation and 

directly ushered in the birth of  computer science as a formal discipline, and ultimately directly 

lead to the dawn of  the modern computer age.  

Turing



Fin


