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Chapter 5

Divide and Conquer
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Divide-and-Conquer

Divide-and-conquer.

Break up problem into several parts.

Solve each part recursively.

Combine solutions to sub-problems into overall solution.

Most common usage.

Break up problem of size n into two equal parts of size ½n.

Solve two parts recursively.

Combine two solutions into overall solution in linear time.

Consequence.

Brute force:  n2.

Divide-and-conquer:  n log n. Divide et impera.

Veni, vidi, vici.

- Julius Caesar
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Divide-and-Conquer Example with Recurrences

Recall the classic example of divide-and-conquer for efficient integer 

multiplication that we encountered during the Chapter 2 Lecture: 

(*)Suppose x and y are two n-bit integers, and assume, for convenience, that n 

is a power of 2 (the more general case is not too different). 

As a first step toward multiplying x and y, split each of them into their left 

and right halves, which are n/2 bits long:

x= [xL][xR] = 2n/2xL+xR

y= [yL][yR] = 2n/2yL+yR

For instance, if x=101101102, then xL =10112 and xR=01102, and 

x=10112*24+01102.

The product of x and y can thus be written: 

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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Divide-and-Conquer Example with Recurrences

Consider the computation requirements of the RHS:

(*) The additions take linear time, as do the multiplications by powers of 2 

(which are merely left-shifts).

(*) The significant operations are the four n/2-bit multiplications: xLyL, xLyR, 

xRyL, xRyR; these can be handled with four recursive calls. 

(*) Thus our method for multipliying n-bit numbers starts by making recursive 

calls to multiply these four pairs of n/2-bit numbers (four subproblems of 

half the size), and then evaluates the preceding expression in O(n) time. 

Writing T(n) for the overall running time on n-bit inputs, we get the 

recurrence relation:

T(n)=4T(n/2)+O(n) 

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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Divide-and-Conquer Example with Recurrences

Writing T(n) for the overall running time on n-bit inputs, we get the 

recurrence relation:

T(n)=4T(n/2)+O(n) 

(*) In this course we will develop general strategies for solving such 

equations. 

(*) In the meantime, this particular equation works out to O(n2), the same 

running-time as the traditional grade school multiplication technique. 

Q: How can we speed up this method? A: Apply Gauss’ trick. 

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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Divide-and-Conquer Example with Recurrences

T(n)=4T(n/2)+O(n) 

A: Apply Gauss’ trick. 

(*) Although the expression xy seems to demand four n/2-bit multiplications, 

as before just three will do: xLyL, xLyR, and (xL+xR)(yL+yR), since xLyR+ xRyL= 

(xL+xR)(yL+yR)-xLyL-xRyR.

The resulting algorithm has an improved running time of:

T(n)=3T(n/2)+O(n)

(*) The point is that now the constant factor improvement, from 4 to 3, 

occurs at every level of the recursion, and this compounding effect leads to a 

dramatically lower time bound of O(n1.59). 

Q: How do we determine this bound (more later) – but for now, it is helpful to 

consider the recursive calls with respect to a tree structure (also: the 

“Master Theorem” can be used).  

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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“Master Method” Example
(*) A recursion tree is useful for visualizing what happens when a recurrence is 

iterated. It diagrams the tree of recursive calls and the amount of work done 

at each call.

Consider the recurrence: T(n)=2T(n/2)+n2

The corresponding recursion tree has the following form: 
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“Master Method” Example

Consider the recurrence: T(n)=2T(n/2)+n2

Consider summing across each row: 

This yields a geometric series: 
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“Master Method” Example

Consider the recurrence: T(n)=T(n/3)+T(2n/3)+n

Note that the recursion tree is not balance in this case, and that the longest 

path is the rightmost one. 
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“Master Method” Example

Consider the recurrence: T(n)=T(n/3)+T(2n/3)+n

Note that the recursion tree is not balance in this case, and that the longest 

path is the rightmost one. 

Since the longest path is O(log3/2(n)), our guess for the closed form solution to 

the recurrence is: O(n log n). 



5.1  Mergesort



Mergesort

12

An example of merge sort. First divide the list 

into the smallest unit (1 element), then compare 

each element with the adjacent list to sort and 

merge the two adjacent lists. Finally all the 

elements are sorted and merged.
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obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

Sorting

Sorting.  Given n elements, rearrange in ascending order.

Applications.
Sort a list of names.

Organize an MP3 library.

Display Google PageRank results.

List RSS news items in reverse chronological order.

Find the median. 

Find the closest pair.

Binary search in a database.

Identify statistical outliers.

Find duplicates in a mailing list.

Data compression.

Computer graphics. 

Computational biology.

Supply chain management.

Book recommendations on Amazon.

Load balancing on a parallel computer.

. . .
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Mergesort

Mergesort.

Divide array into two halves.

Recursively sort each half.

Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?

Linear number of comparisons.

Use temporary array.

A G L O R H I M S T

A G H I

demo-merge.ppt#1. Merging
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auxiliary array

smallest smallest

A G L O R H I M S T

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

A
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auxiliary array

smallest smallest

A G L O R H I M S T

A

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

G
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auxiliary array

smallest smallest

A G L O R H I M S T

A G

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

H
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

I
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

L
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

M
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

O
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auxiliary array

smallest smallest

A G L O R H I M S T

A G H I L M O

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

R
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auxiliary array

first half
exhausted

smallest

A G L O R H I M S T

A G H I L M O R

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

S
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auxiliary array

first half
exhausted

smallest

A G L O R H I M S T

A G H I L M O R S

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.

T
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auxiliary array

first half
exhausted

second half
exhausted

A G L O R H I M S T

A G H I L M O R S T

Merging

Merge.

Keep track of smallest element in each sorted half.

Insert smallest of two elements into auxiliary array.

Repeat until done.
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this recurrence. 

Initially we assume n is a power of 2 and replace  with =.

  



T(n) 

 0 if  n 1

T n /2  
solve left half

 T n /2  
solve right half

 n

merging

otherwise











28

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

  



T(n) 

0 if  n 1

2T(n /2)

sorting both halves

 n

merging

otherwise








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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

  



T(n)

n


2T(n /2)

n
 1


T(n /2)

n /2
 1


T(n / 4)

n / 4
 1  1


T(n /n)

n /n
 1   1

log 2 n

 log2 n

  



T(n) 

0 if  n 1

2T(n /2)

sorting both halves

 n

merging

otherwise









assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)

Base case:  n = 1.

Inductive hypothesis:  T(n) =  n log2 n.

Goal:  show that T(2n) =  2n log2 (2n).

  



T(2n)  2T(n)    2n

 2n log2 n    2n

 2n log2 (2n)1    2n

 2n log2 (2n)

assumes n is a power of 2

  



T(n) 

0 if  n 1

2T(n /2)

sorting both halves

 n

merging

otherwise








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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)   n lg n.

Pf.   (by induction on n)

Base case:  n = 1.

Define n1 = n / 2 ,  n2 = n / 2.

Induction step:  assume true for 1, 2, ... , n–1.

  



T(n)  T(n1)    T(n2 )    n

 n1 lgn1    n2 lg n2    n

 n1 lgn2    n2 lgn2    n

 n lgn2    n

 n( lgn 1 )    n

 n lgn 

  



n2  n /2 

 2
lg n 

/ 2 
 2

lg n 
/ 2

 lgn2  lg n  1

  



T(n) 

 0 if  n 1

T n /2  
solve left half

 T n /2  
solve right half

 n

merging

otherwise









log2n



5.2 (aside) “Master Theorem”
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Master Theorem

(*) Divide-and-conquer algorithms commonly follow a generic pattern: 

they tackle a problem of size n by recursively solving, say, a subproblem 

of size n/b and then combining these answers. 

There exists a closed-form solution to this general recurrence so that 

we no longer need to solve it explicitly in each new instance. This 

approach is called the Master Theorem. 
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Master Theorem

(*) Divide-and-conquer algorithms commonly follow a generic pattern: they 

tackle a problem of size n by recursively solving, say, a subproblem of size n/b

and then combining these answers. 

Master Theorem. If T(n)=aT(n/b)+O(nd) for some constants, a > 0, b > 1, and   

d ≥ 0, then: 

case(1)

case(2)

case(3) 

This lone theorem tells us the running times of most of the divide-and-

conquer procedures we will use. 

Intuition: Case 1 – recursion tree is “leaf heavy”

Case 2 – work to split/recombine a problem is comparable in subproblems

Case 3 – recursion tree is “root heavy” 

log

( ) log

( ) ( log ) log

( ) logb

d

b

d

b

a

b

O n if d a

T n O n n if d a

O n if d a

 


 
 
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Master Theorem

(*) Master Theorem. If T(n)=aT(n/b)+O(nd) for some constants, a > 0, b > 1, 

and   d ≥ 0, then: 

Example #1: Mergesort. 

T(n)=2T(n/2)+O(n)

log

( ) log

( ) ( log ) log

( ) logb

d

b

d

b

a

b

O n if d a

T n O n n if d a

O n if d a

 


 
 
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Master Theorem

(*) Master Theorem. If T(n)=aT(n/b)+O(nd) for some constants, a > 0, b > 1, 

and   d ≥ 0, then: 

Example #1: Mergesort. 

T(n)=2T(n/2)+O(n)

Here a=2, b=2 and d=1. Since d=1=logba=log22, the Master Theorem asserts:

T(n)=O(n logn), as was previously shown. 

log

( ) log

( ) ( log ) log

( ) logb

d

b

d

b

a

b

O n if d a

T n O n n if d a

O n if d a

 


 
 
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Master Theorem

(*) Master Theorem. If T(n)=aT(n/b)+O(nd) for some constants, a > 0, b > 1, 

and   d ≥ 0, then: 

Example #2:  

T(n)=8T(n/2)+1000n2

Here a=8, b=2 and d=2. Since d=2<logba=log28=3, the Master Theorem asserts:

T(n)=O(n3). 

log

( ) log

( ) ( log ) log

( ) logb

d

b

d

b

a

b

O n if d a

T n O n n if d a

O n if d a

 


 
 
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Master Theorem

(*) Master Theorem. If T(n)=aT(n/b)+O(nd) for some constants, a > 0, b > 1, 

and   d ≥ 0, then: 

Example #3:  

T(n)=2T(n/2)+n2

Here a=2, b=2 and d=2. Since d=2>logba=log22=1, the Master Theorem asserts:

T(n)=O(n2). 

log

( ) log

( ) ( log ) log

( ) logb

d

b

d

b

a

b

O n if d a

T n O n n if d a

O n if d a

 


 
 



5.3  Counting Inversions
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Music site tries to match your song preferences with others.

You rank n songs.

Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.

My rank:  1, 2, …, n.

Your rank:  a1, a2, …, an.

Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all (n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions

3-2, 4-2
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Applications

Applications.

Voting theory.

Collaborative filtering.

Measuring the "sortedness" of an array.

Sensitivity analysis of Google's ranking function. 

Rank aggregation for meta-searching on the Web.

Nonparametric statistics  (e.g., Kendall's Tau distance).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9



43

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

Divide:  separate list into two pieces.

Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7



45

Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

Divide:  separate list into two pieces.

Conquer: recursively count inversions in each half.

Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions

5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
Assume each half is sorted.

Count inversions where ai and aj are in different halves. 

Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  



T(n)   T n/2  T n/2  O(n)  T(n)O(nlog n)

6 3 2 2 0 0

to maintain sorted invariant

demo-merge-invert.ppt#1. Merge%20and%20Count
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.

Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {

if list L has one element

return 0 and the list L

Divide the list into two halves A and B

(rA, A)  Sort-and-Count(A)

(rB, B)  Sort-and-Count(B)

(rB, L)  Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L

}



48

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

auxiliary array

Total:  

i = 6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

i = 6

two sorted halves

2 auxiliary array

Total:  6  

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

2 auxiliary array

i = 6

Total:  6  

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 6

Total:  6   

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

2 3 auxiliary array

i = 5

Total:  6  

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 5

Total:  6  

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

72 3 auxiliary array

i = 4

Total:  6  

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 4

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 102 3 auxiliary array

i = 3

Total:  6

6
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total:  6 + 3

6 3



58

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 112 3 auxiliary array

i = 3

Total:  6 + 3

6 3
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 3

Total:  6 + 3

6 3



60

10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 auxiliary array

i = 2

Total:  6 + 3

6 3
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total:  6 + 3 + 2

6 3 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 auxiliary array

i = 2

Total:  6 + 3 + 2

6 3 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 16 17 auxiliary array

i = 2

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 2

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 1816 17 auxiliary array

i = 1

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 1

Total:  6 + 3 + 2 + 2

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 1916 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2

first half exhausted

6 3 2 2
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0

6 3 2 2 0
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 2316 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0

6 3 2 2 0
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0 + 0

6 3 2 2 0 0
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10 14 18 193 7 16 17 23 252 11

Merge and Count

Merge and count step. 

Given two sorted halves, count number of inversions where ai and aj

are in different halves.

Combine two sorted halves into sorted whole.

two sorted halves

7 10 11 142 3 18 19 23 2516 17 auxiliary array

i = 0

Total:  6 + 3 + 2 + 2 + 0 + 0 = 13

6 3 2 2 0 0
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HW#3, Kleinberg #5.1

You are interested in analyzing some hard-to-obtain data from two 

separate databases. Each database contains n numerical values – so 

there are 2n values total – and you may assume that no two values are 

the same. You’d like to determine the median of this set of 2n values, 

which we will define here to be the nth smallest value. 
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HW#3, Kleinberg #5.1

You are interested in analyzing some hard-to-obtain data from two 

separate databases. Each database contains n numerical values – so 

there are 2n values total – and you may assume that no two values are 

the same. You’d like to determine the median of this set of 2n values, 

which we will define here to be the nth smallest value. 

However, the only way you can access these values is through queries 

to the databases. In a single query, you can specify a value k to one of 

the two databases, and the chosen database will return the kth 

smallest value that it contains. Since queries are expensive, you would 

like to compute the median using as few queries as possible. 

Given an algorithm that finds the median value using at most O(n log n) 

queries. 
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HW#3, Kleinberg #5.1

Given an algorithm that finds the median value using at most O(n log n) 

queries.

Begin by querying A(k) and B(k) – these are the medians of the two 

databases, respectively.  
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HW#3, Kleinberg #5.1

Given an algorithm that finds the median value using at most O(n log n) 

queries.

Begin by querying A(k) and B(k) – these are the medians of the two 

databases, respectively.  

Suppose, WLOG, that A(k)<B(k). 

Now, B(k) is: (1) larger than the first k elements of A and, (2) naturally, 

larger than the first k-1 elements of B. Thus, B(k) is at least the 2kth

element in the combined database. 
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HW#3, Kleinberg #5.1

Given an algorithm that finds the median value using at most O(n log n) 

queries.

Begin by querying A(k) and B(k) – these are the medians of the two 

databases, respectively.  

Suppose, WLOG, that A(k)<B(k). 

Now, B(k) is: (1) larger than the first k elements of A and, (2) naturally, 

larger than the first k-1 elements of B. Thus, B(k) is at least the 2kth

element in the combined database. 

This implies that B(k) is greater than the overall median. So let’s 

eliminate the second half of the B dataset; let B’ = the first k elements 

in B. 
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HW#3, Kleinberg #5.1

Begin by querying A(k) and B(k) – these are the medians of the two 

databases, respectively (let k = ceiling(1/2n)). 

Suppose, WLOG, that A(k)<B(k). 

Now, B(k) is: (1) larger than the first k elements of A and, (2) naturally, 

larger than the first k-1 elements of B. Thus, B(k) is at least the 2kth

element in the combined database. 

This implies that B(k) is greater than the overall median. So let’s 

eliminate the second half of the B dataset; let B’ = the first k elements 

in B. 

Now show that the elements in the first half of A (i.e. the first 

floor(1/2n) elements) are also less than B(k) and can be discarded. 

Divide and conquer…
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HW#3, Kleinberg #5.2

Recall the problem of finding the number of inversions. As in the text, 

we are given a sequence of n numbers a1,…,an, which we assume are all 

distinct, and we define an inversion to be a pair i<j such that ai>aj. 

We motivated the problem of counting inversions as a good measure of 

how different two orderings are. However, one might feel that this 

measure is too sensitive. Let’s call a pair a significant inversion if i<j 

and ai>2aj. 

Give an O(n log n) algorithm to count the number of significant 

inversions between two orderings. 
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HW#3, Kleinberg #5.2

We motivated the problem of counting inversions as a good measure of 

how different two orderings are. However, one might feel that this 

measure is too sensitive. Let’s call a pair a significant inversion if i<j 

and ai>2aj. 

Give an O(n log n) algorithm to count the number of significant 

inversions between two orderings. 

Idea: Let k=floor(n/2); call algorithm (ALG) on each (sorted) half: 

ALG(a1,…,ak) -> return N1, number of significant inversions and sorted 

list. 

ALG(ak+1, an) -> return N2, number of significant inversions and sorted 

list. 
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HW#3, Kleinberg #5.2
Let’s call a pair a significant inversion if i<j and ai>2aj. 

Give an O(n log n) algorithm to count the number of significant 

inversions between two orderings. 

Idea: Let k=floor(n/2); call algorithm (ALG) on each (sorted) half: 

ALG(a1,…,ak) -> return N1, number of significant inversions and sorted 

list. 

ALG(ak+1, an) -> return N2, number of significant inversions and sorted 

list. 

Lastly, we need N3, the count for number of significant inversions 

where left endpoint is in the first set, right endpoint in the second set. 

Last point: How to merge in O(n) time for significant inversion counts? 

Hint: Merge list 1 and list two times list 2. 
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HW#3, Kleinberg #5.6
Consider an n-node complete binary tree T, where n=2d-1 for some d. 

Each node v of T is labeled with a real number xv. You may assume the 

real numbers labeling the nodes are all distinct. A node v of T is a local 

minimum if the label xv is less than the label xw for all nodes w that are 

joined to v by an edge. 

You are given such a complete binary tree T, but the labeling is only 

specified in the following implicit way: for each node v, you can 

determine the value xv, by probing the node v. Show how to find a local 

minimum of T using only O(log n) probes to the nodes of T. 
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HW#3, Kleinberg #5.6
Consider an n-node complete binary tree T, where n=2d-1 for some d. 

Each node v of T is labeled with a real number xv. You may assume the 

real numbers labeling the nodes are all distinct. A node v of T is a local 

minimum if the label xv is less than the label xw for all nodes w that are 

joined to v by an edge. 

You are given such a complete binary tree T, but the labeling is only 

specified in the following implicit way: for each node v, you can 

determine the value xv, by probing the node v. Show how to find a local 

minimum of T using only O(log n) probes to the nodes of T. 

One idea: Recursive step – begin at root, if it is smaller than children 

we are done. What next? 
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HW#3, Kleinberg #5.6
Consider an n-node complete binary tree T, where n=2d-1 for some d. 

Each node v of T is labeled with a real number xv. You may assume the 

real numbers labeling the nodes are all distinct. A node v of T is a local 

minimum if the label xv is less than the label xw for all nodes w that are 

joined to v by an edge. 

You are given such a complete binary tree T, but the labeling is only 

specified in the following implicit way: for each node v, you can 

determine the value xv, by probing the node v. Show how to find a local 

minimum of T using only O(log n) probes to the nodes of T. 

One idea: Recursive step – begin at root, if it is smaller than children 

we are done. 

Next, choose a smaller child and iterate. We still must prove the run-

time is O(log n) and correctness.  



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 

Euclidean distance between them.

Fundamental geometric primitive.

Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.

Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with (n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.

Divide:  draw vertical line L so that roughly ½n points on each side.

L
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Closest Pair of Points

Algorithm.

Divide:  draw vertical line L so that roughly ½n points on each side.

Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.

Divide:  draw vertical line L so that roughly ½n points on each side.

Conquer:  find closest pair in each side recursively.

Combine:  find closest pair with one point in each side.

Return best of 3 solutions.

12

21
8

L

seems like (n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

12

21

 = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

Observation:  only need to consider points within  of line L.

12

21



L

 = min(12, 21)
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12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

Observation:  only need to consider points within  of line L.

Sort points in 2-strip by their y coordinate.

L

 = min(12, 21)
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12

21

1

2

3

4
5

6

7



Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < .

Observation:  only need to consider points within  of line L.

Sort points in 2-strip by their y coordinate.

Only check distances of those within 11 positions in sorted list!

L

 = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2-strip, with

the ith smallest y-coordinate.

Claim.  If |i – j|  12, then the distance between

si and sj is at least .

Pf.

No two points lie in same ½-by-½ box.

Two points at least 2 rows apart

have distance  2(½).   ▪

Fact.  Still true if we replace 12 with 7.



27

29
30

31

28

26

25



½

2 rows

½

½

39

i

j
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {

Compute separation line L such that half the points

are on one side and half on the other side.

1 = Closest-Pair(left half)

2 = Closest-Pair(right half)

 = min(1, 2)

Delete all points further than  from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between

each point and next 11 neighbors. If any of these

distances is less than , update .

return .

}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.

Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.

Sort by merging two pre-sorted lists.

  



T(n)  2T n /2   O(n)  T(n)  O(n log n)

  



T(n)  2T n /2   O(n log n)  T(n)    O(n log2 n)
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HW #3 / Exercise #6

In this exercise we consider the task of finding the closest pair of 

points in 1-D (i.e. points on a line). 

(iii) Using explicit divide and conquer techniques, devise an algorithm 

(different from part (ii)) that solves the problem in θ(n log n). 
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HW #3 / Exercise #6

In this exercise we consider the task of finding the closest pair of 

points in 1-D (i.e. points on a line). 

(iii) Using explicit divide and conquer techniques, devise an algorithm 

(different from part (ii)) that solves the problem in θ(n log n). 



Matrix Multiplication
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Dot product.  Given two length n vectors a and b, compute c = a  b.

Grade-school.   (n) arithmetic operations.

Remark. Grade-school dot product algorithm is optimal.

Dot Product



a  b  a
i
b

i

i1

n





a   .70 .20 .10 

b   .30 .40 .30 

a    b    (.70  .30)    (.20  .40)    (.10  .30)    .32
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Matrix multiplication.  Given two n-by-n matrices A and B, compute C = AB.

Grade-school.   (n3) arithmetic operations.

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix Multiplication



cij  a
ik

b
kj

k1

n



  



c
11

c
12

c
1n

c
21

c
22

c
2n

c
n1

c
n2

c
nn





















a
11

a
12

a
1n

a
21

a
22

a
2n

a
n1

a
n2

a
nn





















b
11

b
12

b
1n

b
21

b
22

b
2n

b
n1

b
n2

b
nn





















.59 .32 .41

.31 .36 .25

.45 .31 .42



















.70 .20 .10

.30 .60 .10

.50 .10 .40

















       

.80 .30 .50

.10 .40 .10

.10 .30 .40
















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Block Matrix Multiplication



C
11

    A11 B11    A12 B21     
0 1

4 5









   

16 17

20 21









     

2 3

6 7









   

24 25

28 29









     

152 158

504 526













152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















   

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















   

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11

A11 A12 B11

B11
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Matrix Multiplication:  Warmup

To multiply two n-by-n matrices A and B:

Divide:  partition A and B into ½n-by-½n blocks.

Conquer:  multiply 8 pairs of ½n-by-½n matrices, recursively.

Combine:  add appropriate products using 4 matrix additions.

  



C11  A11  B11    A12  B21 
C12  A11  B12    A12  B22 
C21  A21  B11    A22  B21 
C22  A21  B12    A22  B22 

  



C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22













T (n)  8T n /2 
recursive calls

   (n2 )

add, form submatrices

 T (n)  (n3)
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Fast Matrix Multiplication

Key idea.  multiply 2-by-2 blocks with only 7 multiplications.

7 multiplications.

18 = 8 + 10 additions and subtractions.

  



P1  A11  (B12  B22 )

P2  ( A11 A12 ) B22

P3  ( A21 A22 )  B11

P4  A22  (B21 B11)

P5  ( A11 A22 ) (B11 B22 )

P6  ( A12  A22 ) (B21 B22 )

P7  ( A11 A21) (B11 B12 )  



C11  P5  P4  P2  P6

C12  P1  P2

C21  P3  P4

C22  P5  P1  P3  P7

  



C11 C12

C21 C22









   

A11 A12

A21 A22









   

B11 B12

B21 B22










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Fast Matrix Multiplication

To multiply two n-by-n matrices A and B:   [Strassen 1969]

Divide:  partition A and B into ½n-by-½n blocks.

Compute: 14 ½n-by-½n matrices via 10 matrix additions.

Conquer:  multiply 7 pairs of ½n-by-½n matrices, recursively.

Combine:  7 products into 4 terms using 8 matrix additions.

Analysis.

Assume n is a power of 2.

T(n) = # arithmetic operations.



T (n)  7T n /2 
recursive calls

 (n2 )

add, subtract

 T (n)  (n log2 7 ) O(n2.81 )
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Fast Matrix Multiplication:  Practice

Implementation issues.

Sparsity.

Caching effects.

Numerical stability.

Odd matrix dimensions.

Crossover to classical algorithm around n = 128. 

Common misperception.  “Strassen is only a theoretical curiosity.”

Apple reports 8x speedup on G4 Velocity Engine when n  2,500.

Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, SVD, ….
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Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication:  Theory

Q.  Multiply two 2-by-2 matrices with 7 scalar multiplications?

  



(nlog3 21) O(n 2.77 )



O(n 2.7801)

  



(n log2 6) O(n 2.59 )


(nlog2 7) O(n 2.807 )A. Yes!   [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?

A. Impossible.  [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?

A. Also impossible.

Two 48-by-48 matrices with 47,217 scalar multiplications.

December, 1979.



O(n 2.521813 )



O(n 2.521801 )
January, 1980.

A year later.



O(n 2.7799)

Two 20-by-20 matrices with 4,460 scalar multiplications.



O(n 2.805)
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Fast Matrix Multiplication:  Theory

Best known.  O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture.  O(n2+) for any  > 0. 

Caveat.  Theoretical improvements to Strassen are progressively

less practical.



5.6 Convolution and FFT

The FFT is the most important algorithm of the 
20th century. 

-- Gilbert Strang 
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Fourier Analysis

Fourier theorem.  [Fourier, Dirichlet, Riemann]  Any periodic function 

can be expressed as the sum of a series of sinusoids. 
sufficiently smooth

t

N = 1N = 5N = 10N = 100



y(t)    
2



sin kt

kk1

N


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Euler's Identity

Sinusoids.  Sum of sine an cosines.

Sinusoids.  Sum of complex exponentials.

eix = cos x + i sin x

Euler's identity



114

Time Domain vs. Frequency Domain
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Time Domain vs. Frequency Domain

Signal.  [touch tone button 1]

Time domain.

Frequency domain.



y(t)    1
2
sin(2  697 t)    1

2
sin(2  1209 t)

Reference:  Cleve Moler, Numerical Computing with MATLAB

frequency (Hz)

amplitude

0.5

time (seconds)

sound
pressure
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Time Domain vs. Frequency Domain

Signal.  [recording, 8192 samples per second]

Magnitude of discrete Fourier transform.

Reference:  Cleve Moler, Numerical Computing with MATLAB
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Fast Fourier Transform

FFT.  Fast way to convert between time-domain and frequency-domain.

Alternate viewpoint.  Fast way to multiply and evaluate polynomials.

If you speed up any nontrivial algorithm by a factor of a 

million or so the world will beat a path towards finding 

useful applications for it.    -Numerical Recipes

we take this approach
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Fast Fourier Transform:  Applications

Applications.

Optics, acoustics, quantum physics, telecommunications, radar, 

control systems, signal processing, speech recognition, data 

compression, image processing, seismology, mass spectrometry…

Digital media.  [DVD, JPEG, MP3, H.264]

Medical diagnostics.  [MRI, CT, PET scans, ultrasound]

Numerical solutions to Poisson's equation.

Shor's quantum factoring algorithm.

…

The FFT is one of the truly great computational 

developments of [the 20th] century.  It has changed the 

face of science and engineering so much that it is not an 

exaggeration to say that life as we know it would be very 

different without the FFT.   -Charles van Loan
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Fast Fourier Transform:  Brief History

Gauss (1805, 1866).  Analyzed periodic motion of asteroid Ceres.

Runge-König (1924).  Laid theoretical groundwork.

Danielson-Lanczos (1942).  Efficient algorithm, x-ray crystallography.

Cooley-Tukey (1965).  Monitoring nuclear tests in Soviet Union and 

tracking submarines.  Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.
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Polynomials:  Coefficient Representation

Polynomial.  [coefficient representation]

Add.  O(n) arithmetic operations.

Evaluate.  O(n) using Horner's method.

Multiply (convolve). O(n2) using brute force.

  



A(x) a0 a1xa2x2   an1xn1



B(x) b0 b1xb2x2   bn1xn1

  



A(x) B(x)  (a0 b0 ) (a1 b1)x   (an1 bn1)xn1



A(x) a0 (x(a1 x(a2   x(an2  x(an1)) ))

  



A(x) B(x) ci xi

i0

2n2

 ,  where ci  a j bi j

j0

i





121

A Modest PhD Dissertation Title

"New Proof of the Theorem That Every Algebraic Rational 

Integral Function In One Variable can be Resolved into 

Real Factors of the First or the Second Degree."

- PhD dissertation, 1799 the University of Helmstedt
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Polynomials:  Point-Value Representation

Fundamental theorem of algebra. (FTA)  [Gauss, PhD thesis]  A degree 

n polynomial with complex coefficients has exactly n complex roots.

Corollary.  A degree n-1 polynomial A(x) is uniquely specified by its 

evaluation at n distinct values of x.

x

y

xj

yj = A(xj )
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Polynomials:  Point-Value Representation

Polynomial.  [point-value representation]

Add.  O(n) arithmetic operations.

Multiply (convolve).  O(n), but need 2n points.

Evaluate. O(n2) using Lagrange's formula.



A(x) :  (x0, y0 ), , (xn-1, yn1)  

B(x) :  (x0, z0 ), , (xn-1, zn1)



A(x)B(x) :   (x0, y0  z0), , (xn-1, yn1 zn1)



A(x)  yk

(x  x j )
jk



(xk  x j )
jk

k0

n1





A(x)  B(x) :   (x0, y0  z0), , (x2n-1, y2n1 z2n1)

Commonly used for 
polynomial 
interpolation. 
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Converting Between Two Polynomial Representations

Tradeoff.  Fast evaluation or fast multiplication. We want both!

Goal.  Efficient conversion between two representations   all ops fast.

FFT: Given coefficient representation of polynomials, (1) convert to 

point-value, (2) multiply, (3) then convert back to coefficient 

representation.  

coefficient

representation

O(n2)

multiply

O(n)

evaluate

point-value O(n) O(n2)



a0, a1, ..., an-1



(x0, y0), , (xn1, yn1)

coefficient representation point-value representation
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Converting Between Two Representations:  Brute Force

Coefficient  point-value.  Given a polynomial a0 + a1 x + ... + an-1 x
n-1, 

evaluate it at n distinct points x0 , ...,  xn-1.

Running time.  O(n2) for matrix-vector multiply (or n Horner's).

Main Idea: Multiplication by the Vandermonde matrix renders 

conversion from coefficient polynomial representation to point-value 

representation (step (1)). 

  



y0

y1

y2

yn1 























   

1 x0 x0
2 x0

n1

1 x1 x1
2 x1

n1

1 x2 x2
2 x2

n1

1 xn1 xn1
2 xn1

n1  























a0

a1

a2

 an1























Vandermonde matrix

FFT: Given coefficient 
representation of 
polynomials, (1) 
convert to point-value, 
(2) multiply, (3) then 
convert back to 
coefficient 
representation.  
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Converting Between Two Representations:  Brute Force

Point-value  coefficient.  Given n distinct points x0, ... , xn-1 and values 

y0, ... , yn-1, find unique polynomial a0 + a1x + ... + an-1 xn-1, that has given 

values at given points.

Running time.  O(n3) for Gaussian elimination (i.e. find inverse of 

Vandermonde matrix).

Main Idea: Multiplication by the inverse of the Vandermonde matrix 

renders conversion from point-value representation to coefficient 

representation (step (3)). 

  



y0

y1

y2

yn1 























   

1 x0 x0
2 x0

n1

1 x1 x1
2 x1

n1

1 x2 x2
2 x2

n1

1 xn1 xn1
2 xn1

n1  























a0

a1

a2

 an1























Vandermonde matrix is invertible iff xi distinct

or O(n2.376) via fast matrix multiplication

FFT: Given coefficient 
representation of 
polynomials, (1) 
convert to point-value, 
(2) multiply, (3) then 
convert back to 
coefficient 
representation.  

1V V   y a y a
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Why do we need to multiply polynomials? 

Convolutions: In sampling theory, a convolution operator (*) computes a weighted 

average of an input signal (x) and a filter (h). 
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Why do we need to multiply polynomials? 

The convolution theorem states that convolution of two signals in the 

time domain is equivalent to the multiplication of their corresponding 

Fourier transforms. 

Essentially, we will obtain the same result if we multiply the Fourier 

transforms of our signals as we would if we convolved the signals 

directly.

(*) NB: This is why we want to multiply polynomials! 
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Why do we need to multiply polynomials? 

Summary of ideas so far for FFT:

(*) By the convolution theorem, multiplication of polynomials in the 

frequency domain is equivalent to “convolving polynomials” (i.e. 

performing discrete sampling). 

Thus, we need an efficient procedure to convert from the 

(conventional) coefficient representation of polynomials to the point-

value representation (as multiplication then costs O(n)). 
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Why do we need to multiply polynomials? 

Summary of ideas so far for FFT:

(*) By the convolution theorem, multiplication of polynomials in the 

frequency domain is equivalent to “convolving polynomials” (i.e. 

performing discrete sampling). 

Thus, we need an efficient procedure to convert from the 

(conventional) coefficient representation of polynomials to the point-

value representation (as multiplication then costs O(n)). 

(*) When we multiply by V, the Vandermonde matrix, this converts the 

polynomial representation from coefficient to point-value; multiplying 

by V-1 reverses this transformation from: coefficient -> point-value. 

Are we done? 
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Why do we need to multiply polynomials? 

Summary of ideas so far for FFT:

(*) By the convolution theorem, multiplication of polynomials in the 

frequency domain is equivalent to “convolving polynomials” (i.e. 

performing discrete sampling). 

Thus, we need an efficient procedure to convert from the 

(conventional) coefficient representation of polynomials to the point-

value representation (as multiplication then costs O(n)). 

(*) When we multiply by V, the Vandermonde matrix, this converts the 

polynomial representation from coefficient to point-value; multiplying 

by V-1 reverses this transformation from: coefficient -> point-value. 

Are we done? Not quite. Multiplying naively by V requires O(n2) time. 

Why? Also, while inverting a matrix in general requires O(n3) time, the 

Vandermonde structure allows inversion in O(n2). 

Issue still remains: O(n2) bound. 
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FFT 

Issue still remains: O(n2) bound. 

How do we remedy this? Divide and conquer! 

In summary: We will transform, recursively, the problem of multiplying 

the n coefficients by a form of the Vandermonde matrix – by rendering 

the size-n problem as two size n/2 problems. 

Divide and conquer for FFT will consequently yield a recursion: 

T(n)=2T(n/2)+O(n)

What is the natural big-O upper bound?
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FFT 

Issue still remains: O(n2) bound. 

How do we remedy this? Divide and conquer! 

In summary: We will transform, recursively, the problem of multiplying 

the n coefficients by a form of the Vandermonde matrix – by rendering 

the size-n problem as two size n/2 problems. 

Divide and conquer for FFT will consequently yield a recursion: 

T(n)=2T(n/2)+O(n)

What is the natural big-O upper bound? O(n log n)    (recall the 

previous  Mergesort discussion and solution).
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Geometry of FFT 

(*) FYI: The columns of the Vandermonde matrix are orthogonal. 

Meaning that they are pairwise orthogonal, i.e. perpendicular. 

(*) This means that they form an alternative coordinate system, which 

is often called the Fourier basis. 

The effect of multiplying a vector by V is, geometrically, the effect of 

rotating the vector from the standard basis to the Fourier basis 

(defined by the columns of V). The inverse (V-1) is the opposite 

rotation. 
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Divide-and-Conquer

Decimation in frequency.  Break up polynomial into low and high powers.

A(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7.

Alow(x) = a0 + a1x + a2x
2 + a3x

3.

Ahigh (x) = a4 + a5x + a6x
2 + a7x

3.

A(x) = Alow(x) + x4 Ahigh(x).

Decimation in time.  Break polynomial up into even and odd powers.

A(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7.

Aeven(x) = a0 + a2x + a4x
2 + a6x

3.

Aodd (x) = a1 + a3x + a5x
2 + a7x

3.

A(x) = Aeven(x
2) + x Aodd(x

2).
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Coefficient to Point-Value Representation:  Intuition

Coefficient  point-value.  Given a polynomial a0 + a1x + ... + an-1 xn-1, 

evaluate it at n distinct points x0 , ..., xn-1.

Divide.  Break polynomial up into even and odd coefficients. 

A(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7.

Aeven(x) = a0 + a2x + a4x
2 + a6x

3.

Aodd (x) = a1 + a3x + a5x
2 + a7x

3.

we get to choose which ones!
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Coefficient to Point-Value Representation:  Intuition

Coefficient  point-value.  Given a polynomial a0 + a1x + ... + an-1 xn-1, 

evaluate it at n distinct points x0 , ..., xn-1.

Divide.  Break polynomial up into even and odd coefficients.

A(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7.

Aeven(x) = a0 + a2x + a4x
2 + a6x

3.

Aodd (x) = a1 + a3x + a5x
2 + a7x

3.

A(x) = Aeven(x
2) + x Aodd(x

2).

A(-x) = Aeven(x
2) - x Aodd(x

2).

we get to choose which ones!
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Coefficient to Point-Value Representation:  Intuition

Coefficient  point-value.  Given a polynomial a0 + a1x + ... + an-1 xn-1, 

evaluate it at n distinct points x0 , ..., xn-1.

Divide.  Break polynomial up into even and odd powers.

A(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7.

Aeven(x) = a0 + a2x + a4x
2 + a6x

3.

Aodd (x) = a1 + a3x + a5x
2 + a7x

3.

A(x) = Aeven(x
2) + x Aodd(x

2).

A(-x) = Aeven(x
2) - x Aodd(x

2).

Intuition.  Choose two points to be ±1.

A( 1) = Aeven(1) + 1 Aodd(1). 

A(-1) = Aeven(1) - 1 Aodd(1). Can evaluate polynomial of degree  n

at 2 points by evaluating two polynomials 
of degree  ½n at 1 point.

we get to choose which ones!
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Coefficient to Point-Value Representation:  Intuition

Coefficient  point-value.  Given a polynomial a0 + a1x + ... + an-1 xn-1, 

evaluate it at n distinct points x0 , ..., xn-1.

Divide.  Break polynomial up into even and odd powers.

A(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7.

Aeven(x) = a0 + a2x + a4x
2 + a6x

3.

Aodd (x) = a1 + a3x + a5x
2 + a7x

3.

A(x) = Aeven(x
2) + x Aodd(x

2).

A(-x) = Aeven(x
2) - x Aodd(x

2).

Intuition.  Choose four complex points to be ±1, ±i.

A(1) = Aeven(1) + 1 Aodd(1). 

A(-1) = Aeven(1) - 1 Aodd(1).

A( i ) = Aeven(-1) + i Aodd(-1). 

A( -i ) = Aeven(-1) - i Aodd(-1).

Can evaluate polynomial of degree  n

at 4 points by evaluating two polynomials 
of degree  ½n at 2 points.

we get to choose which ones!
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Discrete Fourier Transform

Coefficient  point-value.  Given a polynomial a0 + a1x + ... + an-1 xn-1, 

evaluate it at n distinct points x0 , ..., xn-1.

Key idea.  Choose xk = k where  is principal nth root of unity.

DFT


y0

y1

y2

y3

yn1

























  

1 1 1 1 1

1 1 2 3 n1

1 2 4 6 2(n1)

1 3 6 9 3(n1)

1 n1 2(n1) 3(n1) (n1)(n1)

























a0

a1

a2

a3

an1

























Fourier matrix Fn
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Roots of Unity

Def.  An nth root of unity is a complex number x such that xn = 1.

Fact.  The nth roots of unity are: 0, 1, …, n-1 where  = e 2 i / n.

Pf.  (k)n = (e 2 i k / n) n = (e  i ) 2k =  (-1) 2k =  1.

Fact.  The ½nth roots of unity are: 0, 1, …, n/2-1 where  = 2 = e 4 i / n.

0 = 0 = 1

1

2 = 1 = i

3

4 = 2 = -1

5

6 = 3 = -i

7

n = 8



142

Fast Fourier Transform

Goal.  Evaluate a degree n-1 polynomial A(x) = a0 + ... + an-1 xn-1 at its

nth roots of unity: 0, 1, …, n-1.

Divide.  Break up polynomial into even and odd powers.

Aeven(x) =  a0 + a2x + a4x
2 + … + an-2 x n/2 - 1.

Aodd (x) =  a1 + a3x + a5x
2 + … + an-1 x n/2 - 1.

A(x) = Aeven(x
2) + x Aodd(x

2).

Conquer.  Evaluate Aeven(x) and Aodd(x) at the ½nth

roots of unity: 0, 1, …, n/2-1.

Combine.  

A( k) = Aeven(
k) +  k Aodd ( k),   0  k < n/2

A( k+ ½n) = Aeven(
k) –  k Aodd (

k),   0  k < n/2

k+ ½n = -k

k = (k )2

k = (k + ½n )2
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fft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1)  FFT(n/2, a0,a2,a4,…,an-2)

(d0,d1,…,dn/2-1)  FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {

k  e2ik/n

yk+n/2  ek + k dk

yk+n/2  ek - k dk

}

return (y0,y1,…,yn-1)

}

FFT Algorithm
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FFT Summary

Theorem.  FFT algorithm evaluates a degree n-1 polynomial at each of 

the nth roots of unity in O(n log n) steps.

Running time.  



a0, a1, ..., an-1



(0, y0), ..., (n1, yn1)

O(n log n)

coefficient
representation

point-value
representation



T(n)  2T(n/2)  (n)     T(n)  (n logn)

???

assumes n is a power of 2
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Recursion Tree

a0, a1, a2, a3, a4, a5, 

a6, a7

a1, a3, a5, 

a7

a0, a2, a4, 

a6

a3, a7a1, a5a0, a4 a2, a6

a0 a4 a2 a6 a1 a5 a3 a7

"bit-reversed" order

000 100 010 110 001 101 011 111

perfect shuffle
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Inverse Discrete Fourier Transform

Point-value  coefficient.  Given n distinct points x0, ... , xn-1 and values 

y0, ... , yn-1, find unique polynomial a0 + a1x + ... + an-1 xn-1, that has given 

values at given points.

Inverse DFT


a0

a1

a2

a3

an1

























  

1 1 1 1 1

1 1 2 3 n1

1 2 4 6 2(n1)

1 3 6 9 3(n1)

1 n1 2(n1) 3(n1) (n1)(n1)

























  1

 

y0

y1

y2

y3

yn1

























Fourier matrix inverse (Fn) 
-1
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Claim.  Inverse of Fourier matrix Fn is given by following formula.

Consequence.  To compute inverse FFT, apply same algorithm but use

-1 = e -2 i / n as principal nth root of unity (and divide by n).



Gn 
1

n
 

1 1 1 1 1

1 1 2 3 (n1)

1 2 4 6 2(n1)

1 3 6 9 3(n1)

1 (n1) 2(n1) 3(n1) (n1)(n1)

























Inverse DFT



1

n
Fn  is unitary
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Inverse FFT:  Proof of Correctness

Claim.  Fn and Gn are inverses.

Pf.  

Summation lemma.  Let  be a principal nth root of unity. Then

Pf.

If k is a multiple of n then k = 1  series sums to n.

Each nth root of unity k is a root of xn - 1 = (x - 1) (1 + x + x2 + ... + xn-1).

if k  1 we have:  1 + k + k(2) + … + k(n-1) = 0  series sums to 0.  ▪



 k j

j0

n1

 
n if k  0 mod n

0 otherwise







Fn Gn k k    
1

n
k j  j k 

j0

n1

      
1

n
(k k ) j

j0

n1

     
 1 if k  k 

 0 otherwise





summation lemma
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Inverse FFT:  Algorithm

ifft(n, a0,a1,…,an-1) {

if (n == 1) return a0

(e0,e1,…,en/2-1)  FFT(n/2, a0,a2,a4,…,an-2)

(d0,d1,…,dn/2-1)  FFT(n/2, a1,a3,a5,…,an-1)

for k = 0 to n/2 - 1 {

k  e-2ik/n

yk+n/2   (ek + k dk) / n

yk+n/2   (ek - k dk) / n

}

return (y0,y1,…,yn-1)

}



150

Inverse FFT Summary

Theorem.  Inverse FFT algorithm interpolates a degree n-1 polynomial 

given values at each of the nth roots of unity in O(n log n) steps.

assumes n is a power of 2



a0, a1, , an-1



( 0, y0), , ( n1, yn1)

O(n log n)

coefficient
representation

O(n log n)
point-value

representation
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Polynomial Multiplication

Theorem.  Can multiply two degree n-1 polynomials in O(n log n) steps.



a0 , a1, , an-1

b0 , b1, , bn-1



c0, c1, , c2n-2



A( 0 ), ..., A( 2n1)

B( 0 ), ..., B( 2n1)



C( 0), ..., C( 2n1)
O(n)

point-value multiplication

O(n log n)2 FFTs inverse FFT O(n log n)

coefficient
representation coefficient

representation

pad with 0s to make n a power of 2
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FFT in Practice ?
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FFT in Practice

Fastest Fourier transform in the West.  [Frigo and Johnson]

Optimized C library.

Features:  DFT, DCT, real, complex, any size, any dimension.

Won 1999 Wilkinson Prize for Numerical Software.

Portable, competitive with vendor-tuned code.

Implementation details.

Instead of executing predetermined algorithm, it evaluates your 

hardware and uses a special-purpose compiler to generate an 

optimized algorithm catered to "shape" of the problem.

Core algorithm is nonrecursive version of Cooley-Tukey.

O(n log n), even for prime sizes.

Reference:  http://www.fftw.org


