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Chapter 2

Basics of 
Algorithm Analysis

CS 350 Winter 2018



2.0  Some Preliminary Concepts
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Log Function

(*) Log is a common “sub-linear” algorithm run-time (something of a best 

case scenario). ; the log function is 1-1.

Some Useful Log Properties:

(1) logb(xy)=logb(x)+logb(y)

(2) logb(x/y)=logb(x)-logb(y)

(3) logb(x
y)=ylogb(x)

(4) logb(x)=ln(x)/ln(b)   (base conversion)
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Log Function

(*) Log is a common “sub-linear” algorithm run-time (something of a best 

case scenario). ; the log function is 1-1.

Some Useful Log Properties:

(1) logb(xy)=logb(x)+logb(y)

(2) logb(x/y)=logb(x)-logb(y)

(3) logb(x
y)=ylogb(x)

log is the natural “inverse” of 

the exponential function 
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Counting Functions

(*) Counting functions serve as useful tools for algorithm analysis (e.g. 

analysis of run-time and space complexity). 

Factorial Function: n!=n(n-1)(n-2)…(1).    (NB: 0!=1) 

(*) Factorial counts there number of ways to order n distinct items. 

(*) Factorial is “super exponential” (more on this later) 

Choose: nCk “n choose k” = n!/(k!(n-k)!) 

(*) Choose counts the number of ways to group k elements from a set of 

n distinct elements (n>=k). (NB: order is irrelevant here) 

Permutation: nPk “n permute k” = n!/(n-k)! 

(*) Permutations count the number of ways to order k elements from a 

set of n distinct elements (n>=k). (NB: order matters) 
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Comments on Series 

(*) An arithmetic series is a sum of an arithmetic sequence – a 

progression of numbers such that the difference between consecutive 

terms is constant (d). 

For arithmetic sequences/series: 
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Comments on Series 

(*) An arithmetic series is a sum of an arithmetic sequence – a 

progression of numbers such that the difference between consecutive 

terms is constant (d). 

For arithmetic sequences/series: 

(*) A geometric series is a sum of a geometric sequence – a progression

of numbers such that the quotient of consecutive terms is constant (r). 

What is: 1/2+1/4+1/8+…?  (Zeno) 

1
1

1

( )
( 1)

2

n
n

n i

i

n a a
a a n d a




   



8

Comments on Series 

(*) An arithmetic series is a sum of an arithmetic sequence – a 

progression of numbers such that the difference between consecutive 

terms is constant (d). 

For arithmetic sequences/series: 

(*) A geometric series is a sum of a geometric sequence – a progression

of numbers such that the quotient of consecutive terms is constant (r). 

For geometric sequences/series in general:
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Series 
(*) Here are some more series from Calculus to keep in your “zoo”. 

No need to memorize these – we can use them as needed. Q: Where do 

these formulae come from? 
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Basic Proof Techniques

Conditional Statement: P->Q

Converse: Q->P

Contrapositive: ~Q->~P

Which are “logically equivalent”? Why? 
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Basic Proof Techniques

Conditional Statement: P->Q

Converse: Q->P

Contrapositive: ~Q->~P               ~Q->~P  P->Q (logically equivalent) 

Direct Proof: 

(1) Identify hypothesis, assumed hypothesis to be true. 

(2) Using definitions, theorems, etc., make a series of deductions that

eventually prove conclusion of conjecture. 

Ex. The sum of two even integers is even.

Incidentally, what is the difference between deductive and inductive 

reasoning? 



12

Basic Proof Techniques

Conditional Statement: P->Q

Converse: Q->P

Contrapositive: ~Q->~P            ~Q->~P  P->Q (logically equivalent) 

Direct Proof: 

(1) Identify hypothesis, assumed hypothesis to be true. 

(2) Using definitions, theorems, etc., make a series of deductions that

eventually prove conclusion of conjecture. 

(Direct) Proof by exhaustion (i.e. proof by cases/brute force):

(1) Split statement to be proved into a finite number of cases or sets of 

equivalent cases.

(2) Check each type of case to see if the proposition in question holds. 

Ex. Every integer that is a perfect cube is either a multiple of 9, or 1 more, 

or 1 less than a multiple of 9. (Hint: use mod 3) 
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Basic Proof Techniques

Direct Proof: 

(1) Identify hypothesis, assumed hypothesis to be true. 

(2) Using definitions, theorems, etc., make a series of deductions that

eventually prove conclusion of conjecture. 

Indirect Proof: 

(1) Assume the opposite of the conjecture, or assume that the conjecture is 

false. 

(2) Try to prove your assumption directly until you reach an irreconcilable 

contradiction. 

(3) Since we get a contradiction, it must be the case that the assumption 

that the opposite of the hypothesis is true is false. 

Ex. 2 is irrational. 

Ex. There exists an infinitude of primes. 

(Both original proofs are due to Euclid)
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Basic Proof Techniques

Mathematical Induction: 

(*) Powerful proof technique used frequently to prove properties over 

countable sets, e.g. the natural numbers (NB: we’ll do the “weak” version 

here). 

(1) Show the formula/procedure works for the basis case(s), e.g. n=1. 

(2) Inductive Hypothesis: Assume the procedure holds in the arbitrary case: 

n=k. 

(3) Using the inductive hypothesis, show that the procedure works for 

n=k+1. 

Ex. 

Ex. 

Ex. Formula for the sum of the interior angles of an n-sided polygon, n≥3.
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Complexity of Common Functions
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Algorithm Complexity

Here is a complexity “cheat sheet” for many common algorithms…stay tuned 

for details! 
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L’HÔpital’s Rule 

(*) Let’s develop a deeper framework for analyzing and comparing function 

asymptotics. 

(*) We say a function g “dominates” function f (g >> f) as x tends to infinity 

if: 

(*) We can use elementary calculus (L’HÔpital’s Rule) to determine when one 

function dominates another.  Recall that L’H rule says that if a limit is in 

“indeterminate form” (as a quotient), then the limit is preserved under the 

derivative (in the numerator and denominator respectively). 

Ex. x >> logb(x) Ex. x2 >> x

Ex. bx >> xn (any exponential function dominates a polynomial/power function) 

Ex. x! >> bx (factorial functions dominate exponential functions)  

Q: Does “anyone” beat x! ? 

( )
lim 0

( )x

f x

g x

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Divide-and-Conquer Example with Recurrences

(*) An archetypal and immensely powerful strategy in algorithm design called

“divide and conquer” (e.g. “Binary Search” – more to come later) solves a 

problem by:

(1) Breaking it into subproblems that are themselves smaller instances of the 

same type of problem.

(2) Recursively solving these subproblems

(3) Appropriately combining their answers

Graph Triangulation Problem 
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Divide-and-Conquer Example with Recurrences

(*) Gauss once noticed that although the product of two complex numbers: 

(a+bi)(c+di)=ac-bd+(bc+ad)i

Seems to involved four real-number multiplications, it can in fact be done with 

just three: ac, bd, and (a+b)(c+d), since:

bc+ad=(a+b)(c+d)-ac-bd

Surprisingly, perhaps, this modest improvement becomes very significant 

when applied recursively. 

Let’s move away from complex numbers and see how this helps with real-

valued multiplication. 
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Divide-and-Conquer Example with Recurrences

(*)Suppose x and y are two n-bit integers, and assume, for convenience, that n 

is a power of 2 (the more general case is not too different). 

As a first step toward multiplying x and y, split each of them into their left 

and right halves, which are n/2 bits long:

x= [xL][xR] = 2n/2xL+xR

y= [yL][yR] = 2n/2yL+yR

For instance, if x=101101102, then xL =10112 and xR=01102, and 

x=10112*24+01102.

The product of x and y can thus be written: 

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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Divide-and-Conquer Example with Recurrences

Consider the computation requirements of the RHS:

(*) The additions take linear time, as do the multiplications by powers of 2 

(which are merely left-shifts).

(*) The significant operations are the four n/2-bit multiplications: xLyL, xLyR, 

xRyL, xRyR; these can be handled with four recursive calls. 

(*) Thus our method for multipliying n-bit numbers starts by making recursive 

calls to multiply these four pairs of n/2-bit numbers (four subproblems of 

half the size), and then evaluates the preceding expression in O(n) time. 

Writing T(n) for the overall running time on n-bit inputs, we get the 

recurrence relation:

T(n)=4T(n/2)+O(n) 

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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Divide-and-Conquer Example with Recurrences

Writing T(n) for the overall running time on n-bit inputs, we get the 

recurrence relation:

T(n)=4T(n/2)+O(n) 

(*) In this course we will develop general strategies for solving such 

equations. 

(*) In the meantime, this particular equation works out to O(n2), the same 

running-time as the traditional grade school multiplication technique. 

Q: How can we speed up this method? A: Apply Gauss’ trick. 

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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Divide-and-Conquer Example with Recurrences

T(n)=4T(n/2)+O(n) 

A: Apply Gauss’ trick. 

(*) Although the expression xy seems to demand four n/2-bit multiplications,

as before just three will do: xLyL, xLyR, and (xL+xR)(yL+yR), since xLyR+ xLyR= 

(xL+xR)(yL+yR)-xLyL-xRyR.

The resulting algorithm has an improved running time of:

T(n)=3T(n/2)+O(n)

(*) The point is that now the constant factor improvement, from 4 to 3, 

occurs at every level of the recursion, and this compounding effect leads to a 

dramatically lower time bound of O(n1.59). 

Q: How do we determine this bound (more later) – but for now, it is helpful to 

consider the recursive calls with respect to a tree structure (also: the 

“Master Theorem” can be used).  

/2 /2 /2(2 )(2 ) 2 2 ( )n n n n

L R L R L L L R R L R Rxy x x y y x y x y x y x y      
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“Master Method” Example
(*) A recursion tree is useful for visualizing what happens when a recurrence is 

iterated. It diagrams the tree of recursive calls and the amount of work done 

at each call.

Consider the recurrence: T(n)=2T(n/2)+n2

The corresponding recursion tree has the following form: 
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“Master Method” Example

Consider the recurrence: T(n)=2T(n/2)+n2

Consider summing across each row: 

This yields a geometric series: 
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“Master Method” Example

Consider the recurrence: T(n)=T(n/3)+T(2n/3)+n

Note that the recursion tree is not balance in this case, and that the longest 

path is the rightmost one. 
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“Master Method” Example

Consider the recurrence: T(n)=T(n/3)+T(2n/3)+n

Note that the recursion tree is not balance in this case, and that the longest 

path is the rightmost one. 

Since the longest path is O(log3/2(n)), our guess for the closed form solution to 

the recurrence is: O(n log n). 



2.1  Computational Tractability

"For me, great algorithms are the poetry of computation. 

Just like verse, they can be terse, allusive, dense, and even 

mysterious. But once unlocked, they cast a brilliant new 

light on some aspect of computing."  - Francis Sullivan
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Computational Tractability

Charles Babbage (1864)

As soon as an Analytic Engine exists, it will necessarily 

guide the future course of the science.  Whenever any 

result is sought by its aid, the question will arise - By what 

course of calculation can these results be arrived at by the 

machine in the shortest time?  - Charles Babbage

Analytic Engine (schematic)
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Polynomial-Time

Brute force.  For many non-trivial problems, there is a natural brute 

force search algorithm that checks every possible solution.

Typically takes 2N time or worse for inputs of size N.

Unacceptable in practice.

Desirable scaling property.  When the input size doubles, the algorithm 

should only slow down by some constant factor C. 

Def.  An algorithm is poly-time if the above scaling property holds.

There exists constants c > 0 and d > 0 such that on every 

input of size N, its running time is bounded by c Nd steps.

choose C = 2d

n ! for stable matching
with n men and n women
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Worst-Case Analysis

Worst case running time.  Obtain bound on largest possible running time 

of algorithm on input of a given size N.

Generally captures efficiency in practice.

Draconian view, but hard to find effective alternative. 

Average case running time.  Obtain bound on running time of algorithm 

on random input as a function of input size N.

Hard (or impossible) to accurately model real instances by random 

distributions.

Algorithm tuned for a certain distribution may perform poorly on 

other inputs.
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Worst-Case Polynomial-Time

Def.  An algorithm is efficient if its running time is polynomial.

Justification:  It really works in practice!

Although 6.02  1023  N20 is technically poly-time, it would be 

useless in practice.

In practice, the poly-time algorithms that people develop almost 

always have low constants and low exponents.

Breaking through the exponential barrier of brute force typically 

exposes some crucial structure of the problem.

Exceptions.

Some poly-time algorithms do have high constants and/or 

exponents, and are useless in practice.

Some exponential-time (or worse) algorithms are widely used 

because the worst-case instances seem to be rare.
simplex method

Unix grep
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Why It Matters



2.2  Asymptotic Order of Growth
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Asymptotic Order of Growth

Upper bounds.  T(n) is O(f(n)) if there exist constants c > 0 and n0  0 

such that for all n  n0 we have T(n)  c · f(n).

Lower bounds.  T(n) is (f(n)) if there exist constants c > 0 and n0  0 

such that for all n  n0 we have T(n)  c · f(n).

Tight bounds.  T(n) is (f(n)) if T(n) is both O(f(n)) and (f(n)).

More formally: 

Let f and g be two functions where:

Exists and is equal to some number c > 0. Then f(n)= (g(n)).

Ex:   T(n) = 32n2 + 17n + 32.

T(n) is O(n2), O(n3), (n2), (n), and (n2) .

T(n) is not O(n), (n3), (n), or (n3).

 

 
lim
n

f n

g n
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Notation

Slight abuse of notation.  T(n) = O(f(n)).

Not transitive:

– f(n) = 5n3;  g(n) = 3n2

– f(n) = O(n3) = g(n)

– but f(n)  g(n).

Better notation:  T(n)  O(f(n)).

Meaningless statement.  Any comparison-based sorting algorithm 

requires at least O(n log n) comparisons.

Statement doesn't "type-check."

Use  for lower bounds.
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Properties

Transitivity. If f = O(g) and g = O(h) then f = O(h).

Pf. f = O(g)  implies there exist constants c and n0, where f(n) ≤ cg(n) 

for all n ≥ n0. Also, for some (potentially different) constants c’ and n0’ 

we have g(n) ≤ c’h(n) for all n ≥n0’; why?

Q:What’s the next step?
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Properties

Transitivity. If f = O(g) and g = O(h) then f = O(h).

Pf. f = O(g)  implies there exist constants c and n0, where f(n) ≤ cg(n) 

for all n ≥ n0. Also, for some (potentially different) constants c’ and n0’ 

we have g(n) ≤ c’h(n) for all n ≥n0’.

Next: it follows that f(n) ≤ cg(n) ≤ cc’h(n), and so f(n) ≤ cc’h(n) for all n ≥ 

max(n0,n0’).
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Properties

Additivity. If f = O(h) and g = O(h) then f + g = O(h).  

Pf. We’re given that for some constants c and n0, we have f(n) ≤ ch(n) 

for all n ≥ n0. Also, for some (potentially different) constants c’ and n0’, 

we have g(n) ≤ c’h(n) for all n ≥ n0’. So consider any number n that is at 

least as large as both n0 and n0’. 
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Properties

Additivity. If f = O(h) and g = O(h) then f + g = O(h).  

Pf. We’re given that for some constants c and n0, we have f(n) ≤ ch(n) 

for all n ≥ n0. Also, for some (potentially different) constants c’ and n0’, 

we have g(n) ≤ c’h(n) for all n ≥ n0’. So consider any number n that is at 

least as large as both n0 and n0’. 

We have: f(n)+g(n) ≤ ch(n)+c’h(n). 

Thus, f(n)+g(n) ≤ (c+c’)h(n) for all n ≥ max(n0,n0’). 
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More Properties

Transitivity.

If f = O(g) and g = O(h) then f = O(h).   (Proven)

If f = (g) and g = (h) then f = (h). (Why?)

If f = (g) and g = (h) then f = (h).    (Why?)

Additivity.

If f = O(h) and g = O(h) then f + g = O(h). (Proven)

If f = (h) and g = (h) then f + g = (h).  (Why?)

If f = (h) and g = O(h) then f + g = (h).   (Why?)

In general: let f1,…,fk and h be functions such that fi=O(h). Then 

what property naturally follows?
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More Properties

Transitivity.

If f = O(g) and g = O(h) then f = O(h).   (Proven)

If f = (g) and g = (h) then f = (h). (Why?)

If f = (g) and g = (h) then f = (h).    (Why?)

Additivity.

If f = O(h) and g = O(h) then f + g = O(h). (Proven)

If f = (h) and g = (h) then f + g = (h).  (Why?)

If f = (h) and g = O(h) then f + g = (h).   (Why?)

In general: let f1,…,fk and h be functions such that fi=O(h). Then 

what property naturally follows?

f1+…+fk=O(h)
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Asymptotic Bounds for Some Common Functions

Polynomials.  a0 + a1n + … + adn
d is (nd) if ad > 0. 

Polynomial time.  Running time is O(nd) for some constant d independent 

of the input size n.

Logarithms.  O(log a n) = O(log b n) for any constants a, b > 0. Why?

Logarithms.  For every x > 0,  log n = O(nx).

Exponentials.  For every r > 1 and every d > 0,  nd = O(rn).

every exponential grows faster than every polynomial

can avoid specifying the 
base

log grows slower than every polynomial
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Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))
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Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))

Most obviously, F2 ≤ F1 ≤ F3; why? 



46

Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))

F2 ≤ F1 ≤ F3

Also, F4=O(F2)  and F2=O(F1); why? 
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Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))

F2 ≤ F1 ≤ F3; F4 ≤ F2; F2 ≤ F1

What about F5? 

Take logs of F2, F4 and F5 (why can we do this with impunity?) 

log2(F5)=root(log2(n)); log2(F4)=log2(log2(n))); log(F2)=1/3log2(n).
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Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))

F2 ≤ F1 ≤ F3; F4 ≤ F2; F2 ≤ F1

log2(F5)=root(log2(n)); log2(F4)=log2(log2(n))); log(F2)=1/3log2(n)

Let z = log2(n). 

This yields: log2(F5)=z1/2; log2(F4)=log2(z); log(F2)=1/3z.
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Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))

F2 ≤ F1 ≤ F3; F4 ≤ F2; F2 ≤ F1

log2(F5)=z1/2; log2(F4)=log2(z); log(F2)=1/3z

This implies: F4 ≤ F5 ≤ F2 (why?)
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Examples

Ex1. Arrange the following functions in ascending order. 

F1(n)=10n

F2(n)=n1/3

F3(n)=nn

F4(n)=log2n

F5(n)=2root(log
2

(n))

Final Answer: F4 ≤ F5 ≤ F2 ≤ F1 ≤ F3
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Examples

Ex2. Prove: If f and g are two functions that take non-negative values, 

with f=O(g), then g=(f). 

What does this show intuitively? 
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Examples

Ex2. Prove: If f and g are two functions that take non-negative values, 

with f=O(g), then g=(f). 

What does this show intuitively? That O() and () are “opposites.”

How do we prove this?
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Examples

Ex2. Prove: If f and g are two functions that take non-negative values, 

with f=O(g), then g=(f). 

What does this show intuitively? That O() and () are “opposites.”

How do we prove this?

Pf. There exist constants c and n0 with f(n) ≤ cg(n) for all n ≥ n0. 

This implies: g(n) ≥ 1/cf(n); thus g= (f), as was to be shown. 



2.4  A Survey of Common Running Times
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Linear Time:  O(n)

Linear time.  Running time is proportional to input size.

Computing the maximum. Compute maximum of n numbers a1, …, an.

max  a1
for i = 2 to n {

if (ai > max)

max  ai
}



56

Linear Time:  O(n)

Merge.  Combine two sorted lists A = a1,a2,…,an with B = b1,b2,…,bn

into sorted whole.

Claim.  Merging two lists of size n takes O(n) time.

Pf.  After each comparison, the length of output list increases by 1.

i = 1, j = 1

while (both lists are nonempty) {

if (ai  bj) append ai to output list and increment i

else(ai  bj)append bj to output list and increment j

}

append remainder of nonempty list to output list
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O(n log n) Time

O(n log n) time.  Arises in divide-and-conquer algorithms.

Sorting. Mergesort and heapsort are sorting algorithms that perform 

O(n log n) comparisons.

Largest empty interval. Given n time-stamps x1, …, xn on which copies 

of a file arrive at a server, what is largest interval of time when no 

copies of the file arrive?

O(n log n) solution. Sort the time-stamps.  Scan the sorted list in 

order, identifying the maximum gap between successive time-stamps.

also referred to as linearithmic time
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Quadratic Time:  O(n2)

Quadratic time.  Enumerate all pairs of elements.

Closest pair of points. Given a list of n points in the plane (x1, y1), …, 

(xn, yn), find the pair that is closest.

O(n2) solution. Try all pairs of points.

Remark. (n2) seems inevitable, but this is just an illusion.

min  (x1 - x2)
2 + (y1 - y2)

2

for i = 1 to n {

for j = i+1 to n {

d  (xi - xj)
2 + (yi - yj)

2

if (d < min)

min  d

}

}

don't need to
take square roots

see chapter 5
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Cubic Time:  O(n3)

Cubic time.  Enumerate all triples of elements.

Set disjointness. Given n sets S1, …, Sn each of which is a subset of

1, 2, …, n, is there some pair of these which are disjoint?

O(n3) solution. For each pairs of sets, determine if they are disjoint.

foreach set Si {

foreach other set Sj {

foreach element p of Si {

determine whether p also belongs to Sj

}

if (no element of Si belongs to Sj)

report that Si and Sj are disjoint

}

}
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Polynomial Time:  O(nk) Time

Independent set of size k. Given a graph, are there k nodes such that 

no two are joined by an edge?

O(nk) solution. Enumerate all subsets of k nodes.

Check whether S is an independent set = O(k2).

Number of k element subsets = 

O(k2 nk / k!) = O(nk).

foreach subset S of k nodes {

check whether S in an independent set

if (S is an independent set)

report S is an independent set

}

}



n

k









n (n1) (n 2) (n k 1)

k (k 1) (k  2) (2) (1)
   

nk

k!

poly-time for k=17,
but not practical

k is a constant
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Exponential Time

Independent set. Given a graph, what is maximum size of an 

independent set?

O(n2 2n) solution. Enumerate all subsets.

S*  

foreach subset S of nodes {

check whether S in an independent set

if (S is largest independent set seen so far)

update S*  S

}

}



2.3  Data Structure: Priority Queues and 
Heaps



A priority queue stores a 
collection of entries
Each entry is a pair
(key, value)
Main methods of the Priority 
Queue ADT

insert(k, x)
inserts an entry with key k and 
value x
removeMin()
removes and returns the entry 
with smallest key

Additional methods
min()
returns, but does not remove, 
an entry with smallest key
size(), isEmpty()

Applications:
Scheduling
Auctions
Stock market

Priority Queues
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A heap is a binary tree 
storing keys at its nodes 
and satisfying the following 
properties:

Heap-Order: for every 
internal node v other than the 
root,
key(v)  key(parent(v))
Complete Binary Tree: let h be 
the height of the heap

– for i 0, … , h  1, there are 2i

nodes of depth i
– at depth h  1, the internal 

nodes are to the left of the 
external nodes

2

65

79

The last node of a heap 
is the rightmost node of 
depth h

last node

Heaps
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Theorem: A heap storing n keys has height O(log n)

Pf. (we apply the complete binary tree property)
Let h be the height of a heap storing n keys

Since there are 2i keys at depth i  0, … , h  1 and at least one key 

at depth h, we have n  1 2  4  …  2h1 1

Thus, n  2h , i.e., h  log n

1

2

2h1

1

keys

0

1

h1

h

depth

Heaps
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Heaps and Priority Queues

We can use a heap to implement a priority queue
We store a (key, element) item at each internal node
We keep track of the position of the last node
For simplicity, we show only the keys in the pictures

(2, Sue)

(6, Mark)(5, Pat)

(9, Jeff) (7, Anna)
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Method insertItem of 
the priority queue ADT 
corresponds to the 
insertion of a key k to the 
heap
The insertion algorithm 
consists of three steps

Find the insertion node z
(the new last node)
Store k at z
Restore the heap-order 
property (discussed next)

2

65

79

insertion node

2

65

79 1

z

z

Heaps and Priority Queues



Heaps68
Upheap

After the insertion of a new key k, the heap-order property may 
be violated
Algorithm upheap restores the heap-order property by swapping k
along an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node 
whose parent has a key smaller than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

2

15

79 6
z

1

25

79 6
z
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Method removeMin of 
the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap
The removal algorithm 
consists of three steps

Replace the root key with 
the key of the last node w
Remove w
Restore the heap-order 
property (discussed next)

2

65

79

last node

w

7

65

9

w

new last node

Remove Min (Heap)
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Downheap

After replacing the root key with the key k of the last node, the 
heap-order property may be violated
Algorithm downheap restores the heap-order property by 
swapping key k along a downward path from the root
Upheap terminates when key k reaches a leaf or a node whose 
children have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

65

9

w

5

67

9

w
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Updating the Last Node

The insertion node can be found by traversing a path of O(log n) 

nodes
Go up until a left child or the root is reached

If a left child is reached, go to the right child

Go down left until a leaf is reached

Similar algorithm for updating the last node after a removal
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)

Consider a priority queue 
with n items implemented 
by means of a heap

the space used is O(n)

methods insert and 
removeMin take O(log n) 

time
methods size, isEmpty, and 
min take time O(1) time

Using a heap-based 
priority queue, we can 
sort a sequence of n
elements in O(n log n) 
time
The resulting algorithm 
is called heap-sort
Heap-sort is much faster 
than quadratic sorting 
algorithms, such as 
insertion-sort and 
selection-sort
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Merging Two Heaps

We are given two two 
heaps and a key k
We create a new heap 
with the root node 
storing k and with the 
two heaps as subtrees
We perform downheap 
to restore the heap-
order property 

7

3

58

2

64

3

58

2

64

2

3

58

4

67
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We can construct a heap 
storing n given keys in 
using a bottom-up 
construction with log n
phases
In phase i, pairs of heaps 
with 2i 1 keys are 
merged into heaps with 
2i11 keys

Bottom-up Heap Construction 

2i 1 2i 1

2i11
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Example

1516 124 76 2023

25

1516

5

124

11

76

27

2023
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Example (contd.)

25

1516

5

124

11

96

27

2023

15

2516

4

125

6

911

23

2027
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Example (contd.)

7

15

2516

4

125

8

6

911

23

2027

4

15

2516

5

127

6

8

911

23

2027
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Example (end)

4

15

2516

5

127

10

6

8

911

23

2027

5

15

2516

7

1210

4

6

8

911

23

2027
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Analysis

We visualize the worst-case time of a downheap with a proxy 
path that goes first right and then repeatedly goes left until the 
bottom of the heap (this path may differ from the actual 
downheap path)
Since each node is traversed by at most two proxy paths, the 
total number of nodes of the proxy paths is O(n)

Thus, bottom-up heap construction runs in O(n) time 
Bottom-up heap construction is faster than n successive 
insertions and speeds up the first phase of heap-sort


