A.L: Beyond Classical Search




Trivial Algorithms

* Random Sampling

— Generate a state randomly

e Random Walk
— Randomly pick a neighbor of the current state

* Both algorithms asymptotically complete.



Overview

Previously we addressed a single category of problems:
observable, deterministic, known environments where the
solution is a sequence ot actions.

Now we consider what happens when these assumptions are
relaxed.

First we look at purely local search strategies, including
methods inspired by statistical physics (simulated annealing)
and evolutionary biology (genetic algorithms).

Later, we examine what happens when we relax the
assumptions of determinism and observability. The key idea is
that the agent cannot predict exactly what percept 1t will
recetve, so it considers a contingency plan.

Lastly, we discuss online search.



Local Search for Optimization

Note that for many types of problems, the path to a goal is
irrelevant (we simply want the solution — consider the 8-
queens).

If the path to the goal does not matter, we might consider a
class of algorithms that don’t concern themselves with paths
at all.

Local search algorithms operate using a single current node
(rather than multiple paths) and generally move only to
neighbors of that node.

Typically, the paths followed by the search are not retained
(the benefit being a potentially substantial memory savings).




Local Search for Optimization

* Local search
— Keep track of single current state
— Move only to neighboring states
— Ignore paths

* Advantages:
— Use very little memory

— Can often find reasonable solutions in large or infinite
(continuous) state spaces.

* “Pure optimization” problems
— All states have an objective function
— Goal 1s to find state with max (or min) objective value
— Does not quite fit into path-cost/goal-state formulation

— Local search can do quite well on these problems.



Local Search for Optimization

* In addition to finding goals, local search algorithms are useful
for solving pure optimization problems, in which we aim to
find the best state according to an objective function.

* Nature, for example, provides an objective function —
reproductive fitness.

* To understand local search, we consider state-space
landscapes, as shown next.



Optimization
* So what is optimization?

* Find the minimum or maximum of an objective function
(usually: given a set of constraints):

arg min fo(x)

Stfz(ﬂf) {1 5y k}
hj(x) = 0,7 = {1 1}



Why Do We Care?

Linear Classification Maximum Likelihood
argmui)nZHsz +CZ‘S’&' argmaleog po(x;)
i=1 i=1 0 ]

s.t. 1 — yzx?w =%
& >0

K-Means

k
ad I J = T; — s 2
rg min J(p) =) )l -l

7= iECj



Convexity

We prefer convex problems.




Local Search for Optimization

objccti-.-ifunction /global maximum

shoulder

N\

local maximom

A

"flat” local maximum

. &-state space
cument P

state

State-Space Landscape

If elevation corresponds with cost, then the aim is to find the lowest
valley — a global minimum,; if elevation corresponds to an objective

function, then the aim is to find the highest peak — a global maximum.

* A complete local search algorithm always finds a goal (if one exists); an

optimal algorithm always finds a global minimum/maximum.



Hill-Climbing (Greedy Local Search)

function HILL-CLIMBING( problem) return a state that is a local maximum
input: problem, a problem
local variables: current, a node.
neighbor, a node.

current <« MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor <— a highest valued successor of current
if VALUE [neighbor] < VALUE[current] then return STATE[current]
current <— neighbor

Minimum version will reverse inequalities and look
for lowest valued successor



Hill-Climbing

“A loop that continuously moves towards increasing value”
— terminates when a peak 1s reached

— Aka greedy local search
Value can be either

— Objective function value

— Heuristic function value (minimized)

Hill climbing does not look ahead of the immediate neighbors

Can randomly choose among the set of best successors

— 1f multiple have the best value

“Climbing Mount Everest in a thick fog with amnesia”



Hill-Climbing (8-queens)

18.14 13.14
16 15.14.16
14.13 15.14

14 w 16 16
w 17 w 16
W 161 1 151 W 181 W/
18 w 15 w
14 17 . 14 . 18

* Need to convert to an optimization problem!



Hill-Climbing (8-queens)

e State

— All 8 queens on the board in some configuration

* Successor function

— move a single queen to another square in the same
column.

* Example of a heuristic function 4 (n):

— the number of pairs of queens that are attacking each
other

— (so we want to minimize this)



Hill-Climbing (8-queens)

18.14 13.14
16 15.14.16
14.13 15.14

14 w 16 16
w 17 w 16
W 161 1 151 W 181 W/
18 w 15 w
14 17 . 14 . 18

* ) = number of pairs of queens that are attacking each other

e ) =17 for the above state



Hill-Climbing (8-queens)

Randomly generated 8-queens starting states...
14% the time it solves the problem

86% of the time it get stuck at a local minimum

However...
— Takes only 4 steps on average when it succeeds
— And 3 on average when it gets stuck

— (for a state space with 878 =~17 million states)



Hill Climbing Drawbacks

e | .ocal maxima

e Plateaus

* Diagonal ridges




Escaping Shoulders: Sideways Move

* If no downhill (uphill) moves, allow sideways moves in
hope that algorithm can escape

— Need to place a limit on the possible number of sideways
moves to avoid infinite loops
* For 8-queens
— Now allow sideways moves with a limit of 100

— Raises percentage of problem instances solved from 14 to

94%0

— However....
* 21 steps for every successful solution

* 64 for each failure



Tabu Search

Prevent returning quickly to the same state
Keep fixed length queue (“tabu list”)
Add most recent state to queue; drop oldest

Never make the step that is currently tabu’ed
p y

Properties:

— As the size of the tabu list grows, hill-climbing will
asymptotically become “non-redundant” (won’t look at the
same state twice)

— In practice, a reasonable sized tabu list (say 100 or so) improves
the performance of hill climbing in many problems



Escaping Shoulders/local Optima
Enforced Hill Climbing

* Perform breadth first search from a local optima

— to find the next state with better h function

. Typicaﬂy,
— prolonged periods of exhaustive search

— bridged by relatively quick periods of hill-climbing

* Middle ground b/w local and systematic search



Hill-climbing: stochastic variations

* Stochastic hill-climbing

— Random selection among the uphill moves.

— 'The selection probability can vary with the steepness of the uphill move.

* 'To avoid getting stuck in local minima
— Random-walk hill-climbing

— Random-restart hill-climbing
— Hill-climbing with both



Hill Climbing: stochastic variations

= When the state-space landscape has local
minima, any search that moves only in the
greedy direction cannot be complete

= Random walk, on the other hand, is

asymptotically complete

Idea: Put random walk into greedy hill-climbing



Hill-climbing with random restarts

If at first you don’t succeed, try, try again!

Different variations
— For each restart: run until termination vs. run for a fixed time

— Run a fixed number of restarts or run indefinitely

* Analysis
— Say each search has probability p of success

* E.g, for 8-queens, p = 0.14 with no sideways moves

— Expected number of restarts?

— Expected number of steps taken?

* If you want to pick one local search algorithm, learn this one!!



Hill-climbing with random walk

* At each step do one of the two
— Greedy: With prob p move to the neighbor with largest value
— Random: With prob 1-p move to a random neighbor

Hill-climbing with both

* At each step do one of the three
— Greedy: move to the neighbor with largest value
— Random Walk: move to a random neighbor

— Random Restart: Resample a new current state



Simulated Annealing

| 0 X
* Simulated Annealing = physics inspired twist on random walk

* Basic ideas:
— like hill-climbing identify the quality of the local improvements
— instead of picking the best move, pick one randomly
— say the change in objective function is d
— 1f d 1s positive, then move to that state
— otherwise:
* move to this state with probability proportional to d
* thus: worse moves (very large negative d) are executed less often
— however, there 1s always a chance of escaping from local maxima
— over time, make it less likely to accept locally bad moves

— (Can also make the size of the move random as well, i.e., allow “large”
steps in state space)



Physical Interpretation of Simulated Annealing
* A Physical Analogy:

* imagine letting a ball roll downhill on the function surface
— this is like hill-climbing (for minimization)
* now imagine shaking the surface, while the ball rolls, gradually
reducing the amount of shaking

— this is like simulated annealing

* Annealing = physical process of cooling a liquid or metal
until particles achieve a certain frozen crystal state
* simulated annealing:
— free variables are like particles

— seek “low energy” (high quality) configuration

— slowly reducing temp. T with particles moving around randomly



COST FUNCTION, C

\ /T INIT_TEMP Unconditional Acceptance
!

Simulated Annealing

Convergence of simulated annealing

-~
> -
HILL CLIMBING Move accepted with
/ ------ probability
=@ *Chep)
e

e \

HILL CLIMBING

y

AT FINAL_TEMP

NUMBER OF ITERATIONS



Simulated annealing

function SIMULATED-ANNEALING( problem, schedule) return a solution
state

iInput: problem, a problem
schedule, a mapping from time to temperature
local variables: current, a node.
next, a node.
T, a “temperature” controlling the prob. of downward steps

current « MAKE-NODE(INITIAL-STATE[problem])
fort < 1to « do

T « schedule[t]

If T=0then return current

next «— a randomly selected successor of current

AE < VALUE[next] - VALUE[current]

If AE >0 then current < next

else current «<— next only with probability eAE/T



Temperature T

High T: probability of “locally bad” move is higher.
Low T: probability of “locally bad”” move is lower.

Typically, T 1s decreased as the algorithm runs longer, i.e., there is
a “temperature schedule”.

In statistical mechanics, the Boltzmann distribution is a
probability distribution that gives the probability of a certain
state as a function of that state’s energy and temperature of the
system to which the distribution 1s applied. It is given as:

e—gi [KT

M
Ze—EJ/kT




Simulated Annealing in Practice

— method proposed in 1983 by IBM researchers for
solving VLSI layout problems (Kirkpatrick et al,
Science, 220:671-680, 1983).

* theoretically will always find the global optimum

— Other applications: Traveling salesman, Graph
partitioning, Graph coloring, Scheduhng, Facility
Layout, Image Processing, ...

— useful for some problems, but can be very slow

* slowness comes about because T must be decreased very
gradually to retain optimality



Local beam search

* Idea: Keeping only one node in memory is an extreme
reaction to memory problems.

* Keep track of £ states instead of one
— Initially: £ randomly selected states
— Next: determine all successors of £ states
— If any of successors is goal — finished

— Else select £ best from successors and repeat



LLocal Beam Search (contd)

Not the same as & random-start searches run in parallel!

Searches that find good states recruit other searches to join
them

Problem: quite often, all & states end up on same local hill

Idea: Stochastic beam search

— Choose £ successors randomby, biased towards good ones

Observe the close analogy to natural selection!



Genetic algorithms

Twist on Local Search: successor is generated by combining two parent states

A state is represented as a string over a finite alphabet (e.g. binary)
— 8-queens
* State = position of 8 queens each in a column

Start with £ randomly generated states (population)

Evaluation function (fitness function):
— Higher values for better states.
— Opposite to heuristic function, e.g., # non-attacking pairs in 8-queens

Produce the next generation of states by “simulated evolution”
— Random selection
— Crossover
— Random mutation



Genetic algorithms & 8-queens

H H HyvE
.

“mrm

R

Can we evolve 8-queens through genetic algorithms?

16257483

. String representation

RPN WD OO N O

34



Genetic algorithms

24748552 |24 31% 32ﬂ52411 :}_{: 32748552 |—= 327481F2

%—29? 24748552

32752411 24732411 — 24752411

Y

24415124

‘m‘ 32752411 >_< 32752124 122124
24415411 |—=| 24415417

32543213 | 1 14% 24415124

(a] ki (<) (i (=]
Initial Population  Fitness Function Selection Cioss—Ovet Mlutatiocn
4 states for 2 pairs of 2 states New states Random
8-queens randomly selected based  after crossover mutation
problem on fitness. Random applied

crossover points selected

Fitness function: number of non-attacking pairs of queens (min = 0, max = 8
X 7/2 = 28)

24/(24+23+20+11) = 31%

23/(24+23+20+11) = 29% etc



Genetic algorithms

Has the effect of “jumping” to a completely different new
part of the search space (quite non-local)



Comments on Genetic Algorithms

e Genetic algorithm 1s a variant of “stochastic beam search”

* Positive points
— Random exploration can find solutions that local search can’t
* (via crossover primarily)
— Appealing connection to human evolution

* “neural” networks, and “genetic” algorithms are metaphors!

* Negative points
— Large number of “tunable” parameters
* Ditficult to replicate performance from one problem to another
— Lack of good empirical studies comparing to simpler methods

— Useful on some (small?) set of problems but no convincing evidence that
GAs are better than hill-climbing w/random restarts in general



Optimization ot Continuous Functions

e Discretization

— use hill-climbing

e (Gradient descent

— make a move in the direction of the gradient

* gradients: closed form or empirical



Objective Function in Continuous

SearCh Space

fixy)=e (Y 4 20 ((6-1.7) 4(3-1.7)°)




Gradient Descent

Assume we have a continuous function: f{x,,x,,...,xx)
and we want minimize over continuous variables X1,X2,... Xn

1. Compute the gradients for all i: Ofx;,5,. . .,5n) /OX;

2. Take a small step downhill in the direction of the gradient:

e Mlofodia e N ol N/ . che

3. Repeat.
* How to select A
— Line search: successively double

— until f starts to increase again

054 |



http://upload.wikimedia.org/wikipedia/commons/d/db/Gradient_ascent_%28contour%29.png

