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Overview
• Cedric Villani:  “our supreme goddess of  unreason – the Gauss curve.”

(*) Awarded Fermat Prize (2009), Fields medal (2010).

https://www.youtube.com/watch?v=Kc0Kthyo0hU



Overview: A brief  history of  the Normal 

Distribution 

• The importance of  the normal curve stems primarily from the fact that the distributions of  

copious natural phenomena are at least approximately normally distributed. 

• One of  the first applications of  the normal distribution was to the analysis of  errors of  

measurement made in astronomical observations, errors that were both due to instrument 

imprecision and human error. In the 17th century, Galileo observed that these errors were 

symmetric and that small errors occurred more frequently than large errors. 



Overview: A brief  history of  the Normal 

Distribution 
• This led to several hypothesized distributions of  errors, but it was not until the early 19th 

century that it was discovered that these errors followed a normal distribution. Independently, 

the mathematicians Adrain in 1808 and Gauss in 1809 explicitly developed the formula for the 

normal distribution and showed that errors were fit well by this distribution.

• This same distribution had been discovered by Laplace in 1778 when he derived the central 

limit theorem. Laplace showed that even if  a distribution is not normally distributed, the 

means of  repeated samples from the distribution would be very nearly normally distributed, 

and that the larger the sample size, the closer the distribution of  means would be to a normal 

distribution.



Overview: Why does 

everyone use 

Gaussians?
(*) There are at least (3) good reasons: 

(1) The Central Limit Theorem (CLT).

(2) The Gaussian distribution has maximum 

entropy relative to all probability distributions

with a fixed mean and standard deviations (i.e. 

up to second moment statistics).

(3) “Nice” computational properties: Gaussian MLE 

parameter estimates have closed-form formulae; conditioning

a Gaussian yields a Gaussian; product of  Gaussians is Gaussian;

member of  exponential family distributions.



Overview: CLT
The Central Limit Theorem (a conceptual pillar of  statistics)

In words: given a sufficiently large sample size from a population (with a finite level of  variance), the mean of  

all samples from the same population will be approximately equal to the mean of  the population. 

Furthermore, all of  the samples will follow an approximate normal distribution pattern, with all variances 

being approximately equal to the variance of  the population divided by each sample's size.

In a picture: 

In a theorem: Suppose {X1,X2,…,} is a sequence of  I.I.D. random variables with E[Xi]=μ and Var[Xi]=σ2<∞   

Then as n approaches infinity, the random variable (1/n)(X1+…+Xn) converges to a normal N(0, σ2/n):
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Whatever the form of  the population distribution, the sampling distribution 

tends to a Gaussian, and its dispersion is given by the Central Limit Theorem.
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Information Form of  the 

Gaussian
• The multi-variate Gaussian distribution is also frequently expressed in an alternative form 

called the Information form. 

• Suppose x ~ N(μ,Σ); the information form (also called canonical form) is defined as: 

• Let , then:                             :

• Where Λ is called the precision matrix; each component of  Λ quantifies the “partial 

correlation” between two random variables.

• Partial correlation is in the range [-1,1] and controls for confounding variables in measuring 

the association between two random variables; for instance, the (i,j) entry in the precision matrix 

yields the correlation between Xi and Xj, controlling for all other variables in the model. 
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MLE for the Gaussian
• In any beginning statistics class, students are inevitably shown the formulae for the empirical 

estimates of  the parameters of  a Gaussian distribution : 

Q: Where do these results come from? Are they the only way to estimate the parameters of  a 

Gaussian distribution? Are they good estimates? 
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MLE for the Gaussian
• In any beginning statistics class, students are inevitably shown the formulae for the empirical estimates 

of  the parameters of  a Gaussian distribution : 

Q: Where do these results come from? Are they the only way to estimate the parameters of  a Gaussian 

distribution? Are they good estimates? 

A: They are derived from the maximum likelihood estimation procedure (i.e., the MLE, which Fisher 

first popularized); in fact, there are a number of  different methods for estimating distribution 

parameters – MLE just happens to be one of  the most commonly employed methods. 

• One could, for instance, follow a Bayesian procedure (i.e. MAP) to estimate the distribution 

parameters – the only catch is that we then need to define a prior (when in doubt, we adhere to the 

principle of  insufficient reason and use an uninformative prior – what is this equivalent to?)

• Note that the MLE procedure tends to overfit as an estimate; also observe that it can produce biased 

estimates (however this is not necessarily a bad outcome per se). The MLE for variance for the 

Gaussian is biased, for example. 
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MLE for the Gaussian

•  To get a better handle on the MLE procedure, we next derive the MLE formulae for the 

Gaussian.

• First, however, we need a few results from matrix algebra (these results are exceptionally 

useful when taking derivatives/optimizing matrix equations): 

(*) Lastly, a useful formulation known as “trace trick” asserts, from (5): 

xTAx=trace(xTAx)=trace(xxTA)=trace(AxxT)
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(*) Note that the trace(A) 

of  a square matrix is 

defined as the sum of  its 

diagonal entries. 



MLE for the Gaussian

• Let’s now prove the classic MLE formulae for estimating the parameters of  a Gaussian 

distribution. 

Pf.

(I) Estimate of  the mean (ොμ): 

First we begin with the log-likelihood expression (dropping additive constants): 

where                is the precision matrix.  

Q: What next? 
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MLE for the Gaussian
Pf.

(I) Estimate of  the mean (ොμ): 

• First we begin with the log-likelihood expression (dropping additive constants): 

• Naturally, we take the partial derivative of  the log-likelihood with respect to μ and set it 

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

Why?
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MLE for the Gaussian
Pf.

(I) Estimate of  the mean (ොμ): 

• First we begin with the log-likelihood expression (dropping additive constants): 

• Naturally, we take the partial derivative of  the log-likelihood with respect to μ and set it 

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.
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MLE for the Gaussian
Pf.

(I) Estimate of  the mean (ොμ): 

• First we begin with the log-likelihood expression (dropping additive constants): 

• Naturally, we take the partial derivative of  the log-likelihood with respect to μ and set it 

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.
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MLE for the Gaussian
Pf.

(I) Estimate of  the mean (ොμ): 

• First we begin with the log-likelihood expression (dropping additive constants): 

• Naturally, we take the partial derivative of  the log-likelihood with respect to μ and set it 

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

This implies: 
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MLE for the Gaussian
Pf.

(I) Estimate of  the mean (ොμ): 

• First we begin with the log-likelihood expression (dropping additive constants): 

• Naturally, we take the partial derivative of  the log-likelihood with respect to μ and set it 

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

This implies: 
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MLE for the Gaussian
Pf.

(I) Estimate of  the mean (ොμ): 

• Naturally, we take the partial derivative of  the log-likelihood with respect to μ and set it 

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

This implies: 

Finally, when we set the partial derivative equal to zero and solve it yields: 

, the standard empirical mean formula. 
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:

First, we use the “trace trick” to rewrite the log-likelihood as: 
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:

First, we use the “trace trick” to rewrite the log-likelihood for as: 
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:   
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:   
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:

This implies: 
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MLE for the Gaussian
Pf.

(II) Estimate of  the covariance matrix (Σ): 

• This time we take the partial derivative of  the log-likelihood with respect to Λ and set it 

equal to zero. For notational convenience, we use the substitution:

This implies: 

Finally, we have: 

which is precisely the standard empirical covariance formula, as was to be shown.  
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LDA

• Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis 

(QDA) are two common, related regimes in ML for modelling class posteriors, i.e., 

P(Y=k|X=x). 

• In this approach, we model the distribution of  the predictors X separately in each of  

the response classes (i.e. given Y: P(X=x|Y=k)) and then use Bayes’ theorem to flip 

these around into estimates for the class posteriors. 



LDA

• Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis 

(QDA) are two common, related regimes in ML for modelling class posteriors, i.e., 

P(Y=k|X=x). 

• In this approach, we model the distribution of  the predictors X separately in each of  

the response classes (i.e. given Y: P(X=x|Y=k)) and then use Bayes’ theorem to flip 

these around into estimates for the class posteriors. 

• When these distributions are assumed to be normal we get the LDA/QDA method, 

which is very similar to logistic regression in the case of  two classes – recall that 

thresholding a logistic function gives a linear decision boundary. 

• However, unlike logistic regression, LDA/QDA tend to be more numerically stable 

(recall that logistic regression requires gradient ascent or some such approximation 

technique); in addition, LDA/QDA are easily adaptable to the case of  classification for 

more than two classes. 



LDA: Bayes’ Rule for Classification
• Recall that Bayes’ Theorem states: 

Where we let fk(x)=P(X=x|Y=k) denote the density function for X for an observation that 

comes from the kth class; πk represents the prior probability that randomly chosen datum 

comes from the kth class. 

• For LDA/QDA we assume that fk(x) is Gaussian; in the 1-D case: 

In addition, with LDA in particular, we assume the variances across the classes are equal, 

namely: σ1
2 = σ2

2 = ⋯σ𝑘
2 .
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LDA

• By Bayes’ Theorem we have: 

Taking the log and rearranging terms, one can show that this is equivalent to assigning the 

observation to the class for which:

is largest. Here each of  the parameter estimates ොμ𝑘 , ෝσ𝑘
2 , ො𝜋𝑘 = 𝑛𝑘/𝑛 are the standard MLE 

estimates derived previously. The term linear (per LDA) applies because the discriminant 

function δ𝑘 is a linear function of  the input x, and hence the decision boundary is a line. 
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LDA
(*) LDA for 2 classes (with 1-D data) is equivalent to assigning the observation to the class 

for which:

is largest. 

• In the image, 20 observations were drawn from each of  two classes, and are shown as 

histograms. The Bayes’ decision boundary (optimal) is shown as a dashed line; the solid 

vertical line represents the LDA decision boundary estimated from training data. 
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LDA: Higher Dimensions & Multiple Classes
• LDA can be extended in a natural way to incorporate data in more than one dimension and 

more than two classes. Previously, in the 1-D case, we assumed the variance for each class 

was equal; now we assume that the covariance matrix for each class is identical, i.e. Σc= Σ (for 

all classes); this is sometimes called parameter sharing/tying. 



LDA: Higher Dimensions & Multiple Classes
• LDA can be extended in a natural way to incorporate data in more than one dimension and 

more than two classes. Previously, in the 1-D case, we assumed the variance for each class 

was equal; now we assume that the covariance matrix for each class is identical, i.e. Σc= Σ (for 

all classes); this is sometimes called parameter sharing/tying. 

• Using Bayes’ Theorem again, this time with multi-variate Gaussian density functions yields: 

(*) Taking logs and rearranging terms renders the following expression; LDA assigns a new 

datum x to the class for which:  

is largest. Again, we use the MLE estimates for the parameters in the equation; the decision 

boundary is again linear, as the discriminant function is linear in x. 
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LDA: Higher Dimensions & Multiple Classes

• The figure shows an LDA example with 3 classes (d=2); the observations from each class 

are drawn from a multi-variate Gaussian distribution. Left: ellipses that contain 95% of  the 

probability for each of  three classes are shown; the dashed lines are the optimal (Bayes’) 

decision boundary. Right: 20 observations were generated from each class, and the 

corresponding LDA decision boundaries are indicated using solid black lines. 
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LDA: Case Study
• Now that we’ve seen the method to both fit an LDA  model as well as perform posterior 

class inference, we next consider a case study using financial data with LDA to review some 

common model assessment procedures for classification in ML. 

• We use the default data set from the ISLR database (linked below); the data consist of  10,000 

training observation with 4 variables: income (income of  customer), balance (average monthly 

credit card balance), student (yes/no), default (yes/no) – we want to predict whether a customer 

will default on their credit card payment. 



LDA: Case Study
• Now that we’ve seen the method to both fit an LDA  model as well as perform posterior 

class inference, we next consider a case study using financial data with LDA to review some 

common model assessment procedures for classification in ML. 

• We use the default data set from the ISLR database (linked below); the data consist of  10,000 

training observation with 4 variables: income (income of  customer), balance (average monthly 

credit card balance), student (yes/no), default (yes/no) – we want to predict whether a customer 

will default on their credit card payment. 

• Results were calculated using LDA on the default data: the training error was 2.75% -- this 

seems like a strong result at first blush, however, recall that training error is an optimistic 

estimate of  test error.

In addition the data are highly imbalanced (only 3.33% of  the customers defaulted). This 

means that a trivial null classifier (viz., a classifier that always predicts not default will only 

garner a 3.33% training error rate). 

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf



LDA: Case Study
• The confusion matrix for the default data using an LDA:

• From the confusion matrix, the TN (true negative rate) = 9,644/10,000 = 96.44%, the FN (false 

negative rate) = 252/10,000 = 2.52%, the TP (true positive rate) = 81/10,000 = 0.81% and the 

FP (false positive rate) = 23/10,000 = 0.23%.

• While these results appear strong (at least for the training set) because the overall error rate is 

low, the error rate among individuals who defaulted is actually very high (the unbalanced data 

masks this). 

• Class-specific performance can be more important than overall accuracy of  a classifier in many 

domains – particularly biology and medicine. In particular, sensitivity and specificity are often used to 

characterize the performance of  a classifier (say for a screening test). 

In this case: sensitivity (TP/P)=81/333=24.3% (very low!) ; specificity

(TN/N)=9,644/9,667=99.8%



LDA: Case Study
• The confusion matrix for the default data using an LDA:

In this case: sensitivity (TP/P)=81/333=24.3% (very low!) ; specificity

(TN/N)=9,644/9,667=99.8%

Can we improve the sensitivity score? Quite possibly. 

If  we are concerned about incorrectly predicting default status for individuals who default, then 

we can consider lowering the probability threshold for LDA. Originally, we predicted the default 

class whenever the posterior threshold exceeded 0.5: P(default=Yes|X=x)>0.5. 

But, if  we lower this threshold this might improve the sensitivity of  the model; let’s lower it to 0.2, 

so now we’ll predict the default class whenever: P(default=Yes|X=x)>0.2. 



LDA: Case Study
• The confusion matrix for the default data using an LDA with threshold at 0.5:

In this case: sensitivity (TP/P)=81/333=24.3% (very low!) ; specificity

(TN/N)=9,644/9,667=99.8%

• The confusion matrix for the default data using an LDA with threshold at 0.2:

Overall accuracy: 96.27% ; sensitivity (TP/P)=58.5%; specificity (TN/N)=97.5%

A significant improvement! 



LDA: Case Study
• As it turns out, as the threshold is reduced, the error rate among individuals who default 

decreases steadily, but the error rate among the individuals who do not default increases. In 

the figure below the black line shows the overall error rate, the blue line shows the fraction 

of  defaulting customers that are incorrectly classified, and the orange line shows the fraction 

of  errors among the non-defaulting customers. 

• How can we decide on a best threshold value? Use domain knowledge, such as detailed 

information about the costs associated with default. 



LDA: Case Study
• Recall that we can identify the TPR and FPR and formulate the ROC curve for a classifier using 

different thresholding values.

• The AUC (area under the curve) for the ROC plot provides a metric to compare different classifiers 

(a large AUC is better, with 1 representing the theoretical maximum and ½ representing a “pure 

chance” classifier).  

• The figure shows the ROC curve for the LDA classifier on the default data; AUC in this case 

0.95, which is very strong. 



QDA
• We previously mentioned that LDA assumes Gaussian likelihoods with a shared covariance 

matrix for each class (Σc= Σ). In contrast, QDA (quadratic discriminant analysis) lifts the 

assumption of  a shared covariance matrix so that each class has its covariance matrix. 

(*) The overall result is that QDA results in a more flexible discriminative model (at the cost of  

extra computational overhead and potentially larger model variance). 



QDA
• We previously mentioned that LDA assumes Gaussian likelihoods with a shared covariance 

matrix for each class (Σc= Σ). In contrast, QDA (quadratic discriminant analysis) lifts the 

assumption of  a shared covariance matrix so that each class has its covariance matrix. 

(*) The overall result is that QDA results in a more flexible discriminative model (at the cost of  

extra computational overhead and potentially larger model variance). 

(*) As before, taking logs and rearranging terms renders the following expression; QDA assigns a 

new datum x to the class for which:  

is largest. We use the MLE estimates for the parameters in the equation; the decision boundary is 

parabolic for QDA, as the discriminant function above is quadratic in x. 
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QDA
• As usual, the bias-variance tradeoff  dictates in practice whether it is preferable to use LDA 

over QDA (or vice versa). 

• Notice that with LDA we compute a single, shared covariance matrix that consists of  

d(d+1)/2 total parameters (why?); whereas for QDA we calculate a separate covariance 

matrix for each of  the K classes, for a total of  Kp(p+1)/2 parameters. 

• The figure illustrates the performances of  LDA and QDA in two scenarios. Left: The 

Bayes’ (ideal) model is in purple; LDA (black); QDA (green); for the 2-class problem shown, 

the true decision boundary is linear so LDA outperforms QDA; Right: the true decision 

boundary is non-linear, and the performance of  QDA is superior. 



Research Applications of  LDA/QDA: Emotion 

Recognition
Kwon, et al.,  “Emotion Recognition By Speech Signals”, EUROSPEECH, 2003. 

• The researchers derived models for emotion recognition in audio signals. They selected 

pitch, log energy, MFCCs features (common audio signal features), etc. The extracted features 

were analyzed using QDA and SVMs. Experimental results demonstrated that pitch and 

energy were the most important factors for emotion classification.

• They used SVM, LDA, QDA and HMM models for classification. They were able to 

achieve 96.3% accuracy for stressed/neural style classification and 70.1% for 4-class speaking 

style classification for state-of-the-art performance.  

http://www.isca-speech.org/archive/archive_papers/eurospeech_2003/e03_0125.pdf



Marginal & Conditional Gaussians
•  Given a join distribution p(x1, x2) it useful to be able to compute marginals p(x1) and 

conditionals p(x1|x2). 

Theorem. Suppose x=(x1, x2) is jointly Gaussian with parameters: 

Then the marginals are given by:

(*) The marginal equations should be intuitively clear – we simply extract the rows and 

columns corresponding with x1 and x2; when we marginalize a Gaussian the distribution 

remains Gaussian, as one should expect. 
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Marginal & Conditional Gaussians
•  Given a join distribution p(x1, x2) it useful to be able to compute marginals p(x1) and 

conditionals p(x1|x2). 

Theorem. Suppose x=(x1, x2) is jointly Gaussian with parameters: 

Then the “posterior conditionals” are given by:

(*) The posterior conditionals show that the conditional mean is just a linear function of  x2, 

and the conditional covariance is just a constant matrix that is independent of  x2; when we 

condition on  a Gaussian the result is a Gaussian, as should be intuitive.  
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Marginal & Conditional Gaussians: Example
•  Consider a 2-D example. The covariance matrix is given by:

where ρ is a non-negative parameter. 

• The marginal p(x1) is a 1-D Gaussian, obtained by projecting the joint distribution onto the 

x1 line: 
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Marginal & Conditional Gaussians: Example
•  Consider a 2-D example. The covariance matrix is given by:

where ρ is a non-negative parameter. 

• The marginal p(x1) is a 1-D Gaussian, obtained by projecting the joint distribution onto the 

x1 line: 

•Suppose we observe X2 = x2; the conditional p(x1|x2) is obtained by “slicing” the joint 

distribution through the X2 = x2 line: 
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Research Application Example: MVNI (Multi-

variate Normal Imputation)
Shafer, et al., “Multiple imputation for multivariate missing-data problems: a data analyst’s 

perspective”, 1998 (1400+ citations). 

(*) Missing/corrupted data are an inevitable part of

data science – particularly in medicine/epidemiology.

Data Imputation is the process of  (cogently) replacing 

missing elements in a data set. 

Shafer et al., devised the MVNI (multi-variate normal imputation) method which assumes all 

variables in the model have a joint MVN distribution (after applying a data 

transformation/pre-processing steps such as the log transform). Then by using the MVN 

conditioning equations, imputation is performed. 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.6337&rep=rep1&type=pdf



Research Application (Aside): Gibbs Sampling –

how do I sample from a MVN?
• MCMC (Markov Chain Monte Carlo) is a sampling method that allows one – in principle – to 

approximate a complex integral (oftentimes the answer to an interesting ML/data science problem 

naturally involves complex integration, e.g. calculating the mean/expected value of  a model 

distribution)

• Recall that a Markov Chain is a sequential model that transitions from one state to another in a 

probabilistic fashion, where the next state that the chain takes is conditioned on the previous 

state(s). Markov Chains are useful in that if  they are constructed properly, and allowed to run for a 

sufficiently long time, the states that a chain will take correspond with samples from a specified 

target probability distribution. 

• Thus we can construct Markov chains to sample from the distribution whose integral we would 

like to approximate. 

Manhattan Project



Research Application (Aside): Gibbs Sampling –

how do I sample from a MVN?

• The Gibbs Sampler is an MCMC method that generates samples from a target joint distribution 

p(x1,x2,…,xD) by first initializing each variable in the model (e.g. randomly) and then repeatedly 

sampling from “full conditionals” for each variable in the model, i.e. p(xi|x1,x2,…,xi-1,xi+1,…xD).

Example: Consider the task of  sampling from a Bivariate Gaussian

with parameters

In order to sample from this distribution using the Gibbs sampler, we need the conditional 

distribution formulas: 
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Research Application (Aside): Gibbs Sampling –

how do I sample from a MVN?
Example: Consider the task of  sampling from a Bivariate Gaussian

with parameters

The figure shows the results of  applying Gibbs sampling; at each step the Gibbs sampler takes a 

step only in the x1 direction, then only in the x2 direction. 
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Conditional Gaussians: Derivation
• We’ve seen several examples of  the utility of  the Gaussian conditional equations. Now we 

consider their derivation. 

Recall the main result, which states: Suppose x=(x1, x2) is jointly Gaussian with parameters: 

Then the “posterior conditionals” are given by:

(*) Before discussing the main step in the derivation, we first need an important result from 

linear algebra known as the Matrix Inversion Lemma. 
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Matrix Inversion Lemma

• The Matrix Inversion Lemma states: For a general partitioned matrix 

The inverse is given by: 

Where the “Schur complements” are defined: 

(*) While this result looks quite complicated, the proof  utilizes a single trick of  block 

diagaonilizing the M matrix to make the inversion cleaner. 
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Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations. 

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication 

rule of  probability): 

Let 
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• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations. 
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rule of  probability): 
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Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations. 
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Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations. 

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication 

rule of  probability): 

(*) This is an expression of  the form: exp(quadratic form in x1, x2) x exp(quadratic form in 

x2). 
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Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations. 

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication 

rule of  probability): 

(*) This is an expression of  the form: exp(quadratic form in x1, x2) x exp(quadratic form in 

x2). 

Thus we have factored the joint as: 
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Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations. 

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication 

rule of  probability): 

(*) This is an expression of  the form: exp(quadratic form in x1, x2) x exp(quadratic form in 

x2). 

Thus we have factored the joint as: 

So what are the relevant equations for μ1|2 and Σ1|2, i.e., the Gaussian conditioning parameter 

formulae?
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Conditional Gaussians: Derivation

Thus we have factored the joint as: 

So what are the relevant equations for μ1|2 and Σ1|2, i.e., the Gaussian conditioning parameter 

formulae?
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Conditional Gaussians: Derivation

Thus we have factored the joint as: 

So what are the relevant equations for μ1|2 and Σ1|2, i.e., the Gaussian conditioning parameter 

formulae?

(*) This is precisely what we wanted to show in order to derive the Gaussian conditioning 

equations! QED
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Maximum Entropy Distributions

• We previously noted that there are (at least) three good reasons for the ubiquity 

of  Gaussian distributions in practice: 

(1) CLT

(2) “Nice” computational properties, including: Gaussian MLE parameter 

estimates have closed form solutions; conditioning equations are readily 

computable, etc. 

(3) The Gaussian distribution has maximum entropy relative to all probability 

distributions with a fixed mean and standard deviation (i.e. up to second 

moment statistics). 

(*) To date, we expounded on conditions (1) and (2); now we delve into (3). 



Maximum Entropy Distributions
• From our prior information theory lecture, we introduced the definition and intuitive 

meaning of  (Shannon) entropy:

The entropy of  a random variable X with distribution p, denoted by H(X) or sometimes 

H(p) is a measure of  surprise/uncertainty. In particular, for a discrete random 

variable with K states, it is defined: 



Maximum Entropy Distributions
• From our prior information theory lecture, we introduced the definition and intuitive 

meaning of  (Shannon) entropy:

(*) The entropy of  a random variable X with distribution p, denoted by H(X) or 

sometimes H(p) is a measure of  surprise/uncertainty. In particular, for a discrete 

random variable with K states, it is defined: 

• For a continuous random variable X with density function p(x), the entropy is defined 

analogously (note that is it often referred to as differential entropy in this context): 

     log
X

H X p x p x dx 



Maximum Entropy Distributions

• As a general, guiding scientific principle, Laplace offered the principle of  insufficient 

reason (PRI) which asserts that (later codified by the economist Keynes) :

“equivalent states of  knowledge should be assigned equivalent epistemic 

probabilities” – to paraphrase: where there is no reason to presume otherwise,

our prior beliefs should be encoded as uninformative (i.e. maximally entropic). 

(*) Remember that we previously proved (using the information inequality) that the 

uniform distribution is maximally entropic (this should be intuitive); next we 

demonstrate that the Gaussian is also maximally entropic under some basic 

conditions. 



Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy for all continuous 

distributions with fixed mean (finite) and variance. 

• There are several ways to prove this result – we note that the information inequality can 

be used to directly demonstrate this property (as in vein of  our earlier proof  that the 

uniform distribution is maximally entropic). In the interest of  using a diverse array of  

techniques, we’ll opt instead to use the method of  Langrange multipliers. 



Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy for all continuous 

distributions with fixed mean (finite) and variance. 

• There are several ways to prove this result – we note that the information inequality can 

be used to directly demonstrate this property (as in vein of  our earlier proof  that the 

uniform distribution is maximally entropic). In the interest of  using a diverse array of  

techniques, we’ll opt instead to use the method of  Langrange multipliers. 

• We reiterate that the classical method of  Lagrange multipliers (LM) is applicable for 

optimization problems with equality constraints. The essence of  the LM method is that 

a sufficient condition for the solution to a constrained optimization problem is that, the 

gradient of  the Lagrangian equals zero, i.e.: 

(*) f(x) is the objective function (i.e. the function we want to optimize) and the gi(x) 

functions are constraint equations. 



Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 

continuous distributions with fixed mean (finite) and variance. 

(*) Let’s now organize the objective function and constraints for the maximum entropy 

problem.



Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 

continuous distributions with fixed mean (finite) and variance. 

(*) Let’s now organize the objective function and constraints for the maximum entropy 

problem.

Objective function:                                                (we express the objective wrt p, a 

probability distribution).
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f p p x p x dx 



Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 
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probability distribution).
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Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 

continuous distributions with fixed mean: μ (finite) and variance: σ2. 

(*) Let’s now organize the objective function and constraints for the maximum entropy 

problem.

Objective function:                                                (we express the objective wrt p, a 

probability distribution).

Constraint equations: (1)
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Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 

continuous distributions with fixed mean: μ (finite) and variance: σ2. 

(*) Let’s now organize the objective function and constraints for the maximum entropy 

problem.

Objective function:                                                (we express the objective wrt p, a 

probability distribution).

Constraint equations: (1)

(2)  (3)                                          (why?)
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Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 

continuous distributions with fixed mean: μ (finite) and variance: σ2. 

• Now define the Lagrangian: 
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Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy for all continuous 

distributions with fixed mean: μ (finite) and variance: σ2. 

• Now define the Lagrangian: 
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Maximum Entropy of  the Gaussian Distribution

(*) Proof  that the Gaussian distribution has maximum entropy (in 1-D) for all 

continuous distributions with fixed mean: μ (finite) and variance: σ2. 

• Now define the Lagrangian: 

Set                              and solve…

This yields: 

, as was to be shown. 
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Gaussian Processes: Introduction

• Previously we have seen many useful variants of  regression models: linear regression, 

regularized regression, linear basis function models (e.g. radial basis regression), and 

logistic regression. 

(*) In each case, these models were both parametric (i.e. the number of  parameters was 

fixed) and non-probabilistic (i.e. non-Bayesian) – at least in our earlier treatments. 

• The task of  regression is inherently an inductive problem: we wish to generate 

(continuous) predictors for new inputs x* (over all possible input values), given a data set 

D of  n observations: D= 𝒙𝑖, 𝑦𝑖 |𝑖 = 1,… , 𝑛 . 

• In order to devise such a function, we must make some basic assumptions about the 

characteristics of  the underlying function, as otherwise any function which is consistent 

with the training data would be equally valid – and this would yield an ill-posed 

problem. 

Recommended text on Gaussian Processes: 

Rasmussen et al., Gaussian Processes for Machine Learning, 

MIT (2006).



Gaussian Processes: Introduction
• In determining the characteristics of  the underlying function there are (2) common 

approaches:

(1) Restrict the class of  possible functions that we consider (e.g., linear functions, 

quadratic functions, etc.)

(2) Use an optimization process to search over different models as well as the 

parameters of  the model. Give a prior probability (in some generic sense) to every 

possible function, where higher probabilities are given to functions that we consider 

to be more likely – such as smooth functions. 

(*) The second approach admits of  a Bayesian scheme and is generally more flexible, as 

we subsequently demonstrate. 



Gaussian Processes: Introduction
• To optimize over different models and parameters in conjunction with a prior, we need 

to generalize the idea of  a probability distribution to something over which we can 

optimize. 

• A stochastic process is a collection of  random variables put together: instead of  

having a set of  parameters that specify a probability distribution (e.g. mean and 

covariance), we have  asset of  functions that a distribution over that set of  functions. 

•Dealing with a general stochastic process is often difficult because combining the 

random variables is generally hard. 

•However, if  we restrict the process in such a way that all of  the random variables have a 

Gaussian distribution, and the joint distribution over any (finite) subset of  the variables 

is also Gaussian, then this is a Gaussian Process (GP), and is much easier to deal with. 

(*) Some consider GPR (Gaussian Process Regression) as regression model “for the 21st

century.”

https://arxiv.org/pdf/1309.7837.pdf



Gaussian Processes: A Pictorial Introduction to Bayesian Modelling 

• Consider a simple 1-D regression problem, mapping from an input x to an output f(x). 

• In the figure, on the left we show a number of  sample functions drawn at random from the prior 

distribution over functions specified by a particular Gaussian Process which favors smooth 

functions. 

• The prior is taken to represent our prior beliefs over the kinds of  functions we expect to 

observe, before seeing any data. In the absence of  knowledge to the contrary, we have assumed 

the average value over the sample functions at each x is zero. The shaded region denotes twice the 

pointwise standard deviation.

• Given a data set D, the dashed lines in the right image show sample functions which are 

consistent with D, and the solid line depicts the mean value of  such functions. The combination 

of  the prior and the data leads to the posterior distribution over functions. 



Gaussian Processes

• The way to think about modelling with GPs is that we put a probability distribution over 

the space of  functions (possibly an infinite dimensional space!) and sample from that. 

• Ostensibly, if  we wanted to specify f(x) for any input vector x, we could just list the value of  

f for every possible value of  x – but this would require an infinite number of  point-wise 

specifications. 

• However, by the Gaussian assumption intrinsic to GPs (namely: any subset of  the random 

variables is jointly Gaussian) we only need to specify a mean and covariance matrix to fully 

specify the GP (just like a Gaussian density is fully specified by its mean and covariance). 

• The mean and covariance specification implies a distribution over functions. We can then 

perform posterior inference (i.e. generate f(x*)) for any test input vector x*, given a training set D. 

(*) In summary, GPs are just smoothers, meaning that they fit a smooth curve to a set of  

data points (note that GPs can also be used in a similar way to perform classification tasks). 



Gaussian Processes

•  GPs are specified by mean and covariance functions (in practice the data are centered so 

that we work with a zero mean GP for convenience). In this case, the GP is completely 

described as a function G(k(x,x’)) that models some underlying function f(x), where the 

covariance function k(x,x’) gives us the expected covariance matrix between the values 

of f  at x and x’.

(*) For a GP, the prior is encoded via the choice of  covariance function.



Gaussian Processes

•  GPs are specified by mean and covariance functions (in practice the data are centered so that we 

work with a zero mean GP for convenience). In this case, the GP is completely described as a 

function G(k(x,x’)) that models some underlying function f(x), where the covariance function 

k(x,x’) gives us the expected covariance matrix between the values of f  at x and x’.

(*) For a GP, the prior is encoded via the choice of  covariance function.

• There are many legitimate choices for covariance functions to be used in conjunction with 

GP. We’ll focus on the most common choice, the square exponential (SE) covariance 

function (also called a radial basis kernel (RBF): 

where the length scale (l ) and signal variance (σ𝑓
2) are hyperparameters (we analyze their 

effects on the GP subsequently). For a set of  input vectors the covariance function enables 

us to specify a matrix of  covariances K where the element at place (i, j) in the matrix is Kij = 

k(x(i),x(j)).
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Gaussian Processes

•  That’s a lot to take in. Let’s review the salient points: 

A Gaussian Process is a collection of  random variables, any finite number of  which have a 

joint Gaussian distribution. 

A GP is completely specified by its mean function and covariance function. In full generality, 

we define the mean function m(x) and the covariance function k(x, x’) of  a stochastic process 

f(x) as:

   

           ,

m E f

k E f m f m

   

      

x x

x x x x x x



Gaussian Processes

•  That’s a lot to take in. Let’s review the salient points: 

A Gaussian Process is a collection of  random variables, any finite number of  which have a 

joint Gaussian distribution. 

A GP is completely specified by its mean function and covariance function. In full generality, 

we define the mean function m(x) and the covariance function k(x, x’) of  a stochastic process 

f(x) as:

For simplicity, we’ll set m(x)=0 (that is, we center the data) and use the square exponential 

kernel, kSE. Finally, we write the Gaussian Process as: 

This notation explicitly conveys the fact that GPs describe a distribution over functions. 

   

           ,

m E f

k E f m f m
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      ~ , ,f GP m k x x x x



Gaussian Processes: Prediction with Noise-free 

Observations
• Consider noise-free data D= 𝒙𝑖, 𝑓𝑖 |𝑖 = 1,… , 𝑛 . The joint distribution of  the training 

outputs, f, and the test outputs f* is given by:

• If  there are n training points and n* test points, then K(X,X*) denotes the n x n* matrix 

of  the covariances evaluated at all pairs of  training and test points, and similarly for the 

other entries: K(X, X), K(X*, X*) and K(X*, X). 

• To get the posterior distribution over functions, we need to restrict this joint prior 

distribution to contain only those functions which agree with the observed data points. 
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Gaussian Processes: Prediction with Noise-free 

Observations
• Graphically, you can think of  generating functions from the prior, and rejecting the ones 

that disagree with the observations. 



Gaussian Processes: Prediction with Noise-free 

Observations
• Graphically, you can think of  generating functions from the prior, and rejecting the ones 

that disagree with the observations. 

In practice, the posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).



Gaussian Processes: Prediction with Noise-free 

Observations

The noise-free posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

This yields the following distribution, from which samples of  f* can be obtained: 



Gaussian Processes: Prediction with Noise-free 

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: Where does this formula come from? 
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Gaussian Processes: Prediction with Noise-free 

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: Where does this formula come from? 

A: The Gaussian conditioning formulas that

we previously derived (check this)!

            1 1
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Gaussian Processes: Prediction with Noise-free 

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: What is the computational bottleneck in these expressions? 
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Gaussian Processes: Prediction with Noise-free 

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: What is the computational bottleneck in these expressions? 

A: Matrix inversion O(n3) – can be reduced with numerical approximation or Strassen 

method; or using a small (yet useful) sample/training set. 

            1 1
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Gaussian Processes: Prediction with Noise-free 

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Note that GPR (Gaussian Process

Regression) can be instantiated 

in higher dimensions. 
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Gaussian Processes: Prediction with Noisy 

Observations
• It is typical for more realistic modelling situations that we do no have access to function 

values themselves, but only noisy versions thereof: y = f(x)+ε (e.g. imprecise/corrupted 

measurements). 

• Assuming additive independent, identically distributed (IID) Gaussian noise ε, with 

variance σ𝑛
2 , the prior on the noisy observations becomes: 

where is a Knoecker delta function, which is one iff p = q and zero otherwise (note the 

“noise term” above is a diagonal matrix due to independence).

 2 2cov( , ) ( , )  or cov( ) ,p q p q n pq ny y k K X X I     x x y



Gaussian Processes: Prediction with Noisy 

Observations
• It is typical for more realistic modelling situations that we do no have access to function 

values themselves, but only noisy versions thereof: y = f(x)+ε (e.g. imprecise/corrupted 

measurements). 

Assuming additive independent, identically distributed (IID) Gaussian noise ε, with 

variance σ𝑛
2 , the prior on the noisy observations becomes: 

where is a Knoecker delta function, which is one iff p = q and zero otherwise (note the 

“noise term” above is a diagonal matrix due to independence).

• Introducing the noise term, we can we write the joint distribution of  the observed target 

values and the function values at the test locations under the prior as: 

 2 2cov( , ) ( , )  or cov( ) ,p q p q n pq ny y k K X X I     x x y
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Gaussian Processes: Prediction with Noisy 

Observations

• Once again, if  we apply the conditioning formulas to the joint distribution, this yields the 

noisy posterior predictive function distribution:

• Observe that our notation reflects the fact that y is generated from an underlying function 

perturbed by noise: y = f(x)+ε; in practice σ𝑛
2 is estimated from data or using prior 

knowledge.

   

   

2

*

* * * *

, ,
~ ,

, ,

nK X X I K X X
N

K X X K X X

   
         

y
0

f

            1 1
2 2

* * * * * * *| , , ~ , , , , , , ,n nX X N K X X K X X I K X X K X X K X X I K X X 
 

        f y y



Gaussian Processes: Prediction with Noisy 

Observations

• Once again, if  we apply the conditioning formulas to the joint distribution, this yields the 

noisy posterior predictive function distribution:
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Gaussian Processes: Varying the Hyperparameters
• The covariance hyperparameters can be varied (we discuss hyperparameter optimization 

next). 

Recall that the square exponential covariance function (with noise) has the following form:

with length scale (l ), signal variance (σ𝑓
2) and noise variance (σ𝑛

2 ) hyperparameters. 

Modifying the signal variance controls the overall variance of  the function, while the length 

scale changes the degree of  smoothing, trading it off  against how well the curve matches the 

training data. 
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Gaussian Processes: Varying the Hyperparameters
Modifying the signal variance controls the overall variance of  the function, while the length 

scale changes the degree of  smoothing, trading it off  against how well the curve matches the 

training data. 



Gaussian Processes: Learning the Hyperparameters
• The covariance hyperparameters can be tuned by minimizing the log likelihood:

The derivation of  this formula relies once again on the conditional Gaussian equations. One can 

use gradient descent (or a variant such as conjugate gradients) to approximate the minimum value and 

thereby tune the hyperparameters. 
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Gaussian Process Regression Algorithm

GPR Algorithm

For a given training data set (X,y), test data X*, covariance function k() and hyperparameters:   

𝛉 = σf
2, l, and σn

2 :

• compute the covariance matrix K=k(X, X) + σnI for hyper parameters 𝛉

• compute the covariance matrix k*=k(X, X*).

• compute the covariance matrix k**=k(X*, X*).

• the mean of  the process is: k*TK-1y

• the covariance is: k**-k*TK-1k*

(*) In practice, the inversion of  the K matrix  can be unstable. However, since K is symmetric

and positive definite (why? Sum of  positive definite matrices is PD – try showing this), it has a 

Cholesky decomposition, whereby: K=LLT (L represents a lower-triangular matrix); this 

allows us invert the desired matrix in a numerically stable way.  



Research Application: GPs for Spatial Epidemiology

Vanhatalo, et al., “Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology”, 

JMLR, 2007.

• Spatial epidemiology concerns both describing and understanding the spatial variation 

in the disease risk in geographically referenced health data. The authors use sparse log 

GPs for disease mapping, where the aim is to describe the overall disease distribution on 

a map and, for example, highlight areas of  elevated or lowered mortality or morbidity 

risk.

• The expected number of  deaths is evaluated using age, gender and scholarly degree 

standardization and the logarithm of  the relative risk is given a Gaussian process prior; 

the authors use an MCMC method for hyperparameter approximation; the fully 

independent training conditional (FITC) sparse approximations are used to reduce the 

computational complexity of  inverting the K matrix. 

http://proceedings.mlr.press/v1/vanhatalo07a/vanhatalo07a.pdf



Research Application: GPs for Spatial Epidemiology
Vanhatalo, et al., “Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology”, 

JMLR, 2007.



Research Application: GPs for Optimizing ML 

Algorithm Performance

Snoek, et al., “Practical Bayesian Optimization of  Machine Learning Algorithms”, NIPS, 2012.

• The authors attempt to automate parameter optimization for ML algorithms using GPs.  of  such 

parameters as a procedure to be automated. In particular, they use a Bayesian optimization 

framework; the posterior distribution reflects the results of  running learning algorithm 

experiments with different hyperparameters. 

• In order to pick new hyperparameter values to test, the authors apply two standard Bayesian 

optimization measures: EI (expected improvement) and UCB (upper confidence bound). The 

authors present novel algorithms to parallelize the hyperparameter search with an MCMC 

approach. 

http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-

algorithms.pdf



• Accurate object localization is an enduring and critical challenge in computer vision.

• Precise and rapid localization of  pedestrians in images remains an unsolved problem.

Rhodes, A. D., Jordan Witte, Melanie Mitchell, and Bruno Jedynak. “Bayesian optimization 

for refining object proposals. ”, IPTA, 2017.

Rhodes, A. D., Jordan Witte, Melanie Mitchell, and Bruno Jedynak. “Gaussian Processes 

with Context-Supported Priors for Active Object Localization,” IJCNN, 2018. 

https://arxiv.org/ftp/arxiv/papers/1703/1703.08653.pdf

Research Application: GPs Efficient Object (e.g. 

Pedestrian) Detection with Context Models



Background and Related Work

.

• Situate is a computer vision framework for active object localization in visual situations. 

• Our system learns the expected structure of  a “visual situation” from training images by 
inferring a set of  joint probability distributions—a context-situation model—linking aspects of  
the relevant objects. 

Research Application: GPs Efficient Object (e.g. 

Pedestrian) Detection with Context Models



• (I) We train a convolutional neural network (CNN) to score bounding-box 

proposals to approximate an offset distance from the target object. 

• (II) From training data, we develop context-situation model, given various 

location and size parameters for a particular visual situation. 

• (III) We apply a Gaussian Process (GP) to approximate this offset response 

signal over the (large) search space of  the target.

• (IV) A Bayesian active search is then used to achieve fine-grained localization of  

the target. 

General Algorithm Pipeline 

Research Application: GPs Efficient Object (e.g. 

Pedestrian) Detection with Context Models



• We define a context-situation model as a joint distribution of location and size 

parameters for a target object bounding-box, given various location and size parameters 

for a particular visual situation: 𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑠𝑐𝑜𝑛𝑡𝑒𝑥𝑡 1:𝐶 . 

• We use the context-situation model to generate target object proposals used in an 

active search. 

Context-Situation Models 

Sample from 

Context-Situation Model

Target

Context for

target

Context-Situation Model:  

Learned joint probability distribution 

over location and size of objects

Research Application: GPs Efficient Object (e.g. 
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• Because it is computationally expensive to generate offset prediction values for a 

large number of  bounding-box proposals (due to the CNN), we use GPR to 

approximate the offset prediction values over the target search space (i.e. a large grid of  

values). 

• Next, we actively search this space according to a Bayesian optimization scheme (IV) to 

find new proposals that are likely to capture the target object.

Gaussian Process Regression 

Research Application: GPs Efficient Object (e.g. 

Pedestrian) Detection with Context Models



Active Learning Queries 

• Ideally, in addition to exploring regions of  high uncertainty, we should also exploit, to 
some degree, “regions of  promise”, respecting our target object.

• Acquisition functions are used to guide the search for the optimum of  the GPR 
approximation to the true objective function (whose maximum occurs, ideally, for a 
proposal that perfectly crops the pedestrian). 

• High acquisition indicates greater likelihood of  an objective function maximum.

• Commonly used acquisition functions (we omit the details for brevity) in this 
setting include: probable improvement (PI) and expected improvement (EI). 

Research Application: GPs Efficient Object (e.g. 

Pedestrian) Detection with Context Models



Bayesian Optimization 

• In the figure we display a Gaussian process showing the region of  probable improvement. 
The maximum observation is at x+. 

• The darkly-shaded area in the superimposed Gaussian above the dashed line can be 
used as a measure of  improvement. The model predicts almost no possibility of  
improvement by observing at x1 or x2, while sampling at x3 is more likely to improve 
on f(x+).

•

Research Application: GPs Efficient Object (e.g. 
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Bayesian Optimization

• Below are example iterations of  both PI and EI-based active queries with GPR.

• In the current work, we use a variant of  EI that is fine-tuned to our problem 
parameters. 

Research Application: GPs Efficient Object (e.g. 
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GP-CL Algorithm 
 

 

Algorithm: Gaussian Process Context Localization 

(GP-CL)  

 

Input: Image I, a set of C context objects, trained model y 

giving response signals, learned context-situation model 

𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  · , n0 initial bounding-box proposals for 

target object generated by the context-situation model,  and 

corresponding response signal values: 𝐷𝑛0
=

  𝑥𝑖 ,𝑠𝑖 , 𝑦 𝑥𝑖 ,𝑠𝑖  𝑖=1

𝑛0
, GP hyperparameters θ, size of GP 

realization space M, dynamic design parameter for 

Bayesian active search 𝜉, size of GP memory GPmem (as 

number of generations used), batch size n, number of 

iterations T, current set of bounding-box proposals and 

response signals 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 𝑡 . 

 

1:Compute n0 initial bounding box proposals: 

  𝑥𝑖 ,𝑠𝑖  𝑖=1

𝑛0
~𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡  ·   

2: 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 0 ⟵  𝐷𝑛0

 

3:for t = 1 to T do 

4:   Compute 𝜇 𝑥  𝑡  and σ 𝑥  𝑡  for the GP realization    

        𝑓𝑀
 𝑡 

  of  𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 𝑡−1 

 over grid of M points  (Equation 4) 

5:   for i = 1 to n do 

6:     𝑧𝑖 = argmax
𝑥

𝑎𝐶𝐸𝐼  𝑓𝑀
 𝑡  \ 𝑧𝑗  𝑗=1

𝑗=𝑖−1
, 𝜉  (Equation 5) 

7:      𝑠𝑎𝑚𝑝𝑙𝑒: 𝑠𝑖~𝑝 ∙ 𝑠  
8:      𝑝𝑖 =  𝑧𝑖 , 𝑠𝑖  
9:   end for 

10:  𝐷 𝑡 ⟵   𝑥𝑖 ,𝑠𝑖 , 𝑦 𝑥𝑖 ,𝑠𝑖  𝑖=1

𝑛
 

11:  𝐷𝑝𝑟𝑜𝑝𝑜𝑠 𝑎𝑙
 𝑡 ⟵  𝐷 𝑗  𝑡

𝑗=𝑡−𝐺𝑃𝑚𝑒𝑚
 

12: end for 

13: Return argmax
𝑥

𝜇 𝑥  𝑇   

Step 1: Sample initial target proposals from context-

situation model  

Step 2: Score these proposals using the offset-prediction 

model (CNN) 

Step 3: Compute GPR values over search space 

Step 4: Using Bayesian optimization procedure, return 

proposals in search space with maximum acquisition  

Step 5: Return to Step 3 (loop)  
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GP-CL Example Runs

• Examples of  runs on two test images with the GP-CL algorithm. In each row the test 
image is shown on the far-left; the “search IOU history” is displayed in the second 
column, with the algorithm iteration number on the horizontal axis and IOU with the 
ground-truth target bounding box on the vertical axis. 

Research Application: GPs Efficient Object (e.g. 
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Experimental Results

• Graph of  BB-R (0.6), BB-R (0.1) and GP-CL localization results for test images. The 
horizontal axis indicates the median IOU for the initial proposal bounding boxes, while 
the vertical axis designates the final IOU with the target object ground truth. The line 
depicted indicates “break-even” results. 

 
Method IOU 

Difference 

Median 

(SE) 

Median 

Relative IOU 

Improvement 

% of Test 

Set with IOU 

Improvement 

% of Test 

Set  

Localized 

BB-R 

(0.6) 

.0614 

(.0035) 

34.62% 90.1% 12.3% 

BB-R 

(0.1)  

.1866 

(.0077) 

92.91% 90.0% 33.2% 

GP-CL .4742 

(.012) 
194.02% 89.3% 75.2% 

 

Research Application: GPs Efficient Object (e.g. 

Pedestrian) Detection with Context Models



Fin


