
Gaussian Models & Gaussian Processes

CS 446/546

Outline
• Overview

• MLE parameter estimates for the Gaussian Distribution

• LDA/QDA

• Marginal and Conditional Gaussians

• Maximum Entropy of the Gaussian

• Gaussian Processes

Overview
• Cedric Villani: “our supreme goddess of unreason – the Gauss curve.”

(*) Awarded Fermat Prize (2009), Fields medal (2010).

https://www.youtube.com/watch?v=Kc0Kthyo0hU

Overview: A brief history of the Normal

Distribution

• The importance of the normal curve stems primarily from the fact that the distributions of

copious natural phenomena are at least approximately normally distributed.

• One of the first applications of the normal distribution was to the analysis of errors of

measurement made in astronomical observations, errors that were both due to instrument

imprecision and human error. In the 17th century, Galileo observed that these errors were

symmetric and that small errors occurred more frequently than large errors.

Overview: A brief history of the Normal

Distribution
• This led to several hypothesized distributions of errors, but it was not until the early 19th

century that it was discovered that these errors followed a normal distribution. Independently,

the mathematicians Adrain in 1808 and Gauss in 1809 explicitly developed the formula for the

normal distribution and showed that errors were fit well by this distribution.

• This same distribution had been discovered by Laplace in 1778 when he derived the central

limit theorem. Laplace showed that even if a distribution is not normally distributed, the

means of repeated samples from the distribution would be very nearly normally distributed,

and that the larger the sample size, the closer the distribution of means would be to a normal

distribution.

Overview: Why does

everyone use

Gaussians?
(*) There are at least (3) good reasons:

(1) The Central Limit Theorem (CLT).

(2) The Gaussian distribution has maximum

entropy relative to all probability distributions

with a fixed mean and standard deviations (i.e.

up to second moment statistics).

(3) “Nice” computational properties: Gaussian MLE

parameter estimates have closed-form formulae; conditioning

a Gaussian yields a Gaussian; product of Gaussians is Gaussian;

member of exponential family distributions.

Overview: CLT
The Central Limit Theorem (a conceptual pillar of statistics)

In words: given a sufficiently large sample size from a population (with a finite level of variance), the mean of

all samples from the same population will be approximately equal to the mean of the population.

Furthermore, all of the samples will follow an approximate normal distribution pattern, with all variances

being approximately equal to the variance of the population divided by each sample's size.

In a picture:

In a theorem: Suppose {X1,X2,…,} is a sequence of I.I.D. random variables with E[Xi]=μ and Var[Xi]=σ2<∞

Then as n approaches infinity, the random variable (1/n)(X1+…+Xn) converges to a normal N(0, σ2/n):

2

1

1
0,

n d

i

i

X N
n n






    
     

    


Whatever the form of the population distribution, the sampling distribution

tends to a Gaussian, and its dispersion is given by the Central Limit Theorem.

Overview

Overview

Information Form of the

Gaussian
• The multi-variate Gaussian distribution is also frequently expressed in an alternative form

called the Information form.

• Suppose x ~ N(μ,Σ); the information form (also called canonical form) is defined as:

• Let , then: :

• Where Λ is called the precision matrix; each component of Λ quantifies the “partial

correlation” between two random variables.

• Partial correlation is in the range [-1,1] and controls for confounding variables in measuring

the association between two random variables; for instance, the (i,j) entry in the precision matrix

yields the correlation between Xi and Xj, controlling for all other variables in the model.

 
 

 1

/2

1
| , exp 2

22

T T T

D
N




  

       
 

x ξ x x ξ ξ x ξ

1 1,     ξ μ
1 1,     μ ξ

MLE for the Gaussian
• In any beginning statistics class, students are inevitably shown the formulae for the empirical

estimates of the parameters of a Gaussian distribution :

Q: Where do these results come from? Are they the only way to estimate the parameters of a

Gaussian distribution? Are they good estimates?

 
221 1

ˆ
i i

i i

x x x x
N N

   

MLE for the Gaussian
• In any beginning statistics class, students are inevitably shown the formulae for the empirical estimates

of the parameters of a Gaussian distribution :

Q: Where do these results come from? Are they the only way to estimate the parameters of a Gaussian

distribution? Are they good estimates?

A: They are derived from the maximum likelihood estimation procedure (i.e., the MLE, which Fisher

first popularized); in fact, there are a number of different methods for estimating distribution

parameters – MLE just happens to be one of the most commonly employed methods.

• One could, for instance, follow a Bayesian procedure (i.e. MAP) to estimate the distribution

parameters – the only catch is that we then need to define a prior (when in doubt, we adhere to the

principle of insufficient reason and use an uninformative prior – what is this equivalent to?)

• Note that the MLE procedure tends to overfit as an estimate; also observe that it can produce biased

estimates (however this is not necessarily a bad outcome per se). The MLE for variance for the

Gaussian is biased, for example.

 
221 1

ˆ
i i

i i

x x x x
N N

   

MLE for the Gaussian

• To get a better handle on the MLE procedure, we next derive the MLE formulae for the

Gaussian.

• First, however, we need a few results from matrix algebra (these results are exceptionally

useful when taking derivatives/optimizing matrix equations):

(*) Lastly, a useful formulation known as “trace trick” asserts, from (5):

xTAx=trace(xTAx)=trace(xxTA)=trace(AxxT)

 
221 1

ˆ
i i

i i

x x x x
N N

   

 

 
 

 

 1

(1)

(2)

(3)

(4) log | |

(5) () () ()

T

T

T

T
T

A
A A

trace BA B
A

A A A
A

trace ABC trace CAB trace BCA

 







 









 



 

b a
b

a

a a
a

a

(*) Note that the trace(A)

of a square matrix is

defined as the sum of its

diagonal entries.

MLE for the Gaussian

• Let’s now prove the classic MLE formulae for estimating the parameters of a Gaussian

distribution.

Pf.

(I) Estimate of the mean (ොμ):

First we begin with the log-likelihood expression (dropping additive constants):

where is the precision matrix.

Q: What next?

 
221 1

ˆ
i i

i i

x x x x
N N

   

1 1,     ξ μ

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

MLE for the Gaussian
Pf.

(I) Estimate of the mean (ොμ):

• First we begin with the log-likelihood expression (dropping additive constants):

• Naturally, we take the partial derivative of the log-likelihood with respect to μ and set it

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

Why?

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

      1,
T i

i i i i

i

l    
      

   

y
μ x μ x μ y y

μ μ y μ

MLE for the Gaussian
Pf.

(I) Estimate of the mean (ොμ):

• First we begin with the log-likelihood expression (dropping additive constants):

• Naturally, we take the partial derivative of the log-likelihood with respect to μ and set it

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

     

 

1

1

,

1

T i
i i i i

i

T

i

l 

 

  
      

   

   

y
μ x μ x μ y y

μ μ y μ

y

Why?

MLE for the Gaussian
Pf.

(I) Estimate of the mean (ොμ):

• First we begin with the log-likelihood expression (dropping additive constants):

• Naturally, we take the partial derivative of the log-likelihood with respect to μ and set it

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

     

 

1

1

,

1

T i
i i i i

i

T

i

l 

 

  
      

   

   

y
μ x μ x μ y y

μ μ y μ

y

Why?

MLE for the Gaussian
Pf.

(I) Estimate of the mean (ොμ):

• First we begin with the log-likelihood expression (dropping additive constants):

• Naturally, we take the partial derivative of the log-likelihood with respect to μ and set it

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

This implies:

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

     

 

1

1

,

1

T i
i i i i

i

T

i

l 

 

  
      

   

   

y
μ x μ x μ y y

μ μ y μ

y

     1 1

1 1

1
, 2

2

N N

i i

i i

l  

 


        


 μ x μ x μ

μ

Why?

MLE for the Gaussian
Pf.

(I) Estimate of the mean (ොμ):

• First we begin with the log-likelihood expression (dropping additive constants):

• Naturally, we take the partial derivative of the log-likelihood with respect to μ and set it

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

This implies:

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

     

 

1

1

,

1

T i
i i i i

i

T

i

l 

 

  
      

   

   

y
μ x μ x μ y y

μ μ y μ

y

     1 1

1 1

1
, 2

2

N N

i i

i i

l  

 


        


 μ x μ x μ

μ

Why?  T  

MLE for the Gaussian
Pf.

(I) Estimate of the mean (ොμ):

• Naturally, we take the partial derivative of the log-likelihood with respect to μ and set it

equal to zero. For notational convenience, we use the substitution: yi=xi – μ.

This implies:

Finally, when we set the partial derivative equal to zero and solve it yields:

, the standard empirical mean formula.

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

     

 

1

1

,

1

T i
i i i i

i

T

i

l 

 

  
      

   

   

y
μ x μ x μ y y

μ μ y μ

y

     1 1

1 1

1
, 2

2

N N

i i

i i

l  

 


        


 μ x μ x μ

μ

1

1
ˆ

N

i

i

x x
N 

 μ

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

  
1

N
T

i i

i

S


   x μ x μ

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:

First, we use the “trace trick” to rewrite the log-likelihood as:

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

  
1

N
T

i i

i

S


   x μ x μ

     
1

1
log | |

2 2

N
T

i i

i

N
l trace



       
  x μ x μ

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:

First, we use the “trace trick” to rewrite the log-likelihood for as:

       
1

1
, log | , log | |

2 2

N
T

i i

i

N
l p D



        μ μ x μ x μ

  
1

N
T

i i

i

S


   x μ x μ

     
1

1
log | |

2 2

N
T

i i

i

N
l trace



       
  x μ x μ

1
log | |

2 2

N
trace S

     

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:   
1

N
T

i i

i

S


   x μ x μ

 
1

log | |
2 2

N
l trace S

      

  1
0

2 2

T T
l N

S


 

   


Why?

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:   
1

N
T

i i

i

S


   x μ x μ

 
1

log | |
2 2

N
l trace S

      

  1
0

2 2

T T
l N

S


 

   


Why?

 

 
 

 

 1

(1)

(2)

(3)

(4) log | |

(5) () () ()

T

T

T

T
T

A
A A

trace BA B
A

A A A
A

trace ABC trace CAB trace BCA

 







 









 



 

b a
b

a

a a
a

a

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:

This implies:

  
1

N
T

i i

i

S


   x μ x μ

 
1

log | |
2 2

N
l trace S

      

  1
0

2 2

T T
l N

S


 

   


1 1T S
N



      

Why?

MLE for the Gaussian
Pf.

(II) Estimate of the covariance matrix (෠Σ):

• This time we take the partial derivative of the log-likelihood with respect to Λ and set it

equal to zero. For notational convenience, we use the substitution:

This implies:

Finally, we have:

which is precisely the standard empirical covariance formula, as was to be shown.

  
1

N
T

i i

i

S


   x μ x μ

 
1

log | |
2 2

N
l trace S

      

  1
0

2 2

T T
l N

S


 

   


1 1T S
N



      

  
1

1ˆ
N

T

i i

iN 

    x μ x μ

LDA

• Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis

(QDA) are two common, related regimes in ML for modelling class posteriors, i.e.,

P(Y=k|X=x).

• In this approach, we model the distribution of the predictors X separately in each of

the response classes (i.e. given Y: P(X=x|Y=k)) and then use Bayes’ theorem to flip

these around into estimates for the class posteriors.

LDA

• Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis

(QDA) are two common, related regimes in ML for modelling class posteriors, i.e.,

P(Y=k|X=x).

• In this approach, we model the distribution of the predictors X separately in each of

the response classes (i.e. given Y: P(X=x|Y=k)) and then use Bayes’ theorem to flip

these around into estimates for the class posteriors.

• When these distributions are assumed to be normal we get the LDA/QDA method,

which is very similar to logistic regression in the case of two classes – recall that

thresholding a logistic function gives a linear decision boundary.

• However, unlike logistic regression, LDA/QDA tend to be more numerically stable

(recall that logistic regression requires gradient ascent or some such approximation

technique); in addition, LDA/QDA are easily adaptable to the case of classification for

more than two classes.

LDA: Bayes’ Rule for Classification
• Recall that Bayes’ Theorem states:

Where we let fk(x)=P(X=x|Y=k) denote the density function for X for an observation that

comes from the kth class; πk represents the prior probability that randomly chosen datum

comes from the kth class.

• For LDA/QDA we assume that fk(x) is Gaussian; in the 1-D case:

In addition, with LDA in particular, we assume the variances across the classes are equal,

namely: σ1
2 = σ2

2 = ⋯σ𝑘
2 .

 
 

 
1

|
k k

K

l l

l

f x
P Y k X x

f x






  



   
2

2

1 1
exp

22
k k

kk

f x x 


 
   

 

LDA

• By Bayes’ Theorem we have:

Taking the log and rearranging terms, one can show that this is equivalent to assigning the

observation to the class for which:

is largest. Here each of the parameter estimates ොμ𝑘 , ෝσ𝑘
2 , ො𝜋𝑘 = 𝑛𝑘/𝑛 are the standard MLE

estimates derived previously. The term linear (per LDA) applies because the discriminant

function ෠δ𝑘 is a linear function of the input x, and hence the decision boundary is a line.

 
 

 
1

|
k k

K

l l

l

f x
P Y k X x

f x






  


   

2

2

1 1
exp

22
k k

kk

f x x 


 
   

 

 

 

2

2

2

2
1

1 1
exp

22
()

1 1
exp

22

k k

kk
k K

l l

l ll

x

p x

x

 


 


 
  
 
 
  
 



   
2

2 2

ˆ ˆˆ ˆlog
ˆ ˆ2

k k
k kx x

 
 

 
  

LDA
(*) LDA for 2 classes (with 1-D data) is equivalent to assigning the observation to the class

for which:

is largest.

• In the image, 20 observations were drawn from each of two classes, and are shown as

histograms. The Bayes’ decision boundary (optimal) is shown as a dashed line; the solid

vertical line represents the LDA decision boundary estimated from training data.

   
2

2 2

ˆ ˆˆ ˆlog
ˆ ˆ2

k k
k kx x

 
 

 
  

LDA: Higher Dimensions & Multiple Classes
• LDA can be extended in a natural way to incorporate data in more than one dimension and

more than two classes. Previously, in the 1-D case, we assumed the variance for each class

was equal; now we assume that the covariance matrix for each class is identical, i.e. Σc= Σ (for

all classes); this is sometimes called parameter sharing/tying.

LDA: Higher Dimensions & Multiple Classes
• LDA can be extended in a natural way to incorporate data in more than one dimension and

more than two classes. Previously, in the 1-D case, we assumed the variance for each class

was equal; now we assume that the covariance matrix for each class is identical, i.e. Σc= Σ (for

all classes); this is sometimes called parameter sharing/tying.

• Using Bayes’ Theorem again, this time with multi-variate Gaussian density functions yields:

(*) Taking logs and rearranging terms renders the following expression; LDA assigns a new

datum x to the class for which:

is largest. Again, we use the MLE estimates for the parameters in the equation; the decision

boundary is again linear, as the discriminant function is linear in x.

   1 11ˆ ˆ ˆ ˆ ˆlog
2

T T

k k k k kx      x μ μ μ

 
   

 
   

1/2/2

1/2/2
1

1 1
exp

22
()

1 1
exp

22

T

k k kd

k K
T

l l ld
l

x x

p x

x x







 
    
 


 
    
 



μ μ

μ μ

LDA: Higher Dimensions & Multiple Classes

• The figure shows an LDA example with 3 classes (d=2); the observations from each class

are drawn from a multi-variate Gaussian distribution. Left: ellipses that contain 95% of the

probability for each of three classes are shown; the dashed lines are the optimal (Bayes’)

decision boundary. Right: 20 observations were generated from each class, and the

corresponding LDA decision boundaries are indicated using solid black lines.

   1 11ˆ ˆ ˆ ˆ ˆlog
2

T T

k k k k kx      x μ μ μ

LDA: Case Study
• Now that we’ve seen the method to both fit an LDA model as well as perform posterior

class inference, we next consider a case study using financial data with LDA to review some

common model assessment procedures for classification in ML.

• We use the default data set from the ISLR database (linked below); the data consist of 10,000

training observation with 4 variables: income (income of customer), balance (average monthly

credit card balance), student (yes/no), default (yes/no) – we want to predict whether a customer

will default on their credit card payment.

LDA: Case Study
• Now that we’ve seen the method to both fit an LDA model as well as perform posterior

class inference, we next consider a case study using financial data with LDA to review some

common model assessment procedures for classification in ML.

• We use the default data set from the ISLR database (linked below); the data consist of 10,000

training observation with 4 variables: income (income of customer), balance (average monthly

credit card balance), student (yes/no), default (yes/no) – we want to predict whether a customer

will default on their credit card payment.

• Results were calculated using LDA on the default data: the training error was 2.75% -- this

seems like a strong result at first blush, however, recall that training error is an optimistic

estimate of test error.

In addition the data are highly imbalanced (only 3.33% of the customers defaulted). This

means that a trivial null classifier (viz., a classifier that always predicts not default will only

garner a 3.33% training error rate).

https://cran.r-project.org/web/packages/ISLR/ISLR.pdf

LDA: Case Study
• The confusion matrix for the default data using an LDA:

• From the confusion matrix, the TN (true negative rate) = 9,644/10,000 = 96.44%, the FN (false

negative rate) = 252/10,000 = 2.52%, the TP (true positive rate) = 81/10,000 = 0.81% and the

FP (false positive rate) = 23/10,000 = 0.23%.

• While these results appear strong (at least for the training set) because the overall error rate is

low, the error rate among individuals who defaulted is actually very high (the unbalanced data

masks this).

• Class-specific performance can be more important than overall accuracy of a classifier in many

domains – particularly biology and medicine. In particular, sensitivity and specificity are often used to

characterize the performance of a classifier (say for a screening test).

In this case: sensitivity (TP/P)=81/333=24.3% (very low!) ; specificity

(TN/N)=9,644/9,667=99.8%

LDA: Case Study
• The confusion matrix for the default data using an LDA:

In this case: sensitivity (TP/P)=81/333=24.3% (very low!) ; specificity

(TN/N)=9,644/9,667=99.8%

Can we improve the sensitivity score? Quite possibly.

If we are concerned about incorrectly predicting default status for individuals who default, then

we can consider lowering the probability threshold for LDA. Originally, we predicted the default

class whenever the posterior threshold exceeded 0.5: P(default=Yes|X=x)>0.5.

But, if we lower this threshold this might improve the sensitivity of the model; let’s lower it to 0.2,

so now we’ll predict the default class whenever: P(default=Yes|X=x)>0.2.

LDA: Case Study
• The confusion matrix for the default data using an LDA with threshold at 0.5:

In this case: sensitivity (TP/P)=81/333=24.3% (very low!) ; specificity

(TN/N)=9,644/9,667=99.8%

• The confusion matrix for the default data using an LDA with threshold at 0.2:

Overall accuracy: 96.27% ; sensitivity (TP/P)=58.5%; specificity (TN/N)=97.5%

A significant improvement!

LDA: Case Study
• As it turns out, as the threshold is reduced, the error rate among individuals who default

decreases steadily, but the error rate among the individuals who do not default increases. In

the figure below the black line shows the overall error rate, the blue line shows the fraction

of defaulting customers that are incorrectly classified, and the orange line shows the fraction

of errors among the non-defaulting customers.

• How can we decide on a best threshold value? Use domain knowledge, such as detailed

information about the costs associated with default.

LDA: Case Study
• Recall that we can identify the TPR and FPR and formulate the ROC curve for a classifier using

different thresholding values.

• The AUC (area under the curve) for the ROC plot provides a metric to compare different classifiers

(a large AUC is better, with 1 representing the theoretical maximum and ½ representing a “pure

chance” classifier).

• The figure shows the ROC curve for the LDA classifier on the default data; AUC in this case

0.95, which is very strong.

QDA
• We previously mentioned that LDA assumes Gaussian likelihoods with a shared covariance

matrix for each class (Σc= Σ). In contrast, QDA (quadratic discriminant analysis) lifts the

assumption of a shared covariance matrix so that each class has its covariance matrix.

(*) The overall result is that QDA results in a more flexible discriminative model (at the cost of

extra computational overhead and potentially larger model variance).

QDA
• We previously mentioned that LDA assumes Gaussian likelihoods with a shared covariance

matrix for each class (Σc= Σ). In contrast, QDA (quadratic discriminant analysis) lifts the

assumption of a shared covariance matrix so that each class has its covariance matrix.

(*) The overall result is that QDA results in a more flexible discriminative model (at the cost of

extra computational overhead and potentially larger model variance).

(*) As before, taking logs and rearranging terms renders the following expression; QDA assigns a

new datum x to the class for which:

is largest. We use the MLE estimates for the parameters in the equation; the decision boundary is

parabolic for QDA, as the discriminant function above is quadratic in x.

 
   

 
   

1/2/2

1/2/2
1

1 1
exp

22
()

1 1
exp

22

T

k k k kd

k

k K
T

l l l ld
l l

x x

p x

x x







 
    
 


 
    
 



μ μ

μ μ

       1 1ˆ ˆˆ ˆ ˆlog log
2

T

k k k k k kx       x μ x μ

QDA
• As usual, the bias-variance tradeoff dictates in practice whether it is preferable to use LDA

over QDA (or vice versa).

• Notice that with LDA we compute a single, shared covariance matrix that consists of

d(d+1)/2 total parameters (why?); whereas for QDA we calculate a separate covariance

matrix for each of the K classes, for a total of Kp(p+1)/2 parameters.

• The figure illustrates the performances of LDA and QDA in two scenarios. Left: The

Bayes’ (ideal) model is in purple; LDA (black); QDA (green); for the 2-class problem shown,

the true decision boundary is linear so LDA outperforms QDA; Right: the true decision

boundary is non-linear, and the performance of QDA is superior.

Research Applications of LDA/QDA: Emotion

Recognition
Kwon, et al., “Emotion Recognition By Speech Signals”, EUROSPEECH, 2003.

• The researchers derived models for emotion recognition in audio signals. They selected

pitch, log energy, MFCCs features (common audio signal features), etc. The extracted features

were analyzed using QDA and SVMs. Experimental results demonstrated that pitch and

energy were the most important factors for emotion classification.

• They used SVM, LDA, QDA and HMM models for classification. They were able to

achieve 96.3% accuracy for stressed/neural style classification and 70.1% for 4-class speaking

style classification for state-of-the-art performance.

http://www.isca-speech.org/archive/archive_papers/eurospeech_2003/e03_0125.pdf

Marginal & Conditional Gaussians
• Given a join distribution p(x1, x2) it useful to be able to compute marginals p(x1) and

conditionals p(x1|x2).

Theorem. Suppose x=(x1, x2) is jointly Gaussian with parameters:

Then the marginals are given by:

(*) The marginal equations should be intuitively clear – we simply extract the rows and

columns corresponding with x1 and x2; when we marginalize a Gaussian the distribution

remains Gaussian, as one should expect.

1 11 12

2 21 22

,
    

     
    

μ
μ

μ

   

   

1 1 1 11

2 2 2 22

| ,

| ,

p N

p N

 

 

x x μ

x x μ

Marginal & Conditional Gaussians
• Given a join distribution p(x1, x2) it useful to be able to compute marginals p(x1) and

conditionals p(x1|x2).

Theorem. Suppose x=(x1, x2) is jointly Gaussian with parameters:

Then the “posterior conditionals” are given by:

(*) The posterior conditionals show that the conditional mean is just a linear function of x2,

and the conditional covariance is just a constant matrix that is independent of x2; when we

condition on a Gaussian the result is a Gaussian, as should be intuitive.

1 11 12

2 21 22

,
    

     
    

μ
μ

μ

   

 

1 2 1 1|2 1|2

1

1|2 1 12 22 2 2

1

1|2 11 12 22 21

| | ,p N





 

   

     

x x x μ

μ μ x μ

Marginal & Conditional Gaussians: Example
• Consider a 2-D example. The covariance matrix is given by:

where ρ is a non-negative parameter.

• The marginal p(x1) is a 1-D Gaussian, obtained by projecting the joint distribution onto the

x1 line:

2

1 1 2

2

1 2 2

  

  

 
   

 

   1 1 1 1| ,p x N x  

Marginal & Conditional Gaussians: Example
• Consider a 2-D example. The covariance matrix is given by:

where ρ is a non-negative parameter.

• The marginal p(x1) is a 1-D Gaussian, obtained by projecting the joint distribution onto the

x1 line:

•Suppose we observe X2 = x2; the conditional p(x1|x2) is obtained by “slicing” the joint

distribution through the X2 = x2 line:

2

1 1 2

2

1 2 2

  

  

 
   

 

   
 

2

1 221 2
1 2 1 1 2 2 12 2

2 2

| | ,p x x N x x
  

  
 

 
    

 
 

   1 1 1 1| ,p x N x  

Research Application Example: MVNI (Multi-

variate Normal Imputation)
Shafer, et al., “Multiple imputation for multivariate missing-data problems: a data analyst’s

perspective”, 1998 (1400+ citations).

(*) Missing/corrupted data are an inevitable part of

data science – particularly in medicine/epidemiology.

Data Imputation is the process of (cogently) replacing

missing elements in a data set.

Shafer et al., devised the MVNI (multi-variate normal imputation) method which assumes all

variables in the model have a joint MVN distribution (after applying a data

transformation/pre-processing steps such as the log transform). Then by using the MVN

conditioning equations, imputation is performed.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.120.6337&rep=rep1&type=pdf

Research Application (Aside): Gibbs Sampling –

how do I sample from a MVN?
• MCMC (Markov Chain Monte Carlo) is a sampling method that allows one – in principle – to

approximate a complex integral (oftentimes the answer to an interesting ML/data science problem

naturally involves complex integration, e.g. calculating the mean/expected value of a model

distribution)

• Recall that a Markov Chain is a sequential model that transitions from one state to another in a

probabilistic fashion, where the next state that the chain takes is conditioned on the previous

state(s). Markov Chains are useful in that if they are constructed properly, and allowed to run for a

sufficiently long time, the states that a chain will take correspond with samples from a specified

target probability distribution.

• Thus we can construct Markov chains to sample from the distribution whose integral we would

like to approximate.

Manhattan Project

Research Application (Aside): Gibbs Sampling –

how do I sample from a MVN?

• The Gibbs Sampler is an MCMC method that generates samples from a target joint distribution

p(x1,x2,…,xD) by first initializing each variable in the model (e.g. randomly) and then repeatedly

sampling from “full conditionals” for each variable in the model, i.e. p(xi|x1,x2,…,xi-1,xi+1,…xD).

Example: Consider the task of sampling from a Bivariate Gaussian

with parameters

In order to sample from this distribution using the Gibbs sampler, we need the conditional

distribution formulas:

   | ,p N x x μ     12

1 2

21

1 1 0.8
, 0,0 ,

1 0.8 1


 



   
       

  
μ

      
      

1 1 2

1 2 1 21 2 2 21

1 1 2

2 1 2 11 1 1 12

| | , 1

| | , 1

t t

t t

p x x N x

p x x N x

   

   

 

 

   

   

x

x

Research Application (Aside): Gibbs Sampling –

how do I sample from a MVN?
Example: Consider the task of sampling from a Bivariate Gaussian

with parameters

The figure shows the results of applying Gibbs sampling; at each step the Gibbs sampler takes a

step only in the x1 direction, then only in the x2 direction.

   | ,p N x x μ     12

1 2

21

1 1 0.8
, 0,0 ,

1 0.8 1


 



   
       

  
μ

      
      

1 1 2

1 2 1 21 2 2 21

1 1 2

2 1 2 11 1 1 12

| | , 1

| | , 1

t t

t t

p x x N x

p x x N x

   

   

 

 

   

   

x

x

Conditional Gaussians: Derivation
• We’ve seen several examples of the utility of the Gaussian conditional equations. Now we

consider their derivation.

Recall the main result, which states: Suppose x=(x1, x2) is jointly Gaussian with parameters:

Then the “posterior conditionals” are given by:

(*) Before discussing the main step in the derivation, we first need an important result from

linear algebra known as the Matrix Inversion Lemma.

1 11 12

2 21 22

,
    

     
    

μ
μ

μ

   

 

1 2 1 1|2 1|2

1

1|2 1 12 22 2 2

1

1|2 11 12 22 21

| | ,p N





 

   

     

x x x μ

μ μ x μ

Matrix Inversion Lemma

• The Matrix Inversion Lemma states: For a general partitioned matrix

The inverse is given by:

Where the “Schur complements” are defined:

(*) While this result looks quite complicated, the proof utilizes a single trick of block

diagaonilizing the M matrix to make the inversion cleaner.

E F
M

G H

 
  
 

   

   

11 1 1 1

1

1 11

/ /

/ /

E E F M E GE E F M E
M

M E GE M E

   



 

  
 
  

1

1

/

/

M H E FH G

M E H GE F





 

 

Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations.

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication

rule of probability):

Let

1

1 1 11 12 1 1

2 2 21 22 2 2

1
exp

2

T

E

          
       

          

x μ x μ

x μ x μ

Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations.

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication

rule of probability):

Let

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1
exp

2

0 01 /
exp

2 0

T

T

E

I I

I I



 

  

          
       

          

             
                         

x μ x μ

x μ x μ

x μ x μ

x μ x μ

Follows from

matrix inversion

lemma

Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations.

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication

rule of probability):

Let

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1
exp

2

0 01 /
exp

2 0

T

T

E

I I

I I



 

  

          
       

          

             
                         

x μ x μ

x μ x μ

x μ x μ

x μ x μ

Follows from

matrix inversion

lemma

Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations.

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication

rule of probability):

(*) This is an expression of the form: exp(quadratic form in x1, x2) x exp(quadratic form in

x2).

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1 1

1
exp

2

0 01 /
exp

2 0

1
exp

2

T

T

E

I I

I I



 

  

          
       

          

             
                         

   

x μ x μ

x μ x μ

x μ x μ

x μ x μ

x μ            
11 1 1

12 22 2 2 22 1 1 12 22 2 2 2 2 22 2 2

1
/ exp

2

T T     
                

   
x μ x μ x μ x μ x μ

Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations.

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication

rule of probability):

(*) This is an expression of the form: exp(quadratic form in x1, x2) x exp(quadratic form in

x2).

Thus we have factored the joint as:

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1 1

1
exp

2

0 01 /
exp

2 0

1
exp

2

T

T

E

I I

I I



 

  

          
       

          

             
                         

   

x μ x μ

x μ x μ

x μ x μ

x μ x μ

x μ            
11 1 1

12 22 2 2 22 1 1 12 22 2 2 2 2 22 2 2

1
/ exp

2

T T     
                

   
x μ x μ x μ x μ x μ

     

   

1 2 1 2 2

1 1|2 1|2 2 2 22

, |

| , | ,

p p p

N N



  

x x x x x

x μ x μ

Conditional Gaussians: Derivation
• Using the matrix inversion lemma, we can now derive the conditional Gaussian equations.

We begin by factoring the joint p(x1,x2) as p(x2)p(x1|x2) (which holds by the multiplication

rule of probability):

(*) This is an expression of the form: exp(quadratic form in x1, x2) x exp(quadratic form in

x2).

Thus we have factored the joint as:

So what are the relevant equations for μ1|2 and Σ1|2, i.e., the Gaussian conditioning parameter

formulae?

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1 1

1
exp

2

0 01 /
exp

2 0

1
exp

2

T

T

E

I I

I I



 

  

          
       

          

             
                         

   

x μ x μ

x μ x μ

x μ x μ

x μ x μ

x μ            
11 1 1

12 22 2 2 22 1 1 12 22 2 2 2 2 22 2 2

1
/ exp

2

T T     
                

   
x μ x μ x μ x μ x μ

     

   

1 2 1 2 2

1 1|2 1|2 2 2 22

, |

| , | ,

p p p

N N



  

x x x x x

x μ x μ

Conditional Gaussians: Derivation

Thus we have factored the joint as:

So what are the relevant equations for μ1|2 and Σ1|2, i.e., the Gaussian conditioning parameter

formulae?

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1 1

1
exp

2

0 01 /
exp

2 0

1
exp

2

T

T

E

I I

I I



 

  

          
       

          

             
                         

   

x μ x μ

x μ x μ

x μ x μ

x μ x μ

x μ            
11 1 1

12 22 2 2 22 1 1 12 22 2 2 2 2 22 2 2

1
/ exp

2

T T     
                

   
x μ x μ x μ x μ x μ

     

   

1 2 1 2 2

1 1|2 1|2 2 2 22

, |

| , | ,

p p p

N N



  

x x x x x

x μ x μ

 1

1|2 1 12 22 2 2

1

1|2 11 12 22 21





   

     

μ μ x μ

Conditional Gaussians: Derivation

Thus we have factored the joint as:

So what are the relevant equations for μ1|2 and Σ1|2, i.e., the Gaussian conditioning parameter

formulae?

(*) This is precisely what we wanted to show in order to derive the Gaussian conditioning

equations! QED

 

1

1 1 11 12 1 1

2 2 21 22 2 2

1 1
1 1 1 122 12 22

1 1 1
2 2 22 21 22 21 2 222

1 1

1
exp

2

0 01 /
exp

2 0

1
exp

2

T

T

E

I I

I I



 

  

          
       

          

             
                         

   

x μ x μ

x μ x μ

x μ x μ

x μ x μ

x μ            
11 1 1

12 22 2 2 22 1 1 12 22 2 2 2 2 22 2 2

1
/ exp

2

T T     
                

   
x μ x μ x μ x μ x μ

     

   

1 2 1 2 2

1 1|2 1|2 2 2 22

, |

| , | ,

p p p

N N



  

x x x x x

x μ x μ

 1

1|2 1 12 22 2 2

1

1|2 11 12 22 21





   

     

μ μ x μ

Maximum Entropy Distributions

• We previously noted that there are (at least) three good reasons for the ubiquity

of Gaussian distributions in practice:

(1) CLT

(2) “Nice” computational properties, including: Gaussian MLE parameter

estimates have closed form solutions; conditioning equations are readily

computable, etc.

(3) The Gaussian distribution has maximum entropy relative to all probability

distributions with a fixed mean and standard deviation (i.e. up to second

moment statistics).

(*) To date, we expounded on conditions (1) and (2); now we delve into (3).

Maximum Entropy Distributions
• From our prior information theory lecture, we introduced the definition and intuitive

meaning of (Shannon) entropy:

The entropy of a random variable X with distribution p, denoted by H(X) or sometimes

H(p) is a measure of surprise/uncertainty. In particular, for a discrete random

variable with K states, it is defined:

Maximum Entropy Distributions
• From our prior information theory lecture, we introduced the definition and intuitive

meaning of (Shannon) entropy:

(*) The entropy of a random variable X with distribution p, denoted by H(X) or

sometimes H(p) is a measure of surprise/uncertainty. In particular, for a discrete

random variable with K states, it is defined:

• For a continuous random variable X with density function p(x), the entropy is defined

analogously (note that is it often referred to as differential entropy in this context):

     log
X

H X p x p x dx 

Maximum Entropy Distributions

• As a general, guiding scientific principle, Laplace offered the principle of insufficient

reason (PRI) which asserts that (later codified by the economist Keynes) :

“equivalent states of knowledge should be assigned equivalent epistemic

probabilities” – to paraphrase: where there is no reason to presume otherwise,

our prior beliefs should be encoded as uninformative (i.e. maximally entropic).

(*) Remember that we previously proved (using the information inequality) that the

uniform distribution is maximally entropic (this should be intuitive); next we

demonstrate that the Gaussian is also maximally entropic under some basic

conditions.

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy for all continuous

distributions with fixed mean (finite) and variance.

• There are several ways to prove this result – we note that the information inequality can

be used to directly demonstrate this property (as in vein of our earlier proof that the

uniform distribution is maximally entropic). In the interest of using a diverse array of

techniques, we’ll opt instead to use the method of Langrange multipliers.

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy for all continuous

distributions with fixed mean (finite) and variance.

• There are several ways to prove this result – we note that the information inequality can

be used to directly demonstrate this property (as in vein of our earlier proof that the

uniform distribution is maximally entropic). In the interest of using a diverse array of

techniques, we’ll opt instead to use the method of Langrange multipliers.

• We reiterate that the classical method of Lagrange multipliers (LM) is applicable for

optimization problems with equality constraints. The essence of the LM method is that

a sufficient condition for the solution to a constrained optimization problem is that, the

gradient of the Lagrangian equals zero, i.e.:

(*) f(x) is the objective function (i.e. the function we want to optimize) and the gi(x)

functions are constraint equations.

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean (finite) and variance.

(*) Let’s now organize the objective function and constraints for the maximum entropy

problem.

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean (finite) and variance.

(*) Let’s now organize the objective function and constraints for the maximum entropy

problem.

Objective function: (we express the objective wrt p, a

probability distribution).

     log
X

f p p x p x dx 

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean (finite) and variance.

(*) Let’s now organize the objective function and constraints for the maximum entropy

problem.

Objective function: (we express the objective wrt p, a

probability distribution).

Constraint equations: (1) (why?)

     log
X

f p p x p x dx 

   1 : 1
X

g p p x dx 

       , , 0, where , i i

i

L L f g      x x x x x

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean: μ (finite) and variance: σ2.

(*) Let’s now organize the objective function and constraints for the maximum entropy

problem.

Objective function: (we express the objective wrt p, a

probability distribution).

Constraint equations: (1)

(2) (why?)

     log
X

f p p x p x dx 

   1 : 1
X

g p p x dx 

       , , 0, where , i i

i

L L f g      x x x x x

   2 :
X

g p xp x dx 

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean: μ (finite) and variance: σ2.

(*) Let’s now organize the objective function and constraints for the maximum entropy

problem.

Objective function: (we express the objective wrt p, a

probability distribution).

Constraint equations: (1)

(2) (3) (why?)

     log
X

f p p x p x dx 

   1 : 1
X

g p p x dx 

       , , 0, where , i i

i

L L f g      x x x x x

   2 :
X

g p xp x dx     2 2

3 :
X

g p x p x dx 

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean: μ (finite) and variance: σ2.

• Now define the Lagrangian:

     log
X

f p p x p x dx     1 : 1
X

g p p x dx 

       , , 0, where , i i

i

L L f g      x x x x x

   2 :
X

g p xp x dx 
   2 2

3 :
X

g p x p x dx 

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy for all continuous

distributions with fixed mean: μ (finite) and variance: σ2.

• Now define the Lagrangian:

     log
X

f p p x p x dx     1 : 1
X

g p p x dx 

       , , 0, where , i i

i

L L f g      x x x x x

   2 :
X

g p xp x dx 
   2 2

3 :
X

g p x p x dx 

Maximum Entropy of the Gaussian Distribution

(*) Proof that the Gaussian distribution has maximum entropy (in 1-D) for all

continuous distributions with fixed mean: μ (finite) and variance: σ2.

• Now define the Lagrangian:

Set and solve…

This yields:

, as was to be shown.

     log
X

f p p x p x dx     1 : 1
X

g p p x dx 

       , , 0, where , i i

i

L L f g      x x x x x

   2 :
X

g p xp x dx 
   2 2

3 :
X

g p x p x dx 

   

2

2
2

0 1 21 2

2

1

2

x

x x
p x e e

   




  

 

              2 2

0 1 2, log 1
X X X X

L x p x p x dx p x dx xp x dx x p x dx               

 , , , 0x pL x  

Gaussian Processes: Introduction

• Previously we have seen many useful variants of regression models: linear regression,

regularized regression, linear basis function models (e.g. radial basis regression), and

logistic regression.

(*) In each case, these models were both parametric (i.e. the number of parameters was

fixed) and non-probabilistic (i.e. non-Bayesian) – at least in our earlier treatments.

• The task of regression is inherently an inductive problem: we wish to generate

(continuous) predictors for new inputs x* (over all possible input values), given a data set

D of n observations: D= 𝒙𝑖, 𝑦𝑖 |𝑖 = 1,… , 𝑛 .

• In order to devise such a function, we must make some basic assumptions about the

characteristics of the underlying function, as otherwise any function which is consistent

with the training data would be equally valid – and this would yield an ill-posed

problem.

Recommended text on Gaussian Processes:

Rasmussen et al., Gaussian Processes for Machine Learning,

MIT (2006).

Gaussian Processes: Introduction
• In determining the characteristics of the underlying function there are (2) common

approaches:

(1) Restrict the class of possible functions that we consider (e.g., linear functions,

quadratic functions, etc.)

(2) Use an optimization process to search over different models as well as the

parameters of the model. Give a prior probability (in some generic sense) to every

possible function, where higher probabilities are given to functions that we consider

to be more likely – such as smooth functions.

(*) The second approach admits of a Bayesian scheme and is generally more flexible, as

we subsequently demonstrate.

Gaussian Processes: Introduction
• To optimize over different models and parameters in conjunction with a prior, we need

to generalize the idea of a probability distribution to something over which we can

optimize.

• A stochastic process is a collection of random variables put together: instead of

having a set of parameters that specify a probability distribution (e.g. mean and

covariance), we have asset of functions that a distribution over that set of functions.

•Dealing with a general stochastic process is often difficult because combining the

random variables is generally hard.

•However, if we restrict the process in such a way that all of the random variables have a

Gaussian distribution, and the joint distribution over any (finite) subset of the variables

is also Gaussian, then this is a Gaussian Process (GP), and is much easier to deal with.

(*) Some consider GPR (Gaussian Process Regression) as regression model “for the 21st

century.”

https://arxiv.org/pdf/1309.7837.pdf

Gaussian Processes: A Pictorial Introduction to Bayesian Modelling

• Consider a simple 1-D regression problem, mapping from an input x to an output f(x).

• In the figure, on the left we show a number of sample functions drawn at random from the prior

distribution over functions specified by a particular Gaussian Process which favors smooth

functions.

• The prior is taken to represent our prior beliefs over the kinds of functions we expect to

observe, before seeing any data. In the absence of knowledge to the contrary, we have assumed

the average value over the sample functions at each x is zero. The shaded region denotes twice the

pointwise standard deviation.

• Given a data set D, the dashed lines in the right image show sample functions which are

consistent with D, and the solid line depicts the mean value of such functions. The combination

of the prior and the data leads to the posterior distribution over functions.

Gaussian Processes

• The way to think about modelling with GPs is that we put a probability distribution over

the space of functions (possibly an infinite dimensional space!) and sample from that.

• Ostensibly, if we wanted to specify f(x) for any input vector x, we could just list the value of

f for every possible value of x – but this would require an infinite number of point-wise

specifications.

• However, by the Gaussian assumption intrinsic to GPs (namely: any subset of the random

variables is jointly Gaussian) we only need to specify a mean and covariance matrix to fully

specify the GP (just like a Gaussian density is fully specified by its mean and covariance).

• The mean and covariance specification implies a distribution over functions. We can then

perform posterior inference (i.e. generate f(x*)) for any test input vector x*, given a training set D.

(*) In summary, GPs are just smoothers, meaning that they fit a smooth curve to a set of

data points (note that GPs can also be used in a similar way to perform classification tasks).

Gaussian Processes

• GPs are specified by mean and covariance functions (in practice the data are centered so

that we work with a zero mean GP for convenience). In this case, the GP is completely

described as a function G(k(x,x’)) that models some underlying function f(x), where the

covariance function k(x,x’) gives us the expected covariance matrix between the values

of f at x and x’.

(*) For a GP, the prior is encoded via the choice of covariance function.

Gaussian Processes

• GPs are specified by mean and covariance functions (in practice the data are centered so that we

work with a zero mean GP for convenience). In this case, the GP is completely described as a

function G(k(x,x’)) that models some underlying function f(x), where the covariance function

k(x,x’) gives us the expected covariance matrix between the values of f at x and x’.

(*) For a GP, the prior is encoded via the choice of covariance function.

• There are many legitimate choices for covariance functions to be used in conjunction with

GP. We’ll focus on the most common choice, the square exponential (SE) covariance

function (also called a radial basis kernel (RBF):

where the length scale (l) and signal variance (σ𝑓
2) are hyperparameters (we analyze their

effects on the GP subsequently). For a set of input vectors the covariance function enables

us to specify a matrix of covariances K where the element at place (i, j) in the matrix is Kij =

k(x(i),x(j)).

 
22

2

1
, exp

2
SE fk

l


 
    

 
x x x x

Gaussian Processes

• That’s a lot to take in. Let’s review the salient points:

A Gaussian Process is a collection of random variables, any finite number of which have a

joint Gaussian distribution.

A GP is completely specified by its mean function and covariance function. In full generality,

we define the mean function m(x) and the covariance function k(x, x’) of a stochastic process

f(x) as:

   

           ,

m E f

k E f m f m

   

      

x x

x x x x x x

Gaussian Processes

• That’s a lot to take in. Let’s review the salient points:

A Gaussian Process is a collection of random variables, any finite number of which have a

joint Gaussian distribution.

A GP is completely specified by its mean function and covariance function. In full generality,

we define the mean function m(x) and the covariance function k(x, x’) of a stochastic process

f(x) as:

For simplicity, we’ll set m(x)=0 (that is, we center the data) and use the square exponential

kernel, kSE. Finally, we write the Gaussian Process as:

This notation explicitly conveys the fact that GPs describe a distribution over functions.

   

           ,

m E f

k E f m f m

   

      

x x

x x x x x x

      ~ , ,f GP m k x x x x

Gaussian Processes: Prediction with Noise-free

Observations
• Consider noise-free data D= 𝒙𝑖, 𝑓𝑖 |𝑖 = 1,… , 𝑛 . The joint distribution of the training

outputs, f, and the test outputs f* is given by:

• If there are n training points and n* test points, then K(X,X*) denotes the n x n* matrix

of the covariances evaluated at all pairs of training and test points, and similarly for the

other entries: K(X, X), K(X*, X*) and K(X*, X).

• To get the posterior distribution over functions, we need to restrict this joint prior

distribution to contain only those functions which agree with the observed data points.

   

   
*

* * **

, ,
~ ,

, ,

K X X K X X
N

K X X K X X

   
     

    

f
0

f

Gaussian Processes: Prediction with Noise-free

Observations
• Graphically, you can think of generating functions from the prior, and rejecting the ones

that disagree with the observations.

Gaussian Processes: Prediction with Noise-free

Observations
• Graphically, you can think of generating functions from the prior, and rejecting the ones

that disagree with the observations.

In practice, the posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Gaussian Processes: Prediction with Noise-free

Observations

The noise-free posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

This yields the following distribution, from which samples of f* can be obtained:

Gaussian Processes: Prediction with Noise-free

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: Where does this formula come from?

            1 1

* * * * * * *| , , ~ , , , , , , ,X X N K X X K X X K X X K X X K X X K X X
 

f f f

μ 

Gaussian Processes: Prediction with Noise-free

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: Where does this formula come from?

A: The Gaussian conditioning formulas that

we previously derived (check this)!

            1 1

* * * * * * *| , , ~ , , , , , , ,X X N K X X K X X K X X K X X K X X K X X
 

f f f

Gaussian Processes: Prediction with Noise-free

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: What is the computational bottleneck in these expressions?

            1 1

* * * * * * *| , , ~ , , , , , , ,X X N K X X K X X K X X K X X K X X K X X
 

f f f

Gaussian Processes: Prediction with Noise-free

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Q: What is the computational bottleneck in these expressions?

A: Matrix inversion O(n3) – can be reduced with numerical approximation or Strassen

method; or using a small (yet useful) sample/training set.

            1 1

* * * * * * *| , , ~ , , , , , , ,X X N K X X K X X K X X K X X K X X K X X
 

f f f

Gaussian Processes: Prediction with Noise-free

Observations
The posterior predictive function distribution is formed by conditioning the joint:

on f (and X* and X).

Note that GPR (Gaussian Process

Regression) can be instantiated

in higher dimensions.

            1 1

* * * * * * *| , , ~ , , , , , , ,X X N K X X K X X K X X K X X K X X K X X
 

f f f

Gaussian Processes: Prediction with Noisy

Observations
• It is typical for more realistic modelling situations that we do no have access to function

values themselves, but only noisy versions thereof: y = f(x)+ε (e.g. imprecise/corrupted

measurements).

• Assuming additive independent, identically distributed (IID) Gaussian noise ε, with

variance σ𝑛
2 , the prior on the noisy observations becomes:

where is a Knoecker delta function, which is one iff p = q and zero otherwise (note the

“noise term” above is a diagonal matrix due to independence).

 2 2cov(,) (,) or cov() ,p q p q n pq ny y k K X X I     x x y

Gaussian Processes: Prediction with Noisy

Observations
• It is typical for more realistic modelling situations that we do no have access to function

values themselves, but only noisy versions thereof: y = f(x)+ε (e.g. imprecise/corrupted

measurements).

Assuming additive independent, identically distributed (IID) Gaussian noise ε, with

variance σ𝑛
2 , the prior on the noisy observations becomes:

where is a Knoecker delta function, which is one iff p = q and zero otherwise (note the

“noise term” above is a diagonal matrix due to independence).

• Introducing the noise term, we can we write the joint distribution of the observed target

values and the function values at the test locations under the prior as:

 2 2cov(,) (,) or cov() ,p q p q n pq ny y k K X X I     x x y

   

   

2

*

* * * *

, ,
~ ,

, ,

nK X X I K X X
N

K X X K X X

   
         

y
0

f

Gaussian Processes: Prediction with Noisy

Observations

• Once again, if we apply the conditioning formulas to the joint distribution, this yields the

noisy posterior predictive function distribution:

• Observe that our notation reflects the fact that y is generated from an underlying function

perturbed by noise: y = f(x)+ε; in practice σ𝑛
2 is estimated from data or using prior

knowledge.

   

   

2

*

* * * *

, ,
~ ,

, ,

nK X X I K X X
N

K X X K X X

   
         

y
0

f

            1 1
2 2

* * * * * * *| , , ~ , , , , , , ,n nX X N K X X K X X I K X X K X X K X X I K X X 
 

        f y y

Gaussian Processes: Prediction with Noisy

Observations

• Once again, if we apply the conditioning formulas to the joint distribution, this yields the

noisy posterior predictive function distribution:

   

   

2

*

* * * *

, ,
~ ,

, ,

nK X X I K X X
N

K X X K X X

   
         

y
0

f

            1 1
2 2

* * * * * * *| , , ~ , , , , , , ,n nX X N K X X K X X I K X X K X X K X X I K X X 
 

        f y y

Gaussian Processes: Varying the Hyperparameters
• The covariance hyperparameters can be varied (we discuss hyperparameter optimization

next).

Recall that the square exponential covariance function (with noise) has the following form:

with length scale (l), signal variance (σ𝑓
2) and noise variance (σ𝑛

2) hyperparameters.

Modifying the signal variance controls the overall variance of the function, while the length

scale changes the degree of smoothing, trading it off against how well the curve matches the

training data.

 
22 2

2

1
, exp

2
SE f n pqk

l
  

 
     

 
x x x x

Gaussian Processes: Varying the Hyperparameters
Modifying the signal variance controls the overall variance of the function, while the length

scale changes the degree of smoothing, trading it off against how well the curve matches the

training data.

Gaussian Processes: Learning the Hyperparameters
• The covariance hyperparameters can be tuned by minimizing the log likelihood:

The derivation of this formula relies once again on the conditional Gaussian equations. One can

use gradient descent (or a variant such as conjugate gradients) to approximate the minimum value and

thereby tune the hyperparameters.

   
1

2 21 1
log | log log 2

2 2 2

T

n n

n
X K I K I  



     y y y

Gaussian Process Regression Algorithm

GPR Algorithm

For a given training data set (X,y), test data X*, covariance function k() and hyperparameters:

𝛉 = σf
2, l, and σn

2 :

• compute the covariance matrix K=k(X, X) + σnI for hyper parameters 𝛉

• compute the covariance matrix k*=k(X, X*).

• compute the covariance matrix k**=k(X*, X*).

• the mean of the process is: k*TK-1y

• the covariance is: k**-k*TK-1k*

(*) In practice, the inversion of the K matrix can be unstable. However, since K is symmetric

and positive definite (why? Sum of positive definite matrices is PD – try showing this), it has a

Cholesky decomposition, whereby: K=LLT (L represents a lower-triangular matrix); this

allows us invert the desired matrix in a numerically stable way.

Research Application: GPs for Spatial Epidemiology

Vanhatalo, et al., “Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology”,

JMLR, 2007.

• Spatial epidemiology concerns both describing and understanding the spatial variation

in the disease risk in geographically referenced health data. The authors use sparse log

GPs for disease mapping, where the aim is to describe the overall disease distribution on

a map and, for example, highlight areas of elevated or lowered mortality or morbidity

risk.

• The expected number of deaths is evaluated using age, gender and scholarly degree

standardization and the logarithm of the relative risk is given a Gaussian process prior;

the authors use an MCMC method for hyperparameter approximation; the fully

independent training conditional (FITC) sparse approximations are used to reduce the

computational complexity of inverting the K matrix.

http://proceedings.mlr.press/v1/vanhatalo07a/vanhatalo07a.pdf

Research Application: GPs for Spatial Epidemiology
Vanhatalo, et al., “Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology”,

JMLR, 2007.

Research Application: GPs for Optimizing ML

Algorithm Performance

Snoek, et al., “Practical Bayesian Optimization of Machine Learning Algorithms”, NIPS, 2012.

• The authors attempt to automate parameter optimization for ML algorithms using GPs. of such

parameters as a procedure to be automated. In particular, they use a Bayesian optimization

framework; the posterior distribution reflects the results of running learning algorithm

experiments with different hyperparameters.

• In order to pick new hyperparameter values to test, the authors apply two standard Bayesian

optimization measures: EI (expected improvement) and UCB (upper confidence bound). The

authors present novel algorithms to parallelize the hyperparameter search with an MCMC

approach.

http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-

algorithms.pdf

• Accurate object localization is an enduring and critical challenge in computer vision.

• Precise and rapid localization of pedestrians in images remains an unsolved problem.

Rhodes, A. D., Jordan Witte, Melanie Mitchell, and Bruno Jedynak. “Bayesian optimization

for refining object proposals. ”, IPTA, 2017.

Rhodes, A. D., Jordan Witte, Melanie Mitchell, and Bruno Jedynak. “Gaussian Processes

with Context-Supported Priors for Active Object Localization,” IJCNN, 2018.

https://arxiv.org/ftp/arxiv/papers/1703/1703.08653.pdf

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

Background and Related Work

.

• Situate is a computer vision framework for active object localization in visual situations.

• Our system learns the expected structure of a “visual situation” from training images by
inferring a set of joint probability distributions—a context-situation model—linking aspects of
the relevant objects.

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

• (I) We train a convolutional neural network (CNN) to score bounding-box

proposals to approximate an offset distance from the target object.

• (II) From training data, we develop context-situation model, given various

location and size parameters for a particular visual situation.

• (III) We apply a Gaussian Process (GP) to approximate this offset response

signal over the (large) search space of the target.

• (IV) A Bayesian active search is then used to achieve fine-grained localization of

the target.

General Algorithm Pipeline

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

• We define a context-situation model as a joint distribution of location and size

parameters for a target object bounding-box, given various location and size parameters

for a particular visual situation: 𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡, 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 𝑥𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝑠𝑐𝑜𝑛𝑡𝑒𝑥𝑡 1:𝐶 .

• We use the context-situation model to generate target object proposals used in an

active search.

Context-Situation Models

Sample from

Context-Situation Model

Target

Context for

target

Context-Situation Model:

Learned joint probability distribution

over location and size of objects

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

• Because it is computationally expensive to generate offset prediction values for a

large number of bounding-box proposals (due to the CNN), we use GPR to

approximate the offset prediction values over the target search space (i.e. a large grid of

values).

• Next, we actively search this space according to a Bayesian optimization scheme (IV) to

find new proposals that are likely to capture the target object.

Gaussian Process Regression

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

Active Learning Queries

• Ideally, in addition to exploring regions of high uncertainty, we should also exploit, to
some degree, “regions of promise”, respecting our target object.

• Acquisition functions are used to guide the search for the optimum of the GPR
approximation to the true objective function (whose maximum occurs, ideally, for a
proposal that perfectly crops the pedestrian).

• High acquisition indicates greater likelihood of an objective function maximum.

• Commonly used acquisition functions (we omit the details for brevity) in this
setting include: probable improvement (PI) and expected improvement (EI).

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

Bayesian Optimization

• In the figure we display a Gaussian process showing the region of probable improvement.
The maximum observation is at x+.

• The darkly-shaded area in the superimposed Gaussian above the dashed line can be
used as a measure of improvement. The model predicts almost no possibility of
improvement by observing at x1 or x2, while sampling at x3 is more likely to improve
on f(x+).

•

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

Bayesian Optimization

• Below are example iterations of both PI and EI-based active queries with GPR.

• In the current work, we use a variant of EI that is fine-tuned to our problem
parameters.

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

GP-CL Algorithm

Algorithm: Gaussian Process Context Localization

(GP-CL)

Input: Image I, a set of C context objects, trained model y

giving response signals, learned context-situation model

𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 · , n0 initial bounding-box proposals for

target object generated by the context-situation model, and

corresponding response signal values: 𝐷𝑛0
=

 𝑥𝑖 ,𝑠𝑖 , 𝑦 𝑥𝑖 ,𝑠𝑖 𝑖=1

𝑛0
, GP hyperparameters θ, size of GP

realization space M, dynamic design parameter for

Bayesian active search 𝜉, size of GP memory GPmem (as

number of generations used), batch size n, number of

iterations T, current set of bounding-box proposals and

response signals 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 𝑡 .

1:Compute n0 initial bounding box proposals:

 𝑥𝑖 ,𝑠𝑖 𝑖=1

𝑛0
~𝑝 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑠𝑡𝑎𝑟𝑔𝑒𝑡 ·

2: 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 0 ⟵ 𝐷𝑛0

3:for t = 1 to T do

4: Compute 𝜇 𝑥 𝑡 and σ 𝑥 𝑡 for the GP realization

 𝑓𝑀
 𝑡

 of 𝐷𝑝𝑟𝑜𝑝𝑜𝑠𝑎𝑙
 𝑡−1

 over grid of M points (Equation 4)

5: for i = 1 to n do

6: 𝑧𝑖 = argmax
𝑥

𝑎𝐶𝐸𝐼 𝑓𝑀
 𝑡 \ 𝑧𝑗 𝑗=1

𝑗=𝑖−1
, 𝜉 (Equation 5)

7: 𝑠𝑎𝑚𝑝𝑙𝑒: 𝑠𝑖~𝑝 ∙ 𝑠
8: 𝑝𝑖 = 𝑧𝑖 , 𝑠𝑖
9: end for

10: 𝐷 𝑡 ⟵ 𝑥𝑖 ,𝑠𝑖 , 𝑦 𝑥𝑖 ,𝑠𝑖 𝑖=1

𝑛

11: 𝐷𝑝𝑟𝑜𝑝𝑜𝑠 𝑎𝑙
 𝑡 ⟵ 𝐷 𝑗 𝑡

𝑗=𝑡−𝐺𝑃𝑚𝑒𝑚

12: end for

13: Return argmax
𝑥

𝜇 𝑥 𝑇

Step 1: Sample initial target proposals from context-

situation model

Step 2: Score these proposals using the offset-prediction

model (CNN)

Step 3: Compute GPR values over search space

Step 4: Using Bayesian optimization procedure, return

proposals in search space with maximum acquisition

Step 5: Return to Step 3 (loop)

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

GP-CL Example Runs

• Examples of runs on two test images with the GP-CL algorithm. In each row the test
image is shown on the far-left; the “search IOU history” is displayed in the second
column, with the algorithm iteration number on the horizontal axis and IOU with the
ground-truth target bounding box on the vertical axis.

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

Experimental Results

• Graph of BB-R (0.6), BB-R (0.1) and GP-CL localization results for test images. The
horizontal axis indicates the median IOU for the initial proposal bounding boxes, while
the vertical axis designates the final IOU with the target object ground truth. The line
depicted indicates “break-even” results.

Method IOU

Difference

Median

(SE)

Median

Relative IOU

Improvement

% of Test

Set with IOU

Improvement

% of Test

Set

Localized

BB-R

(0.6)

.0614

(.0035)

34.62% 90.1% 12.3%

BB-R

(0.1)

.1866

(.0077)

92.91% 90.0% 33.2%

GP-CL .4742

(.012)
194.02% 89.3% 75.2%

Research Application: GPs Efficient Object (e.g.

Pedestrian) Detection with Context Models

Fin

