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Overview 
• Tree-based methods are frequently used in ML for both regression and classification 

tasks. 

• Recall that for a parametric model, we define the model over the entire input space and 

learn a finite, fixed number of  parameters using the training data. Then we use the 

same model and parameter set for any test input.  

• Conversely, for non-parametric models, we divide the input space into local regions, 

defined by a distance measure (e.g. Euclidean distance), and for each input, the 

corresponding local model computed from the training data in that region is used. 

In this way, we say the model complexity of  a non-parametric model scales with the 

size of  the data. 

• A decision tree is a hierarchical, non-parametric model for supervised learning. 



Overview 

• “Learning a tree” entails segmenting/stratifying the predictor space into a number of  

simple regions. 

• In order to make a prediction for a given observation, we typically use the mean or 

mode of  the training observations in the region of  the predictor space to which it 

belongs. 

• A learning algorithm for a tree equates to defining the splitting rules used to 

segment the predictor space – these models are accordingly referred to as decision 

trees. 



Overview 

• Tree-based models have the advantage that they are simple to implement and 

interpretable; however, they are typically not competitive with the best supervised 

learning approaches. 

• In light of  this, trees are often used in conjunction with bagging and boosting. In 

each case, multiple trees (i.e. weak learners) are combined as an ensemble to generate a 

single prediction.

• Combining a large number of  trees can often result in dramatic improvement in 

prediction accuracy – although such improvements come at the cost of  

interpretability. 



Regression Trees 
• Let’s motivate regression trees with a simple example.* Suppose that we want to 

predict a baseball player’s (log-scale) salary based on the following predictor 

variables: years (number of  years in MLB) and hits (number of  hits in previous 

year). 

Here’s a how a regression tree might fit the data: 

*Example from James, et al., Intro to Statistical Learning, Springer (2014). 

Regression tree for fitting log salary (as a function of  

Years and Hits). At a given interval node, the label (of  

the form Xj < tk) indicates the left-hand branch 

emanating from that slight, and the right-hand branch 

corresponds to Xj > tk. For instance, the split at the 

top of  the tree results in two large branches. The lefft-

hand branch corresponds to Years < 4.5 and right-hand 

branch corresponds to Years ≥4.5. The tree has two 

internal nodes and three terminal nodes (leaves). The 

number in each leaf  is the mean of  the response for 

the observations that fall there. 



Regression Trees 
• Overall, the tree stratifies or segments players into three discrete regions of  the predictor 

space: (1) players how have played less than 4.5 years, (2) players who have played at 

least 4.5 years & had less than 117 hits, and (3) players who have played at least 4.5 

years & had more than 117 hits.

•The leaves of  the tree correspond with the regions R1, R2, and R3 in the predictor space. 



Regression Trees 
• Overall, the tree stratifies or segments players into three discrete regions of  the predictor 

space: (1) players how have played less than 4.5 years, (2) players who have played at 

least 4.5 years & had less than 117 hits, and (3) players who have played at least 4.5 

years & had more than 117 hits.

•The leaves of  the tree correspond with the regions R1, R2, and R3 in the predictor space. 

It is frequently possible to interpret a tree structure

hierarchically, in which case one might consider 

Years as the most important factor in determining 

salary (as this is feature is the basis for the first 

“decision” in the tree). Furthermore, based on the 

tree, we can infer that players with less experience 

earn a lower salary than more experienced players 

(this is intuitively clear). Given that a player is less 

experienced, the number of  hits that he made in the 

previous year seems to play little role in his salary; 

however, hits are positively associated with salary 

(as should also be intuitively clear). The graphical 

representation of  a decision tree lends this type of  

a model a natural interpretative framework that is 

often absent in other models (e.g. regression, NNs). 



Regression Trees

• There are (2) basic steps required for building a regression tree:

(1) We divide the predictor space (i.e. the set of  all possible values for the regression 

variables X1, X2, …, Xp) into J distinct and non-overlapping regions, R1, R2,…,RJ. 

(2) For every observation that falls into region Rj, we make the same prediction, which 

is simply the mean of  the response values (y) for the training observations in Rj. 



Regression Trees

(1) We divide the predictor space (i.e. the set of  all possible values for the regression 

variables X1, X2, …, Xp) into J distinct and non-overlapping regions, R1, R2,…,RJ. 

• As usual, we frame our task as an optimization problem. For simplicity and ease of  

interpretation, we’ll use high-dimensional rectangles to describe our regions (certainly 

other shapes can be used, e.g. spheres, polytopes). 

• The goal in step (1) is to find boxes R1,…,RJ that minimize the RSS (residual sum square 

error):

where ො𝑦𝑅𝑗 denotes the mean response for the training observations within the jth box. 
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Regression Trees

• The goal in step (1) is to find boxes R1,…,RJ that minimize the RSS (residual sum square 

error):

(*) Unfortunately, it is computationally infeasible (NP-hard)to consider every possible 

partition of  the feature space. For this reason, one can adopt a top-down, greedy

approach known as recursive binary splitting. 

• Top-down here refers to the fact that we begin at the top of  the decision tree and 

perform successive splits; greedy connotes the fact that we make the (myopically) 

best split at that particular step (instead of  looking ahead and picking a split based 

on future steps). 
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Regression Trees
• The goal in step (1) is to find boxes R1,…,RJ that minimize the RSS (residual sum square error):

• In order to perform recursive binary splitting, we first select the predictor Xj and the cut-point s such 

that splitting the predictor space into the regions {X|Xj < s} and {X|Xj ≥ s} leads to the greatest 

possible reduction in RSS. 

Thus we consider all predictors X1,…, Xp, and all possible values of  the cut-point s for each of  the 

predictors, and then choose the predictor and cut-point such that the resulting tree has the smallest 

RSS. 
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Regression Trees
• The goal in step (1) is to find boxes R1,…,RJ that minimize the RSS (residual sum square error):

• In order to perform recursive binary splitting, we first select the predictor Xj and the cut-point s such 

that splitting the predictor space into the regions {X|Xj < s} and {X|Xj ≥ s} leads to the greatest 

possible reduction in RSS. 

Thus we consider all predictors X1,…, Xp, and all possible values of  the cut-point s for each of  the 

predictors, and then choose the predictor and cut-point such that the resulting tree has the smallest 

RSS. 

In summary: for any j (predictor index) and s (cut-point), we define the pair of  half-planes:

And we seek the value of  j and s that minimize the equation: 

where ො𝑦𝑅1 is the mean response for the training observations in R1(j,s), and ො𝑦𝑅2 is the mean response 

for the training observations in R2(j,s); finding these values can be done relatively quickly (unless 

then number of  predictors is very large). 

(*) Note: the notation {X|Xj < s} indicates the region of  the predictor space for which Xj takes on 

values less than s. 
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Regression Trees
In summary: for any j (predictor index) and s (cut-point), we define the pair of  half-planes:

And we seek the value of  j and s that minimize the equation: 

where ො𝑦𝑅1 is the mean response for the training observations in R1(j,s), and ො𝑦𝑅2 is the mean 

response for the training observations in R2(j,s); finding these values can be done 

relatively quickly (unless then number of  predictors is very large). 

(*) Next, we repeat this process, looking for the best predictor and best cut-point in order to 

split the data further so as to minimize the RSS within each of  the resulting regions. 

However, this time, instead of  splitting the entire predictor space, we instead split one of  

the two previously identified regions (this generates three regions, then four, and so on). 

• The process continues until we reach a stopping condition (e.g. stop when each leaf  has 

fewer than some fixed number of  instances); prediction corresponds with the mean of  

the training instances in the region to which the test datum belongs. 
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Regression Trees

Top Left: A partition of  a two-dimensional feature space that could *not* 

result from a recursive binary splitting (why?). Top Right: The output of  

recursive binary splitting on two-dimensional example. Bottom Left: A 

tree corresponding to the partition in the top right panel. Bottom Right: A 

perspective plot of  the prediction surface corresponding to that tree. 



Regression Trees: Pruning
• Recursive binary splitting (as well as other related tree learning algorithms) are prone 

to overfitting, leading to a poor test set performance. 

To reduce the complexity of  a decision tree by regularization (cf., ridge regression, lasso).

Regularization can be achieved through a variety of  means: 

(*) One possible approach is to build a tree only so long as the decrease in the RSS due 

to each split exceeds some (high) threshold – this strategy will result in a smaller tree 

(and potentially reduce model variance at the cost of  a little bias) – however this 

strategy is very short-sighted, since a “weak” split (i.e. achieving a low RSS 

reduction) could be followed by a more significant split.

(*) A second, and generally superior method, is to apply pruning. First we grow a very 

large tree T0 (say, using recursive binary splitting), and then prune it back in order to 

obtain a subtree. 



Regression Trees: Pruning
(*) Apply pruning: First we grow a very large tree T0 (say, using recursive binary 

splitting), and then prune it back in order to obtain a subtree. 

Q: How to prune T0? Note that using cross-validation (CV) isn’t feasible in this case, as 

we would need to apply CV for a large number of  possible subtrees. 



Regression Trees: Pruning
(*) Apply pruning: First we grow a very large tree T0 (say, using recursive binary 

splitting), and then prune it back in order to obtain a subtree. 

Q: How to prune T0? Note that using cross-validation (CV) isn’t feasible in this case, as 

we would need to apply CV for a large number of  possible subtrees. 

• Cost complexity pruning is more practical: rather than consider all possible subtrees, 

we consider a sequence of  trees indexed by a tuning parameter α. For each value of  

α there corresponds a subtree T   T0 such that: 

Is as small as possible. Here |T| denotes the number of  leaves in the tree T, Rm is the 

rectangle (in the predictor space) corresponding to the mth leaf, and ො𝑦𝑅𝑚 is the 

predicted response associated with rectangle Rm. 

•As is common with regularization techniques, the tuning parameter α controls the 

trade-off  between model fit and complexity. 
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Regression Trees: Pruning
• Cost complexity pruning:

• In practice, as α is increase from zero, branches of  the decision tree are pruned in a nested 

and predictable way, so obtaining the whole sequence of  subtrees as a function of  α is 

easy. 

• The value of  α can be selected using a validation set or with CV. We then return to the full 

data set and obtain the subtree corresponding to α; this regression tree algorithm with 

cost complexity pruning is summarized:  
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Regression Trees: Pruning

• Left: “Unpruned” regression tree (T0) for salary response variable with predictors: years, 

hits, RBI, putouts, runs, and walks. Top Right: Regression tree analysis showing training, 

CV and test MSE as a function of  number of  leaves in pruned tree. The minimum CV 

error occurs at a tree size of  three. Bottom Right: pruned tree. 



Classification Trees
• Classification trees are used to predict categorical responses (rather than a quantitative 

response). 

• Recall that for regression trees, the predicted response for an observation is the 

mean/mode response of  the training observations that belong to the same terminal 

node. In contrast, for a classification tree, we predict that each observation belongs to 

the most commonly occurring class of  training observations in the region to which it 

belong. 

• In interpreting the results of  a classification tree, we are often interested not only in the 

class prediction, but also the class proportions among the training observations that fall into 

that region. 



Classification Trees
• Growing a classification tree is similar to growing a regression tree. One possibility is to 

minimize the analogue of  RSS (or penalized RSS), by using the classification error rate. 

• If  we define model prediction based on the most commonly occurring class of  training 

observations in a given region, the classification error rate is simply the fraction of  the 

training observations that do not belong to the most common class: 

where Ƹ𝑝𝑚𝑘 represents the proportion of  training observations in the mth region that are from 

the kth class. 

• Despite the intuitive appeal of  using classification error rate to grow a classification tree, in 

practice, classification error tends not to be sufficiently sensitive for tree-growing. 

Practitioners instead tend to favor (2) alternative measures for learning classification 

trees. 
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Classification Trees: Gini Index & Cross-Entropy
(1) The Gini index is defined by: 

where, again, Ƹ𝑝𝑚𝑘 represents the proportion of  training observations in the mth region that 

are from the kth class. 

The Gini index measures the total variance across the K classes; it takes on a small value if  

all of  the Ƹ𝑝𝑚𝑘 ‘s are close to zero or one. For this reason, the Gini index is known as an 

purity measure, as a small value indicates that a node contains predominantly 

observations from a single class. 
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Classification Trees: Gini Index & Cross-Entropy
(1) The Gini index is defined by: 

where, again, Ƹ𝑝𝑚𝑘 represents the proportion of  training observations in the mth region that 

are from the kth class. 

The Gini index measures the total variance across the K classes; it takes on a small value if  

all of  the Ƹ𝑝𝑚𝑘 ‘s are close to zero or one. For this reason, the Gini index is known as an 

purity measure, as a small value indicates that a node contains predominantly 

observations from a single class. 

Example. Consider a two-class problem with 400 cases in each class. Suppose one split 

created the nodes (300,100) and (100,300), while the other created the nodes (200,400) 

and (200,0). Both splits produce a misclassification rate of  0.25. 

The Gini index for case 1: (300/400)(1-300/400)+(300/400)(1-300/400)=0.375

The Gini index for case 2: (400/600)(1-400/600)+(200/200)(1-200/200)=0.222

(*) The smaller Gini index value for case 2 indicates that this split would be favored 

(intuitively the split is preferable since of  the nodes is pure, i.e. it only contains one 

class).
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Classification Trees: Gini Index & Cross-Entropy
(2) An alternative to the Gini index is cross-entropy defined by: 

Since 0≤ Ƹ𝑝𝑚𝑘 ≤1, it follows that 0 ≤ − Ƹ𝑝𝑚𝑘 log Ƹ𝑝𝑚𝑘. It is not hard to show that the cross-

entropy will take on a value near zero if  the Ƹ𝑝𝑚𝑘‘s are all close to zero or one. Thus, like 

Gini index, the cross-entropy will take on a small value if  the mth node is pure. 

Minimizing cross-entropy is equivalent to maximizing information gain (between the 

input variables and class label). 

In fact, it turns out that the Gini index and cross-entropy are quite similar numerically. 
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Node impurity measures for binary classification. The 

horizontal axis corresponds to p, the probability of  

class 1; the vertical axis corresponds with the 

error/gini index/entropy measures. 



Classification Trees: Gini Index & Cross-Entropy

• When building a classification tree, either the Gini index or the cross-entropy are typically 

used to evaluate the quality of  a particular split, since these two approaches are sensitive to 

node purity. 

(*) Note that any of  the (3) aforementioned approaches: classification error rate, Gini index 

or cross-entropy can be used for pruning the three (often classification error rate is 

preferable if  predication accuracy is paramount). 



Classification Trees: Gini Index & Cross-Entropy

•

Top: Data containing binary outcome for 303 

patients who present with chest pain; outcome 

Yes indicates hear disease presence; there are 13 

predictors (Age, Sex, Chol (cholesterol 

measurement), etc. Unpruned tree shown. 

Middle: CV error, training, test error as function 

of  tree size. Right: Pruned tree corresponding 

with minimal CV error. 



Classification Trees
• So far, we have only considered predictor variables on continuous values. However, 

decision trees can be constructed even in the presence of  categorical predictor variables (see 

heart disease data shown – Sex is, for instance, a categorical variable). 

• In this case, a split on a categorical variables amounts to assigning some of  the category 

values to one branch and assigning the remaining to the other branch, e.g., Thal (Thalium

stress test), is split according to normal (left branch) and fixed or reversible defects (right 

branch). 



Classification Trees
• Notice that some of  the splits in the tree shown yield two leaves with the same predicted 

value (e.g. Chol < 244 => No, No). 

Why was the split performed?  It yields a larger node purity.



Classification Trees
• Thus far all attributes, categorical or quantitative, and all split positions, one can calculate 

the impurity (e.g. entropy, Gini index, etc.) and choose the one that corresponds with the 

minimum entropy, etc. Then tree construction continues recursively and in parallel for all the 

branches that are not pure until they are pure. 

• This procedure is the basis for the well-known classification and regression tree algorithm (CART, 

1993). 



Trees: Comparison with Linear Regression Models 

• Regression and classification trees different significantly from classical linear 

regression models – in particular, as we have mentioned, classical regression models 

are parametric, whereas decision trees are nonparametric (their complexity is 

proportional to the dataset size). 

• Moreover, consider a generic linear regression model: 

• Whereas a regression tree assumes a model of  the form:

where R1,…,Rm represent the partition of  the feature space, and 1 is the indicator 

function. 
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Trees: Comparison with Linear Regression Models 

Q: Which is the better model?  
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Trees: Comparison with Linear Regression Models 

Q: Which is the better model?

Of  course it depends! (recall the no free lunch Theorem)

(*) If  the relationship between the features and response variable is well-approximated by a linear 

model, then linear regression is a strong candidate. 

Q: How can we determine the goodness of  fit of  a linear regression model?
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Trees: Comparison with Linear Regression Models 

Q: Which is the better model?

Of  course it depends! (recall the no free lunch Theorem)

(*) If  the relationship between the features and response variable is well-approximated by a linear 

model, then linear regression is a strong candidate. 

Q: How can we determine the goodness of  fit of  a linear regression model?

A: Many different ways – compare MSE (typically not the best way), adjusted R2, BIC (Bayesian 

information criterion), perform hypothesis tests (e.g. F-test), check residual scatter plot.   
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Trees: Comparison with Linear Regression Models 

Q: Which is the better model?

Of  course it depends! (recall the no free lunch Theorem)

• If  the relationship between the features and response variable is well-approximated by 

a linear model, then linear regression is a strong candidate. 

• Otherwise, if  there is instead a highly non-linear and complex relationship between 

the features and response, then the decision tree may outperform classical approaches. 

• Of  course, a regression tree may also be preferred due to its interpretability and 

potential for knowledge extraction (we explore this notion next). 
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Trees: Comparison with Linear Regression Models 

Top Row: A 2D classification example for which the true decision boundary is linear – the 

classical regression model outperforms the decision tree. Bottom Row: The true decision 

boundary is non-linear here; the decision trees outperforms classical regression. 



Rule Extraction from Trees

• A decision tree performs its own hierarchical feature extraction (indeed, this is one of  their 

potential appeals) – in the sense that features closer to the root are considered to be of  more 

global importance. 

• It is possible to use a decision tree explicitly for feature extraction: we build a tree and then 

only retain those features used be the tree. 

(*) As noted, a major advantage of  decision trees is their interpretability. The decision 

nodes convey conditions that are simple to understand. As such, each path that traverses the 

tree can be interpreted as a conjunction of  tests or rules, which all need to be satisfied to 

reach a particular leaf.

(*) Tree-path traversal searches are common in agent-based modeling application in A.I. 

more generally; these paths can be expressed as IF-THEN rules. 



Rule Extraction from Trees
(*) Tree-path traversal searches are common in agent-based modeling application in A.I. 

more generally; these paths can be expressed as IF-THEN rules. 

For example: Here is an invented decision tree, where each path from root to leaf  can be 

written down as a conjunctive rule, comprising conditions defined by the decision nodes along 

the path. 

Here are the corresponding rules: 



Rule Extraction from Trees
(*) A rule base likes this facilitates knowledge extraction and can be directly used for inference 

(without need for the tree data structure itself). 

• Having a rule set additionally enables domain experts to verify the validity of  the model; the 

rules represent a structural compression of  the data according to the most important features and 

split positions. 

• For instance, one can see that with respect to the response (y), people who are thity-eight years 

old or less are different from people who are thirty-nine years old or more; moreover, among the 

latter group, it is the job type that makes them different, whereas with the former group it is the 

number of  years in the job that is the most discriminating characteristic. 

• For classification trees it is possible that one or more leaf  has the same label, in which case 

multiple conjunctive expressions can be combined as a disjunction (OR). 



Advantages and Disadvantages of  Trees

• Trees are much more interpretable than traditional regression models. 

• Trees can handle categorical variables easily); commonly, regression models require 

the inclusion of  numerous “dummy variables” to accommodate categorical variables. 

• Trees admit of  rule extraction/knowledge extraction techniques; they naturally 

perform feature extraction on the data. 

• Some argue that trees more closely resemble logical/rule-based human decision-

making than traditional regression models. 

• Unfortunately, trees generally do not have the same level of  predictive accuracy as 

other regression and classification approaches – nevertheless this shortcoming can 

often be alleviated through bagging, random forests and boosting (although this 

comes at the cost of  interpretability). 



Decision Trees: Bagging 

• Decision trees tend to suffer from high variance. This means that in general, 

prediction values vary widely. In contrast, a low variance model will yield similar 

results if  applied repeatedly to distinct data sets. 

• Linear regression models tend to have usually have low variance if  the ration of  data 

points (n) to number of  predictor variables/complexity (p) is moderately large – i.e. 

in the case of  an overdetermined system. 

• Recall that bootstrapping in statistics consists of  performing random samples with 

replacement. 

• Bagging (i.e. bootstrap aggregation) is a general-purpose procedure for reducing the 

variance of  a statistical learning method; it is often used to improve the performance 

of  decision trees. 



Decision Trees: Bagging 

• Recall that the Central Limit Theorem (CLT) tells us that when we aggregate 

independent data (for a sufficiently large sample) the variance reduces in 

proportion to the sample size (σ2/n). This is in fact a very useful “rule” in ML: 

averaging a set of  observations reduces variance. 

• This should remind us of  the benefits ensemble learning, in which we build a set of  

prediction models: f1(x), f2(x),…,fB(x), and average them in order to obtain a single, 

low-variance model given by: 
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Decision Trees: Bagging 
• With ensemble learning in general, it is often the case that we partition the training data 

into smaller subsets and learn a model for each subset. This is however not always 

possible when we don’t have access to multiple training data set. 

• Alternatively, we can bootstrap by taking repeated samples from the training data set. In 

this way we generate B different bootstrapped training data sets, and then train our 

method on the bth bootstrapped set to get f*b(x). Finally, we average the predictions as 

before: 

(*) This method is called bagging. To apply bagging to regression trees, we construct B 

separate regression trees using B bootstrapped training sets, and average the resulting 

predictions. Note that the trees are not pruned – so each has high variance and low bias, 

but, again the averaging mechanism has the effect of  reducing the overall model variance. 

(*) Bagging has been shown to be very effective by combining hundreds/thousands of  

trees in total.
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Decision Trees: Bagging 

Q: How do we perform bagging with classification (i.e. when the output is categorical)?

(*) One straightforward approach is to simply apply bootstrapping as before and to use the 

“majority vote” rule when generating the overall prediction. 

• The figure on the next slide displays results from bagging trees on the previously 

mentioned data related to heart disease; the test error rate is shown as a function of  the 

number of  trees constructed using bootstrapped training data sets. 

• As evidenced by these results, the number of  trees B is, in fact, not a critical parameter 

with bagging, in the sense that a large B does not necessarily yield overfitting. In practice, B 

can be tuned through cross-validation using out-of-bag error estimation (explained next).



Decision Trees: Bagging 
• Test error can be estimated for a bagged model without using cross-validation. Because we used bagging, 

each bagged tree only uses approximately 2/3 of  the total data for training. We can therefore estimate the test 

error using OOB (out-of-bag) observations for each element xi in the training data set (we just average/take 

majority vote) for the trees that were not trained on datum xi. 

• The resulting OOB error is therefore a valid estimate of  the test error for the bagged model, since the 

response for each observation is predicted using only the trees that were not fir using that observation. Note 

that OOB is particularly useful in lieu of  cross-validation for large data sets. 



Decision Trees: Bagging 

• As mentioned, bagging can improve the accuracy of  a decision tree – but it often comes at the 

cost of  interpretability.

• Although the collection of  bagged trees is much more difficult to interpret than a single tree, 

one can obtain an overall summary of  the importance of  each predictors using the RSS (for 

regression tress) or Gini index (for classification trees). 

• With regression trees, we can record the total amount that the RSS is decreased due to splits 

over a given predictor, averaged over all B trees. The larger the value, the more important the 

predictor. 

• Similarly, for classification trees, we can add up the total amount that the Gini index is decreased

by splits over a given predictor, averaged over all B trees. 

(*) In this way it is possible to assess variable importance for bagged trees. 



Decision Trees: Bagging 

• The graph shows ranked variables (by importance) according to the Gini index for the heart 

disease data set. 



Decision Trees: Random Forests 

• Random forests can improve bagging by enforcing a restriction that decorrelates bagged trees. 

• Random forests use a modified tree learning algorithm that selects, at each candidate split in the 

learning process, a random subset of  the features (this is sometimes called “feature bagging”). 

• The basic rationale for using a random subset is as follows: if  a subset of  the features in a data 

set are strongly associated with the predictor variable, then these features will be chosen in many 

of  the bagged trees, causing the trees to be correlated. In the end, averaging many highly correlated 

models does not necessarily lead to a substantial reduction in variance. 

• Random forests overcome this correlation problem by forcing each split to consider only a 

subset of  the predictors – this allows other predictors to “have a chance.” 

(*) Specifically, a random forest usually uses a relatively small predictor subset size ( 𝑝), where p

is the number of  predictors. On the heart disease data set (shown) random forests using 𝑝
predictors leads to a reduction in both test error and OOB error over bagging. 



Decision Trees: Random Forests 

• With large numbers of  correlated predictors, the results can be even more dramatic. Consider a 

data set of  high-dimensional gene expression measurements of  4,718 genes from 349 patients. 

Using random forests based on 500 genes with the largest variance in the training set and subsets 

of  size 𝑝 improved the overall classification accuracy. As with bagging, random forests tend to 

not overfit as B is increased. 



Decision Trees: Boosting

• Like bagging, boosting a general approach applicable to many different ML models

for regression and classification.

• With bagging, we create multiple copies of  the training data via bootstrapping, fitting 

separate decision trees to each copy, and then combine these trees through an 

ensemble. 

• Boosting is similar, except that the trees are grown sequentially, meaning that each 

tree is grown using information from the previously grown trees. Boosting does not 

involve bootstrap sampling; on the contrary, each tree is fit on a modified version of  

the original data set. 



Decision Trees: Boosting

• Unlike fitting a single, large decision tree which can potentially overfit the data, 

boosting learns slowly. 

• Given the current model, we fit a decision tree to the residuals from the model, viz., 

we fit a tree using the current residuals, instead of  the outcome variable (y) as the 

response. 

• We then add this new decision tree into the fitted function in order to update the 

residuals. Each of  these trees can be quite small, with just a few leaves, determined by 

the parameter d (the number of  splits) in the algorithm. 

• By fitting small trees to the residuals, we slowly improve መ𝑓 in areas where it does not 

perform well. Lastly, the shrinkage parameter λ slows the process down even further, 

allowing more and different shaped trees to hone in on the residuals. 

(*) Note that this procedure is strongly sequential (in contrast to bagging), meaning 

that the construction of  each tree depends on the previous trees. 



Decision Trees: Boosting
• Boosting algorithm for regression trees: 

• Boosting has (3) tuning parameters: (1) the number of  trees B; unlike bagging and random 

forests, if  B is too large then boosting can overfit; (2) the shrinkage parameter λ, a small positive 

number; this controls the rate at which boosting learns – note that a very small value can require 

a very large value of  B to achieve good performance; (3) the number d of  splits in each tree, 

which controls the complexity of  the boosted ensemble; when d=1 the tree is called a stump, 

consisting of  a single split. 



Decision Trees: Boosting

• Results from performing boosting and random forests on gene expression data for cancer 

prediction; test error is shown as a function of  the number of  trees.  



Research Applications of  Decision Trees

• Decision trees are used extensively across a broad spectrum of  data mining and ML 

domains; in particular the CART algorithm (classification and regression tree algorithm)

and ID3 algorithm (iterative dicohtomiser 3) are two of  the most popular 

implementations of  decision trees. 

(*) We have previously introduced the CART algorithm; the ID3 algorithm is similar. 

With ID3  we employ a top-down, greedy approach; the attribute to be split is based 

on (2) criteria: entropy and information gain. 



Research Applications of  Decision Trees

Baradwaj, et al., “Mining Educational Data to Analyze Students’ Performance”, 

IJACSA, 2011.

https://arxiv.org/ftp/arxiv/papers/1201/1201.3417.pdf

• The authors apply knowledge discovery using the ID3 algorithm for prediction 

about student academic performance. 



Research Applications of  Decision Trees

Kumar, et al., “Decision Support System for Medical Diagnosis Using Data Mining ”, 

IJCSI, 2011.

https://pdfs.semanticscholar.org/505b/12958b2f718a24f92cf249d6d

1fc7d224bd1.pdf

• The authors focus on applications of  Medical diagnosis by learning pattern through 

the collected data of  diabetes, hepatitis and heart diseases in order to assist physicians. 

In the paper, they propose the use of  decision trees with ID3 algorithm and CART 

algorithms to classify these diseases and compare the effectiveness, correction rate 

among them. 



k-NN

• Like decision trees, k-NN (k-nearest neighbors) is a non-parametric model that can 

be used in both regression and classification settings. Despite the fact that it is an 

extremely simple algorithm, k-NN can nevertheless yield surprisingly strong 

results by learning complex partitions of  the feature space. 



k-NN: Classification

• Given a positive integer k (a hyper-parameter) and a test observation x0, the k-

NN classifier first identifies the K points in the training data that are closest to 

x0, represented by N0. 

• It then estimates the conditional probability for class j as the fraction of  points 

in N0 whose response values equal j:

where I is the indicator function, so that I=1 when yi=j. 

• Finally, k-NN applies Bayes rule and classifies the test observation x0 to the class 

with the largest probability. 
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k-NN: Classification

• The figure shows an example of  k-NN with k=3. Left: a test observation at which a 

predicted class label is desired is shown as a black cross. The three closets points to the 

test observation are identified, and it is predicted that the test observation belongs to the 

most commonly-occurring class (blue). Right: the k-NN decision boundary for this 

example is shown in black. The blue/orange grid indicates the region in which the test 

observation will be assigned to blue/orange class; again, the non-parametric model 

partitions the input space into local regions – crucially relying on all of  the training data to 

do so. 



k-NN: Classification

• Naturally, the choice of  k for k-NN can have a drastic effect on the classifier 

obtained. In the figures three classifiers are shown, one for which k=1, one for which 

k=10, and the other uses k=100. 

• In the former case, the decision boundary is overly flexible; this corresponds with a 

low bias/high variance model. As k grows, the method becomes less flexible and 

produces a decision boundary that is approximately linear. The dotted line indicates 

the Bayes decision boundary (i.e. the optimal boundary). When k=10 the k-NN 

decision boundary closely resembles the Bayes decision boundary. 

Low bias/high variance (overfit) High bias/low variance 

(underfit)



k-NN: Classification
• As is customary with ML models, the training error for a k-NN model is an optimistic 

estimate for the test error. For example when k=1, the training error might be very low 

(even zero), whereas the test error could still be very high due to the poor 

generalization ability of  the model. 

• The plot shows k-NN train and test errors as a function of  1/k (which can be 

considered a model flexibility parameter – or equivalently, the number of  neighbors k as 

k decreases). Note that the test error rate graph exhibits a characteristic U-shape; if  

we choose a parameter value k corresponding with the “elbow” of  this U-curve we 

are in the “Goldilocks zone” between underfitting and overfitting. 



k-NN: Regression

• The k-NN regression method is closely related to the k-NN classifier method – we 

just need to shift the reference frame from classification to regression appropriately. 

• Again, given a fixed value k (denoting neighborhood size), and a prediction point x0, 

k-NN regression first identifies the K training observations that are closest to x0, 

represented by N0. It then estimates f(x0) using the average of  all the training 

responses in N0: 
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k-NN: Regression

• In the figure, the fit with k=1 is shown on the left, while the right-hand panel 

corresponds with k=9. When k=1 the k-NN model fit perfectly interpolates the 

training observations, and consequently takes the form of  a step-function. 

• When k=9, the k=NN fit is still a step function, but averaging over nine observations 

results in much smaller regions of  constant prediction, and consequently renders a 

smoother fit. As in the case with k-NN for classification, a small value of  k provides 

the most flexible fit (low bias/high variance). 

 
0

0

1

i

i

x N

f x y
K 

 

k=1; Low bias/high variance (overfit) k=9; High bias/low variance (possible underfit)



k-NN: Regression

• The plot shows k-NN regression train and test errors as a function of  1/k; the true 

function is shown in black; the k-NN fits with k=1 (blue) and k=9 (red) are 

displayed; on the right the MSE for k-NN (green) is compared with the MSE for 

OLS (black dotted line). 



k-NN: Some Caveats

• Note that k-NN often performs poorly for high-dimensional data (due to the 

curse of  dimensionality, namely, neighbors are no longer “local”).  As a general rule 

of  thumb, parametric methods tend to outperform non-parametric methods 

when there is a small number of  observations per predictor. 

• For high-dimensional (even p>10 is large for k-NN), in practice one should 

perform dimensionality reduction first (e.g. PCA, LDA), and then k-NN.

• In big data applications, k-NN can be used to perform data reduction tasks 

(i.e. vectorization); outliers can be identified as data that the k-NN classifier 

misclassifies, while all other points are identified as prototype points or absorbed 

points (i.e. points associated with a particular prototype); cf., condensed nearest 

neighbor (CNN). 

• Finding the nearest neighbors in k-NN may be intractable in large dimensions, in 

which case practitioners customarily use an approximate nearest neighbor search 

algorithm.  



Research applications of  k-NN: Recommender 

Systems

• Recommender systems (e.g. Netflix) have become increasingly popular recently across 

many problem domains in AI/ML, including recommendations for experts (e.g. 

medicine), financial services, insurance, on-line news feeds, etc.; they comprise a subclass 

of  information filtering systems that seek to predict a rating/preference based on historical 

data. 

(*) Notably, Netflix offered a $1,000,000 prize between 2006-2009 for the best recommender 

system (10% more accurate than the current best), operational on a database of  over 100 

million movie ratings; the winning group used a vast ensemble of  107 systems. 



Research applications of  k-NN: Recommender Systems

Bell, et al., “Improved Neighborhood-based Collaborative Filtering”, KDD, 2007. 

• The chief  method used by the winners (AT&T Labs) is based on k-NN. 

(*) They key innovation introduced by the authors was to enhance k-NN leading to a substantial 

improvement in prediction accuracy, without a meaningful increase in run-time. 

• First, the authors remove certain so-called “global effects" from the data to make the different 

ratings more comparable, thereby improving interpolation accuracy. Second, they show how to 

simultaneously derive interpolation weights for all nearest neighbors. This method is very fast in 

practice, generating a prediction in about 0.2 milliseconds. 

• On the Netflix data set this method could process the 2.8 million queries of  the in 10 minutes 

yielding a RMSE of  0.9086; the RMSE was reduced even further using SVD-factorization at the 

preprocessing stage, our method can produce results with a RMSE of  0.8982.

https://www.netflixprize.com/assets/Progre

ssPrize2008_BellKor.pdf




