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Overview 
• The “no free lunch” theorem states that there is no single learning algorithm 

that in any domain always induces the most accurate learner. The usual 

approach in ML is to try many different models and to choose the one that 

performs best on a separate validation set. 

• Each learning algorithm dictates a specific model (e.g. SVMs, NNs, 

probabilistic models) that comes with a set of  inherent assumptions. 

• This inductive bias renders an error if  the assumption do not hold for the 

data. 

• Oftentimes we attempt to mitigate the effect of  these assumptions by 

adopting a methodology that makes as few a priori assumptions as possible 

(see: the principle of  insufficient reason); using multiple learners, however, 

presents an alternative solution. 



Overview 
• The performance of  a learned model may be fine-tuned to get the highest possible 

accuracy on a validation set, but this fine-tuning is a complex task and still there are 

instances on which even the best learner is inaccurate. 

• By suitably combining multiple learned models as an ensemble, accuracy can be 

improved.  

This leads to (2) fundamental questions for ensemble learning:

(1) How do we generate base-learners (i.e. learned models using the same 

data/learning algorithm type) that complement each other?

(2) How do we combine the outputs of  the base-learners for maximum accuracy?  

(*) Note that not all model combinations will necessarily increase test accuracy, but 

learning extra models will always increase run-time and space complexity.



Generating Diverse Learners
• There are two basic tensions when it comes to generating diverse learning models.

(*) On the one hand, we want dissimilar models so that they differ (in a complementary 

way) in their decisions; at the same time, we want a gain in overall accuracy, so the 

different learners need to be accurate (at least in their domain of  expertise). 

Here are some of  the different ways to achieve the generation of  diverse learners: 

(i) Use different algorithms: We can use different learning algorithms to train 

different base-learners. Different algorithms make different assumptions about the 

data and yield different classifiers (e.g. parametric model + non-parametric model).

Combining multiple learners in this fashion frees us 

(potentially) over committing to one particular 

learning model (i.e. a stricter inductive bias). 



Generating Diverse Learners
(ii) Use different hyperparameters: We can use the same learning algorithm but with 

different hyperparameters (e.g. different size NNs, different momentum/decay 

parameters, different regularization parameters, different initial weights, etc.).

• When we train multiple base-learners with different hyperparameter values, we average 

over this factor and thus reduce variance (and predictive error). 



Generating Diverse Learners
(ii) Use different hyperparameters: We can use the same learning algorithm but with different 

hyperparameters (e.g. different size NNs, different momentum/decay parameters, different 

regularization parameters, different initial weights, etc.).

When we train multiple base-learners with different hyperparameter values, we average over this 

factor and thus reduce variance (and predictive error). 

(iii) Use different input representations: Separate base-learners may use different 

representations of  the same input object, making it possible to integrate different types of  data 

modalities. 

• Different representations render different characteristics of  the data explicit (i.e. some 

embedded patterns become more prominent than others). Choosing different data representations 

could involve using disparate feature selection or feature engineering processes. 

• One simple approach in this vein is to choose random subsets of  the data (random subspace 

method). This has the effect that different learners will look at the same problem from different 

perspectives, generating a robust method that is potentially less susceptible to the curse of  

dimensionality. 



Generating Diverse Learners
(iv) Use different training sets: Another option is to train different base-learners using different 

subsets of  the training set. 

This can be done by drawing random training sets from a given sample – this is known as bagging. 

Or, alternatively, learners can be trained serially so that instances on which the preceding base-learners 

are not accurate are given more emphasis in training later base-learners – this is generally known as 

boosting (additional related method: cascading). The explicit advantage of  this approach is that we 

actively try to generate complementary learners, instead of  leaving this to chance. 

Lastly, if  we partition the training data based on locality in the input space and train a base-learner on 

instances in a certain local part of  the input space, this produces a mixture of  experts. 



Generating Diverse Learners

(*) Diversity vs. Accuracy: It is important to note that when we generate multiple 

base-learners, we want them to be reasonably accurate but we don’t require them to be 

very accurate individually. 

• Consequently, our base-learners are generally not optimized separately for best 

accuracy. The base-learners are instead chosen for their simplicity (remember that we 

intend to train many of  them), and not their overall accuracy.

• We do nonetheless require the base-learners to be diverse, that is to say: accurate on 

different instances, thereby specializing in subdomains of  the problem. 

Bottom line: the final accuracy when the base-learners are combined is paramount. 

(*) Note that this implies that the required accuracy and diversity of  the learners also 

depend on how their decisions are combined, which we discuss next. 



Model Combination Schemes

Next we consider (5) of  the most common model combination schemes used in 

ensemble learning for ML:

(1) Voting 

(2) Bagging

(3) Boosting

(4) Mixture of  Experts

(5) Cascading

First, let’s begin with a simple and intuitive example of  ensemble learning. 



Given three hypotheses, h1, h2, h3, with hi (x)  {−1,1}

Suppose each hi has 60% generalization accuracy, and assume 

errors are independent. 

Now suppose H(x) is the majority vote of  h1, h2, and h3 .  What is 

probability that H is correct? 

Ensemble Learning with Voting: 

Example



h1 h2 h3 H probability

C C C C

C C I C

C I I I

C I C C

I C C C

I I C I

I C I I

I I I I

Total

probability 

correct: 



h1 h2 h3 H probability

C C C C .216

C C I C .144

C I I I .096

C I C C .144

I C C C .144

I I C I .096

I C I I .096

I I I I .064

Total 

probability

correct: 

.648



Again, given three hypotheses, h1, h2, h3.  

Suppose each hi has 40% generalization accuracy, and assume 

errors are independent. 

Now suppose we classify x as the majority vote of  h1, h2, and h3 .  

What is probability that the classification is correct? 

Ensemble Learning with Voting: 

Example



h1 h2 h3 H probability

C C C C

C C I C

C I I I

C I C C

I C C C

I I C I

I C I I

I I I I



h1 h2 h3 H probability

C C C C .064

C C I C .096

C I I I .144

C I C C .096

I C C C .096

I I C I .144

I C I I .144

I I I I .261

Total 

probability

correct: 

.352

Q: In general, if   hypotheses h1, ..., hM all have generalization accuracy A, what is 

probability that a majority vote will be correct?         (you should work this out) 



Model Combination Schemes

“Big picture” considerations for model combination schemes: 

(*) Multi-expert combination methods have base-learners that work in parallel:

(i) In the global approach to multi-expert combination methods, given an 

input, all base-learners generate an output and all these outputs are used for 

prediction (e.g., voting). 

(ii) In the local approach, there is a gating model, which looks at the input and 

chooses one (or very few) of  the learners as responsible for generating the 

output (e.g. mixture of  experts). 



Model Combination Schemes

“Big picture” considerations for model combination schemes: 

(*) Multi-expert combination methods have base-learners that work in parallel (e.g. 

global approach and local approach). 

(*) Multistage combination: apply a serial approach where the next base-learner is 

trained with or tested on only the instances where the previous base-learners are 

not sufficiently accurate (e.g., boosting). 

• The idea is that the base-learners are sorted according to increasing complexity 

so that a complex base-learner is not used unless the preceding, simpler base-

learners are not confident. 



Model Combination Schemes
“Big picture” considerations for model combination schemes: 

(*) Multi-expert combination methods have base-learners that work in parallel. 

(*) Multistage combination: apply a serial approach.

Suppose that we have L base-learners. Denote the prediction of  jth base-learner 

for input x as dj(x). 

The final prediction is calculated from the predictions of  the base learners:

Where f(∙) is the combining function (also called 

the fusion function) with parameters θ. 

 1 2, ,..., |Ly f d d d 



Model Combination Schemes: 

Voting
• The simplest way to combine multiple classifiers is by voting (see previous 

example), which corresponds to taking a linear combination of  the learners:

Where wj is the combination weight and dji denotes the jth (of  say L total base-

learners) using the ith input representation of  the data. 

, 0, 1i j ji j j

j j

y w d w w   



Model Combination Schemes: Voting

• In the case where all learners are given equal weight this yields simple voting (i.e. 

the answer is the average of  all the base learners). 

In fact there are many plausible different ensemble rules one can use: 

(*) Sum rule is intuitive and commonly used in practice; median is more robust to 

outliers; min and max are pessimistic/optimistic, respectively. 

, 0, 1i j ji j j

j j

y w d w w   
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1
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1
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Model Combination Schemes: Voting

• For classification tasks, one ordinarily uses a majority vote criterion (i.e. winning 

class gets the most votes). 

• Another possibility is to learn the weights in the fusion function themselves 

(see: stacked generalization). 

• Still an additional alternative is to be Bayesian. 

, 0, 1i j ji j j

j j

y w d w w   



Model Combination Schemes: Voting

• Still an additional alternative is to be Bayesian. 

For example, in classification if  we have: wj=P(Mj), dji=P(Ci|x, Mj), where Mj is 

the jth base-learner this yields the following posterior calculation: 

(*) Note that in this scheme the weight correlates with the prior, so that a cogent 

model has a higher weight, and the prediction for each base-learner is the class 

posterior for the given base-learner. 

     
all models 

| | ,
j

i i j j

M

P C x P C x M P M 



Model Combination Schemes: Voting
• The fundamental idea with voting is that it has the effect of  smoothing the functional 

space and can be accordingly thought of  as a regularizer with a smootheness

assumption on the true function. 

(*) We vote over models with high variance and low bias so that after combining base-

learners, the bias remains small and we reduce the variance by averaging. Even if  the 

individual models are biased, the decrease in variance may offset this bias and still 

decrease error. 



Model Combination Schemes: Voting
(*) We vote over models with high variance and low bias so that after combining base-

learners, the bias remains small and we reduce the variance by averaging. Even if  the 

individual models are biased, the decrease in variance may offset this bias and still 

decrease error. 

More formally: consider the expected value and variance of  the output prediction 𝑦𝑖 =
σ𝑗𝑤𝑗𝑑𝑗𝑖, rendered by a simple average, so wj=1/l (we also assume the dj are IID for 

simplicity). 

(*) This formula shows that the expected value doesn’t change (when we compare the 

ensemble combination to a single base-learner); thus the bias for the ensemble model 

doesn’t change. 

 
1 1

j j j

j

E y E d LE d E d
L L

 
          

 


Why?



Model Combination Schemes: Voting

(*) This formula shows that the expected value doesn’t change (when we compare the 

ensemble combination to a single base-learner); thus the bias for the ensemble model 

doesn’t change. 

(*) Crucially, this formula demonstrates that variance decreases as the number of  voters L 

increases. 

Again, illustrating the key point: We vote over models with high variance and low bias so 

that after combining base-learners, the bias remains small and we reduce the variance by 

averaging. 

 
1 1

j j j

j

E y E d LE d E d
L L

 
          

 


2 2

1 1 1 1
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j j

Var y Var d Var d LVar d Var d
L L L L

   
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   
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Why? Why?



Model Combination Schemes: Bagging

• Bagging (short for bootstrap aggregating) is a voting method whereby base-learners 

are made different by training them over slightly different training sets -- among other 

applications, it is frequently used with decision trees. 

• Generating L slightly different samples from a given sample is done by bootstrap (i.e. 

sampling with replacement): Given a training set X of  size N we draw N instances randomly 

from X with replacement. 

• The effect of  bootstrapping is to generate L samples (Xj, j=1, …, L) that are similar 

because they are all drawn from the same original sample, but they are nevertheless 

slightly different due to chance. 

Each base learner dj is thus trained with these L samples Xj. 



Model Combination Schemes: Bagging

• In summary: Bagging generates L training sets using bootstrapping, trains L base-

learners, and then applies a voting procedure to the L base-learners (in order to reduce 

variance of  the overall model).

• Bagging can be used for both regression and classification tasks; in the case of  

regression it is more common to use the median (as opposed to the mean) for improved 

robustness. 



Model Combination Schemes: Boosting

• With bagging, generating complementary base-learners is left to chance through 

boostrapping; in boosting, we actively try to generate complementary base-learners by 

training the learners sequentially, so that the next learner trains on the mistakes of  the 

previous learners. 

• Boosting combines complementary weak learners (meaning their accuracy is above 

chance, but they are nonetheless relatively inexpensive to train).

“Intro to Boosting”: https://cseweb.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf



Model Combination Schemes: Boosting
• As a basic schematic for boosting, consider a boosting algorithm (this is how the original 1990 Schapire

paper worked) that combines three weak learners to generate a strong learner. 

• Given a training set, we randomly partition it into three subsets: X1, X2 and X3; use X1 to train d1. Then 

take X2 and feed it to d1. Next we u se every instance misclassified by d1 in combination with many 

instances on which d1 is correct from X2, and together form the training set for d2.

• Lastly, we take X3 and feed it to d1 and d2; the instances on which d1 and d2 disagree form the training 

set of  d3. 

(*) During testing, we take a datum and give it to d1 and d2; if  they agree this is the prediction; otherwise, 

the response of  d3 is taken as the output. 



Model Combination Schemes: AdaBoost

• A very popular boosting method known as AdaBoost (short for adaptive 

boosting) was developed by Freund and Schapire in 1996 (later won the Gödel prize).

(*) Adaboost uses the same training set over and over and thus the data set need 

not be large, but the classifiers should be simple so that they do no overfit. 

AdaBoost can also combine an arbitrary number of  base learners – not just three.

(*) Adaboost combines different weak learners (i.e. hypotheses), where the 

training error is close but less than 50%, to produce a strong learner (i.e. with 

training error close to zero). 



Given examples S and learning algorithm L, with | S | = N

• Initialize probability distribution over examples w1(i) = 1/N . 

• Repeatedly run L on training sets St S to produce h1, h2, ... , hK.  

– At each step, derive St from S by choosing examples 

probabilistically according to probability distribution wt .   Use 

St to learn ht. 

• At each step, derive wt + 1 by giving more probability to examples 

that were misclassified at step t. 

• The final ensemble classifier H is a weighted sum of  the ht’s, with 

each weight being a function of  the corresponding ht’s error on its 

training set. 

AdaBoost: Algorithm Sketch



• Given S = {(x1, y1), ..., (xN, yN)} where x  X, yi  {+1, −1}

• Initialize w1(i) = 1/N.   (Uniform distribution over data)

AdaBoost: Algorithm



• For t = 1, ..., K: 

– Select new training set St from S with replacement, according to wt

– Train L on St to obtain hypothesis ht

– Compute the training error t of   ht on S :

– Compute coefficient

et = wt

j=1

N

å ( j) d(y j ¹ ht (x j )) ,  where

d(y j ¹ ht (x j )) =
1 if y j ¹ ht (x j )

0 otherwise   

ì
í
ï

îï
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AdaBoost: Algorithm



– Compute new weights on data:

For i = 1 to N

where Zt is a normalization factor chosen so that wt+1 will be a 

probability distribution:

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

Zt = wt (i) exp(-atyiht (xi ))
i=1

N

å

AdaBoost: Algorithm



• At the end of  K iterations of  this algorithm, we have 

h1, h2, . . . , hK

We also have 

1, 2, . . . ,K,  where

• Ensemble classifier: 

• Note that hypotheses with higher accuracy on their training sets are 

weighted more strongly. 

H (x) = sgn at

t=1

K

å ht (x)
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AdaBoost: Algorithm



where { x1, x2, x3, x4 }   are class +1

{x5, x6, x7, x8 } are class −1

t = 1 : 

w1 = {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}

S1 = {x1, x2, x2, x5, x5, x6, x7, x8}  (notice some repeats)

Train classifier on S1 to get h1

Run h1 on S.  Suppose classifications are: {1, −1, −1, −1, −1, −1, −1, −1}

• Calculate error: e1 = wt
j=1

N

å ( j)d(y j ¹ ht (x j )) =
1

8
3( ) = .375

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

AdaBoost: Data Example



where { x1, x2, x3, x4 }   are class +1

{x5, x6, x7, x8 } are class −1

t = 1 : 

w1 = {1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8, 1/8}

S1 = {x1, x2, x2, x5, x5, x6, x7, x8}  (notice some repeats)

Train classifier on S1 to get h1

Run h1 on S.  Suppose classifications are: {1, −1, −1, −1, −1, −1, −1, −1}

• Calculate error: e1 = wt
j=1

N

å ( j)d(y j ¹ ht (x j )) = ?

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

AdaBoost: Data Example



Calculate ’s: 

Calculate new w’s: 

a1 =
1

2
ln

1-et
et

æ

è
ç

ö

ø
÷ =

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

ŵ2 (1) =

ŵ2 (2) =

ŵ2 (3) =

ŵ2 (4) =

ŵ2 (5) =

ŵ2 (6) =

ŵ2 (7) =

ŵ2 (8) =

Z1 = ŵ2

i

å (i) =

w2 (1) =

w2 (2) =

w2 (3) =

w2 (4) =

w2 (5) =

w2 (6) =

w2 (7) =

w2 (8) =



Calculate ’s: 

Calculate new w’s: 

   

a1 =
1

2
ln

1-e t
e t

æ 

è 
ç 

ö 

ø 
÷ = .255

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

ŵ2 (1) = (.125)exp(-.255(1)(1)) = 0.1

ŵ2 (2) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (3) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (4) = (.125)exp(-.255(1)(-1)) = 0.16

ŵ2 (5) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (6) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (7) = (.125)exp(-.255(-1)(-1)) = 0.1

ŵ2 (8) = (.125)exp(-.255(-1)(-1)) = 0.1

Z1 = ŵ2

i

å (i) = .98

w2 (1) = 0.1/ .98 = 0.102

w2 (2) = 0.163

w2 (3) = 0.163

w2 (4) = 0.163

w2 (5) = 0.102

w2 (6) = 0.102

w2 (7) = 0.102

w2 (8) = 0.102



t = 2

w2 = {0.102, 0.163, 0.163, 0.163, 0.102, 0.102, 0.102, 0.102}

S2 = {x1, x2, x2, x3, x4, x4, x7, x8}

Learn classifier on S2 to get h2

Run h2 on S.  Suppose classifications are: {1, 1, 1, 1, 1, 1, 1, 1}

Calculate error: 

e2 = wt

j=1

N

å ( j)d(y j ¹ ht (x j ))

= (.102)´ 4 = 0.408



Calculate ’s: 

Calculate w’s: 

   

a2 =
1

2
ln

1-e t
e t

æ 

è 
ç 

ö 

ø 
÷ = .186

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

ŵ3(1) = (.102)exp(-.186(1)(1)) = 0.08

ŵ3(2) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(3) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(4) = (.163)exp(-.186(1)(1)) = 0.135

ŵ3(5) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(6) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(7) = (.102)exp(-.186(-1)(1)) = 0.122

ŵ3(8) = (.102)exp(-.186(-1)(1)) = 0.122

Z2 = ŵ2

i

å (i) = .973

w3(1) = 0.08 /.973 = 0.082

w3(2) = 0.139

w3(3) = 0.139

w3(4) = 0.139

w3(5) = 0.125

w3(6) = 0.125

w3(7) = 0.125

w3(8) = 0.125



t =3

w3 = {0.082, 0.139, 0.139, 0.139, 0.125, 0.125, 0.125, 0.125}

S3 = {x2, x3, x3, x3, x5, x6, x7, x8}

Run classifier on S3 to get h3

Run h3 on S.  Suppose classifications are: {1, 1, −1, 1, −1, −1, 1, −1}

Calculate error: 

e3 = wt

j=1

N

å (i)d(y j ¹ ht (x j ))

= (.139)+ (.125) = 0.264



• Calculate ’s: 

• Ensemble classifier:
   

a3 =
1

2
ln

1-e t
e t

æ 

è 
ç 

ö 

ø 
÷ = .512

H (x) = sgn at

t=1

K

å ht (x)

= sgn .255´h1(x)+.186 ´h2 (x)+.512 ´h3(x)( )



What is the accuracy of H on the training data? 
H (x) = sgn at

t=1

T

å ht (x)

= sgn .255´h1(x)+.186 ´h2 (x)+.512 ´h3(x)( )

Exampl

e

Actual

class

h1 h2 h3

x1 1 1 1 1

x2 1 −1 1 1

x3 1 −1 1 −1

x4 1 1 1 1

x5 −1 −1 1 −1

x6 −1 −1 1 −1

x7 −1 1 1 1

x8 −1 −1 1 −1

S = x1,x2,x3,x4,x5,x6,x7,x8,{ }

where { x1, x2, x3, x4 }   are class 

+1

{x5, x6, x7, x8 } are class −1

Recall the training set: 



• Given S = {(x1, y1), ..., (xN, yN)} where x  X, yi  {+1, −1}

• Initialize w1(i) = 1/N.   (Uniform distribution over data)

• For t = 1, ..., K: 

1. Select new training set St from S with replacement, according to wt

1. Train L on St to obtain hypothesis ht

1. Compute the training error t of   ht on S :

If   εt > 0.5, abandon ht and go to step 1 

et = wt

j=1

N

å ( j) d(y j ¹ ht (x j )) ,  

where d(y j ¹ ht (x j )) =
1 if y j ¹ ht (x j )

0 otherwise   
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AdaBoost: Summary



4. Compute coefficient:

5. Compute new weights on data:

For i = 1 to N

where Zt is a normalization factor chosen so that wt+1 will be a probability distribution:

• At the end of  K iterations of  this algorithm, we have h1, h2, . . . , hK , and 1, 2, . . . ,K

• Ensemble classifier: 

wt+1(i) =
wt (i) exp(-atyiht (xi ))

Zt

Zt = wt (i) exp(-atyiht (xi ))
i=1

N

å

H (x) = sgn at

t=1

K

å ht (x)

at =
1

2
ln

1-et
et

æ
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AdaBoost: Overview
• Adaboost seems to reduce both bias and variance and it does not seem to overfit for increasing 

K. 

Why does it work? 

Schapire et al. explain that the success of  AdaBoost is due to its property of  increase the margin. Recall 

from SVMs, that if  the margin increases, the training instances are better separated and an error 

is less likely. 



AdaBoost: Overview

•In AdaBoost, although different base-learners have slightly different training sets, this 

difference is not left to chance as in bagging, but is a function of  the error of  the 

previous base-learner. The actual performance of  boosting on a particular problem is 

naturally dependent on the data and base-learner. 

• In order to be effective, there should be enough training data and the base-learner 

should be weak but not too weak, as boosting is particularly susceptible to noise and 

outliers (since boosting focuses on examples are hard to classify).

• For this reason boosting can be used to identify outliers and noise in a dataset. 

(*) AdaBoost has also been generalized to regression.



Case Study of  Adaboost:

Viola-Jones Face Detection Algorithm

• P. Viola and M. J. Jones, Robust real-time face detection.  International 

Journal of  Computer Vision, 2004. 

• First face-detection algorithm to work well in real-time (e.g., on 

digital cameras); it has been very influential in computer vision (16k+ 

citations). 

https://www.cs.cmu.edu/~efros/courses/LBMV07/Papers/viola-

cvpr-01.pdf

Viola: 

MIT/Amazon



Viola-Jones: Training Data

• Positive:  Faces scaled and 

aligned to a base resolution 

of  24 by 24 pixels.

• Negative: Much larger 

number of  non-faces.  



Features

From http://makematics.com/research/viola-jones/
Use rectangle features at multiple sizes and location 

in an image subwindow (candidate face).   

For each feature fj : 

f j = intensity(pixel b)
bÎblack pixels

å - intensity(pixel w)
wÎwhite pixels

å

Possible number of  features per 24 x 24 pixel subwindow > 180,000.  



Detecting faces

Given a new image:

• Scan image using subwindows at all locations and at different scales

• For each subwindow, compute features and send them to an ensemble 

classifier (learned via boosting).  If  classifier is positive (“face”), then 

detect a face at this location and scale.  



Preprocessing: Viola & Jones use a clever pre-processing step that allows 

the rectangular features to be computed very quickly.   (See their paper for 

description. )

They use a variant of  AdaBoost to both select a small set of  features and  

train the classifier.

Viola-Jones Face Detection Algorithm



Base (“weak) classifiers: 

For each feature fj , 

where x is a 24 x 24-pixel subwindow of  an image, θj is the threshold that 

best separates the data using feature fj , and pj is either -1 or 1.  

Such features are called decision stumps.  

hj =
1 if p j f j (x) < p jq j

-1 otherwise
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Viola-Jones Face Detection Algorithm



Boosting algorithm:

Viola-Jones Face Detection Algorithm



Boosting algorithm:

Viola-Jones Face Detection Algorithm



where at = ln
1

bt Note that only the top T features are used.  

Viola-Jones Face Detection Algorithm

Boosting algorithm:



https://www.youtube.com/watch?v=k3bJUP0ct08

https://www.youtube.com/watch?v=c0twACIJYm8

https://www.youtube.com/watch?v=k3bJUP0ct08






Advantages

• Fast feature computation

• Efficient feature selection

• Scale and Location Invariant detector

• Instead of  scaling image, scales features

• Can be trained for other types of  objects

Disadvantages

• Detector is most effective only on frontal images of  face

• Sensitive to lighting conditions

• Can generate multiple detections for the same face

Viola-Jones Face Detection Algorithm



Model Combination Schemes: Mixture of  Experts
• In voting, the weights wj are constant over the input space (e.g. wj=1/L for all j). 

• By contrast, in the mixture of  experts (Jordan et al., 1994)architecture (a local method), there is a 

gating function/network, g, whose outputs are the weights of  the experts. This gating function is 

dependent upon the input, hence the weights of  the experts need not be constant over the input 

space in this regime. 

• Mixture of  experts can be learned via competitive learning algorithm so that each base-learner 

becomes an expert in a different part of  the input space; to wit, if  gj(x)= wj(x) (for base-learner dj

when x 𝜖 domain(dj)), then the final output is a weighted average as in voting: 

(*) In practice, the weight wj(x) is close to 1 in base-learner j’s region of  expertise. 

 j j

j

y g x d

Jordan: UCB



Model Combination Schemes: Mixture of  Experts

• In the mixture of  experts architecture, experts are biased but negatively correlated. 

(*) As training proceeds, bias decreases and expert variances increase but at the same time as 

experts localize in different parts of  the input space, their covaraiances get more negative, which 

decreases the total variance, and hence the overall error. 



Model Combination Schemes: Mixture of  Experts

• Learning a mixture of  experts (MoE) architecture boils down to: (1) learning the parameters 

of  individual learners and (2) learning parameters of  the gating network. 

(*) The most common approach to learning an MoE model is to use a variant of  the EM (here 

the E-step updates the gating function and mixing weights, while the M-step maximizes the 

individual learner parameters). 

(*) Alternatively, one can also use dynamic programming to solve segmented regression and 

related problems. 



Model Combination Schemes: Mixture of  Experts

• Another example from computer vision research: 

Bogo, et al., “Keep it SMPL: Automatic Estimation of  3D Human Pose and Shape from a 

Single Image”, ECCV, 2016. 

(*) Researchers developed the first method to automatically estimate the 3D pose of  

the human body as well as its 3D shape from a single 2D image. Methodology: Use 

CNN to predict 2D joint body locations, then use a mixture of  experts (3D 

Gaussians) for pose estimation. 

http://files.is.tue.mpg.de/black/papers/BogoECCV2016.pdf



Model Combination Schemes: Cascading

• The idea in cascaded classifiers is to have a sequence of  base-classifiers dj sorted in 

terms of  their space or time complexity, or the cost of  the representation they use, so 

that dj+1 is sotlier than dj. 

• Cascading is a multistage method, and we use dj only if  all the preceding learners, dk, 

k<j are not confident. 

• Each learner has an associated confidence weight (wj) such that we say dj is confident of  

its output and can be used if  wj> θj (or some such thresholding criterion) and for each 

confidence threshold it holds that: θj ≤ θj+1 < 1.

• In classification, the confidence function is set to the highest posterior: wj=maxi dji.

• We use learner dj if  all the preceding learners are not confident: yi=dji if  wj> θj and for all 

k, k <j, wk< θk.



Model Combination Schemes: Cascading

• Starting with j=1, given a training set, we train dj. Then we find al instances from a 

separate validation set on which dj is not confident, and these constitute the training set 

of  dj+1. Note that unlike AdaBoost, we choose not only the misclassified instances but 

the ones for which the previous base-learner is not confident. 

• This then covers misclassified instances as well as the instances for which the posterior 

is not high enough; these are instances on the right side of  the boundary but for which 

the distance to the discriminant, namely, the margin, is not large enough. 

(*) Basic idea: early simple classifier handles the majority of  instances, and a more 

complex classifier is used only for a small percentage of  the data, thereby not significantly 

increasing the overall model complexity. 

(*) Note that this procedure differs from other multi-expert methods such as voting 

where all base-learners generate their output for any instance. 



Model Combination Schemes: Cascading

• The inductive bias of  cascading is that the classes can be explained by a small number of  “rules” in 

increasing complexity.

(*) Cascading represents a middle ground between two extremes of  parametric and non-parametric 

classification. Whereas, say, a regression model (parametric model) applies a single rule to all data, k-NN, 

for example (non-parametric model), stores the entire training set in memory without generating any 

parsimonious “rules,” cascading instead generates rules to explain most of  the data as cheaply as possible 

(and usually stores the rest of  the data as exceptions).



Model Combination Schemes: Robust Object Detection with Cascading

• L. Bourdev, et al., “Robust Object Detection via Soft Cascade”, CVPR, 2005. 

(*) Researchers developed a method for training object detectors using a generalization of  the 

cascade architecture, resulting in a detection rate and speed comparable to state-of-the-art. 

Specifically, the classifier is an ensemble consisting of  a sum of  thresholded classifiers selected 

during AdaBoost training scaled by the associated weights; the partial sums of  the classifiers 

generate a sample trace (shown); the cumulative sums for the two classes (face/non-face) separate as 

the evaluation progresses. 

http://lubomir.org/academic/softcascade.pdf




