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Overview 

•  Information Theory deals with compact representations of  data (i.e. data 

compression/source coding), as well as with transmitting and storing data 

robustly (i.e. error correction/channel coding). 

• How does this relate to Machine Learning? 



Overview 
• How does this relate to Machine Learning?

• In his seminal paper “A Mathematical Theory of  Communication” (1948), 

Shannon claimed that “the semantic aspects of  communication are irrelevant 

to the engineering problem.” 

• For Machine Learning applications, Information 

Theory provides us with a rich analytical scheme 

that differs from many conventional ML approaches –

in particular these informational notions provide a

data and domain-agnostic framework for ML applications. 

• For example, the concepts of  “independence”, non-informative priors, noise, 

etc., can all be articulated – in some sense more generically – in terms of  

information theory. 

Shannon



Overview: (aside) Algorithmic Information Theory 

• Information Theory is in fact vital, more broadly, to foundational issues in 

computer science. 

• In the field of  algorithmic information theory (Kolmogorov, Chaitin), 

problems pertaining to complexity and computability are framed in terms of  

information.   

• Informally, the information content of  a string is equivalent to the most-

compressed possible representation of  that string (in this way an 5,000 page 

encyclopedia contains less information than a 5,000 page “random” string).   

Kolmogorov Chaitin



Overview: (aside) Algorithmic Information Theory 

Definition of  Kolmogorov Complexity: 

If  a description d(s) of  a string s is of  minimal length (i.e. it uses the fewest 

bits), it is called a minimal description of  s. Thus, the length d(s) is the 

Kolmogorov complexity of  s, written K(s). 

K(s)=|d(s)|
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K(s1) << K(s2)



Overview: (aside) Algorithmic Information Theory 

Definition of  Kolmogorov Complexity: 
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Overview: (aside) Algorithmic Information Theory 

Definition of  Kolmogorov Complexity: 

K(s)=|d(s)|

(*) Consequence: Most string are complex!

(*) A few interesting results: 

(i) There exist strings of  arbitrarily large Kolmogorov complexity.

(ii) K is not a computable function (but one can compute upperbounds). 

(iii) Chaitin’s Incompleteness Theorem (using Gödelization): One can’t in general 

prove that a specific string is complex.

Gödel



Aside: Is the Basis of  the Universe 

Information? 
• The so-called “Black Hole Wars” arose from a debate between, in principle, Leonard 

Susskind and Stephen Hawking regarding the nature of  information in black holes. 

• While Hawking argued that information is lost in black holes, Susskind asserted that 

this would violate the law of  the conservation of  information. The debate spurred 

the “holographic principle” which postulates that in lieu of  being lost, information 

is in fact preserved and stored on the boundary of  a given system.  

Susskind: “On the world as hologram”:

https://www.youtube.com/watch?v=2DIl3Hfh9tY



Aside: Is the Basis of  the Universe 

Information? 

• A study in 2017 revealed substantial evidence that we live in a holographic 

universe. 

•In this view, we might be caught inside a giant hologram; the cosmos is 

a projection, much like a 3D simulation. 

•If  the nature of  reality is in fact reducible to information itself, that implies a 

conscious mind on the receiving end, to interpret and comprehend it.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.041301



Aside: Is the Basis of  the Universe 

Information? 
• A. Wheeler believed in a participatory universe, where consciousness holds a central 

role. 

• It is possible that information theory may in the future help bridge the gap 

between general relativity and quantum mechanics, or aid in our understanding 

of  dark matter. 

"The universe is a physical system that contains and processes information in a 

systematic fashion and that can do everything a computer can do.“ – Seth 

Lloyd, MIT 



Aside: Is the Basis of  the Universe 

Information? 
• Just for fun…here is a short conversation with Minsky on the question of  

whether information is a basic building block of  reality. 

https://www.closertotruth.com/series/information-fundamental



Overview: Information Theory 

• A source generates messages, s=(s1,…,sk); a communication channel is used to transmit

data from its input to its output; if  the data are transmitted without error, then they have been 

successfully communicated. 

• Before being transmitted, each message s is transformed by an encoder: x=g(s), which 

renders a sequence of  codewords: x=(x1,…,xn), where each codeword is the value of  a random 

variable which can adopt any of  m different values from a codebook. 



Overview: Information Theory 

• Typically, the encoded version g(s) of  the original message s is a compression of  the original 

message (e.g., remove natural redundancies). If  the compression allows the original message to 

be decoded perfectly, then we say the compression is lossless (otherwise it is lossy).  

• In order to ensure that the encoded message can withstand the effects of  a noisy 

communication channel, some redundancy may be added to the codewords before they are 

transmitted. 



Overview: Information Theory 

• Channel capacity is the maximum amount of  information which can be communicated from 

a channel’s input to its output. 

• The capacity (units of  information/time) of  a noiseless channel is numerically equal to the 

rate at which it transmits binary digits, whereas the capacity of  a noisy channel is less than this. 

• For example: For an alphabet of  α symbols (α=2 is binary), if  a noiseless channel transmits 

data at a fixed rate of  n symbol/sec, then it transmits information at a maximum rate/channel 

capacity of  (n log α) bits/sec, or n bits/sec for binary data. 



Entropy 
Historically, Shannon’s desiderata for defining information mathematically included (4) basic 

sets of  properties: 

(1) Continuity: (information associated with an outcome should increase/decrease smoothly 

as the probability of  the outcome changes).

(2) Symmetry: The amount of  information associated with a sequence of  outcomes doesn’t 

depend on the order of  those outcomes.

(3) Maximal Value: The amount of  information associated with a set of  outcomes cannot be 

increased if  those outcomes are already equally probable. 

(4) Additive: The information associated with a set of  outcomes is obtained by adding the 

information of  individual outcomes. 



Entropy
Motivating Example: 

Suppose we are given a biased coin that, we are told, lands heads up 90% of  the time. 

If  we wanted to quantify our “surprise” after a flip, we could consider the expression 1/p(x), 

where p(x) is the probability of  that particular outcome. In this way, our surprise associated 

with the outcome value x increases as the probability of  x decreases. 
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probability distribution p(x), which quantity should we compute? 



Entropy 
Motivating Example: 

Suppose we are given a biased coin that, we are told, lands heads up 90% of  the time. 

If  we wanted to quantify our “surprise” after a flip, we could consider the expression 1/p(x), 

where p(x) is the probability of  that particular outcome. In this way, our surprise associated 

with the outcome value x increases as the probability of  x decreases. 

In order to obey additivity (see previous slide), one can define surprise as: log(1/p(x)) – this is 

known as the Shannon information of  x.

Lastly, if  we want to compute the average surprise of  a (discrete over K states) random 

variable X with associated probability distribution p(x), which quantity should we compute? 

     
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Entropy 
• The entropy of  a random variable X with distribution p, denoted by H(X) or sometimes 

H(p) is a measure of  surprise/uncertainty. In particular, for a discrete random variable with K

states, it is defined: 

Usually we use log base 2, in which case the units are called bits. 

   2
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Entropy 
• The entropy of  a random variable X with distribution p, denoted by H(X) or sometimes 

H(p) is a measure of  surprise/uncertainty. In particular, for a discrete random variable with K

states, it is defined: 

Usually we use log base 2, in which case the units are called bits. 

(*) Generally, entropy refers to disorder or uncertainty, and the definition of  entropy used in 

information theory is directly analogous to the definition used in statistical thermodynamics. 

   2

1

( ) log ( )
K

k

H X p X k p X k


   

Boltzman entropy formula (~1872), as 

found on his gravestone. 



Entropy 
• The entropy of  a random variable X with distribution p, denoted by H(X) or sometimes 

H(p) is a measure of  surprise/uncertainty. In particular, for a discrete random variable with K

states, it is defined: 

Usually we use log base 2, in which case the units are called bits. 

For example: For a fair coin, for X 𝜖{H,T}, p(H)=p(T), we have that H(X)=1 bit (you should 

confirm this). 

This means the “average Shannon information” for a fair coin is 1 bit of  information (that is 

to say: one binary outcome with equiprobable outcomes has a Shannon entropy of  1 bit). 
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Entropy 
• The entropy of  a random variable X with distribution p, denoted by H(X) or sometimes 

H(p) is a measure of  surprise/uncertainty. In particular, for a discrete random variable with K

states, it is defined: 

Usually we use log base 2, in which case the units are called bits. 

For example: For a fair coin, for X 𝜖{H,T}, p(H)=p(T), we have that H(X)=1 bit (you should 

confirm this). 

This means the “average Shannon information” for a fair coin is 1 bit of  information (that is 

to say: one binary outcome with equiprobable outcomes has a Shannon entropy of  1 bit). 

Compare this result with the previous biased coin: X 𝜖{H,T}, p(H)=0.9, p(T)=0.1, we have 

that H(X)=.469 bits (you should also confirm this). 

(*) Main idea: the average uncertainty of  the biased coin is less than that of  an unbiased coin. 
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Entropy 

Q: When would entropy equal zero?  

   2
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Entropy 

Q: When would entropy equal zero?

A: For a deterministic event (i.e. a probability distribution for which one outcome has probability 1 

and all others have probability zero – this is known as Dirac/delta distribution) – intuitively: there 

is no “uncertainty” in this case. 

“Mathematical why”: log(1) = 0, and                           (prove this). 

   2
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Dirac
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



Entropy 

Q: When is entropy maximal?

   2
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( ) log ( )
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Entropy 

Q: When is entropy maximal?

A: When uncertainty is maximal, i.e. for the uniform distribution, p(x)=1/K. We’ll prove this 

result shortly, but it should be intuitively clear. 

   2

1

( ) log ( )
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H X p X k p X k

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Entropy 

• For the special case of  (Bernoulli) binary random variables X 𝜖 {0,1}, we can write p(X = 1) = θ

and p(X = 0) = 1- θ. Hence the entropy becomes: 

   2

1

( ) log ( )
K

k

H X p X k p X k


   
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Entropy 

• For the special case of  (Bernoulli) binary random variables X 𝜖 {0,1}, we can write p(X = 1) = θ

and p(X = 0) = 1- θ. Hence the entropy becomes: 

• This is called the binary entropy function, and is also written H(θ).  The plot is shown; note 

that the maximum value of  1 coincides with the value θ = 0.5 (i.e., when the distribution is 

uniform). 

   2
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Source Coding Theorem  
• Shannon’s source coding theorem guarantees that for any message there exists an encoding of  

symbols such that each channel input of  C binary digits can convey, on average, close to C bits 

of  information. 

This encoding process yields inputs with a specific distribution p(X), which determines H(X), 

and therefore how much information each input carries. 

The capacity of  a discrete, noiseless channel is defined as the maximum number of  bits it can 

communicate: 

(*) In other words, the channel capacity is achieved by the distribution p(X) that makes H(X) as 

large as possible (i.e. the uniform distribution). 

 
 max /

p X
capacity H X bits s



Source Coding Theorem  
• The source coding theorem states that for a discrete, noiseless channel: 

Let a source have entropy H (bits per symbol) and a channel have capacity C (bits per second).    

Then it is possible to encode the output of  the source in such a way as to transmit at the average 

rate C/H – ε (symbols per second for arbitrarily small ε). It is not possible to transmit at an 

average rate greater than C/H (symbols per second). 



Huffman Coding  

• Huffman coding (1952) is a classic, greedy method for efficiently encoding symbols into a 

corresponding set of  codewords. The algorithm results in an optimal prefix code (meaning no 

codewords share prefixes). The Huffman tree associated with an encoding is consequently a 

binary tree, with the property that leaves equate to codewords). 

• Huffman coding can be regarded as an entropy encoding method: the basic idea is that more 

common symbols are generally represented using fewer bits, while less common symbols use 

more bits, on average. Huffman coding is used, among other applications, with JPEG and 

MPEG compression schemes. 

Huffman



Huffman Coding  

• Huffman coding (1952) is a classic, lossless greedy method for efficiently encoding symbols 

into a corresponding set of  codewords. The algorithm results in an optimal prefix code (meaning 

no codewords share prefixes). The Huffman tree associated with an encoding is consequently a 

binary tree, with the property that leaves equate to codewords). 

• Huffman coding can be regarded as an entropy encoding method: the basic idea is that more 

common symbols are generally represented using fewer bits, while less common symbols use 

more bits, on average. 

The algorithm works recursively as follows: 

Repeatedly join two nodes with the smallest probabilities to form a new node with   

the sum of  the probabilities just joined. Assign a 0 to one branch and a 1 to the 

other branch.

Rinse and repeat…



Huffman Coding  

The algorithm works recursively as follows: 

Repeatedly join two nodes with the smallest probabilities to form a new node with   

the sum of  the probabilities just joined. Assign a 0 to one branch and a 1 to the 

other branch.

Demo: https://people.ok.ubc.ca/ylucet/DS/Huffman.html

https://people.ok.ubc.ca/ylucet/DS/Huffman.html


Huffman Coding  

Define L(X) the coding efficiency (also known as ABL/average bits per letter) the product of  the 

probability of  each symbol x from an alphabet S and its code length (|c(x)|), summed over all 

symbols: 

(*) A property of  Huffman codes (from the Shannon source coding theorem) is that: 

( ) ( ) | ( ) |
x S

L X p x c x




    ( ) 1H X L X H X  

Morse code 

compare



Example: The Entropy of  the English Language

• Let’s consider the problem of  computing the entropy of  the English language (naturally this 

quantity can provide a useful bound for a multitude of  source coding applications). 

• If  we take account of  the relative frequency of  each letter x, then we effectively consider a 

block of  letters of  length N =1 (we include space as the 27th letter). We’ll call this our first order 

estimate of  the entropy of  English (H): 

 
 
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log 4.08 /
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G p x bits letter
p x
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Example: The Entropy of  the English Language

• Using a block length of  N=2 effectively takes account of  the dependencies between adjacent 

letters (there are 729=272 such distinct pairs; denote Bk=[xi,yj]).

The second order estimate G2 of  H is: 

• Similarly, we can consider longer range dependencies if  we use blocks of  N = 3 letters (for 

19,683 distinct letter triplets). 

 
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Example: The Entropy of  the English Language

• In principle, the process of  calculating GN for larger values of  N (where N is the block 

length) renders the block probabilities p(Bk) nearly independent. 

In practice, as N increases, the estimated entropy of  English converges to a value of  about 

GN=1/8 bits/letter. 

(*) If  the entropy of  English is H = 1.8 bits/letter,  then Shannon’s source coding theorem 

guarantees that we should be able to communicate letters using just over 1.8 binary digits per 

letter. 



Joint Distributions

• Entropy can be defined analogously for a joint distribution: 

• H(X,Y) is commonly expressed in units bits per pair; the joint entropy H(X,Y) is the average 

amount of  Shannon information of  each pair of  values, where this average is taken over all 

possible pairs. 

• Just as entropy of  a single variable can be considered a measure of  uncertainty/non-

uniformity, so the entropy of  a joint distribution is also a measure of  uncertainty/non-

uniformity. If  all possible pairs of  values are equally probable, then this defines a uniform, 

maximum entropy distribution. 

   
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Joint Distributions

• Recall that if  random variables X and Y are statistically independent, then knowing the value of  

X provides no information about Y and vice versa. In particular, the joint distribution factors 

for independent variables, viz., p(X,Y)=p(X)p(Y). 

(*) If  X and Y are independent, then the entropy of  the joint distribution p(X,Y) is equal to 

the summed entropies of  the marginal distributions, namely: 

Pf. 
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Joint Distributions

• Recall that if  random variables X and Y are statistically independent, then knowing the value of  

X provides no information about Y and vice versa. In particular, the joint distribution factors 

for independent variables, viz., p(X,Y)=p(X)p(Y). 

(*) If  X and Y are independent, then the entropy of  the joint distribution p(X,Y) is equal to 

the summed entropies of  the marginal distributions, namely: 
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Joint Distributions

• Recall that if  random variables X and Y are statistically independent, then knowing the value of  

X provides no information about Y and vice versa. In particular, the joint distribution factors 

for independent variables, viz., p(X,Y)=p(X)p(Y). 

(*) If  X and Y are independent, then the entropy of  the joint distribution p(X,Y) is equal to 

the summed entropies of  the marginal distributions, namely: 

Pf. 
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Why?



Joint Distributions

 , ( ) ( )H X Y H X H Y when X Y  

Example: Consider X, Y the values of  two unbiased 6-sided dice after a roll.

H(X,Y) = log 36 ≈ 5.17 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑎𝑖𝑟

H(X) = H(Y) = log 6 ≈ 2.59 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑝𝑎𝑖𝑟.

Hence, H(X,Y) = H(X) + H(Y). 



KL Divergence

• One way to measure the dissimilarity of  two probability distributions, p and q, is known as the 

Kullback-Leilber divergence (KL Divergence) or relative entropy: 

      
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KL Divergence

• One way to measure the dissimilarity of  two probability distributions, p and q, is known as the 

Kullback-Leilber divergence (KL Divergence) or relative entropy: 

This can be rewritten as: 

Where H(p,q)= σ𝑘 𝑃 𝑥 = 𝑘 𝑙𝑜𝑔𝑞(𝑋 = 𝑘); this expression is known as cross entropy. 

(*) KL divergence can be interpreted as the average number of  extra bits needed to encode 

the data – due to the fact that we used distribution q to encode the data instead of  the true 

distribution p; note that KL divergence is not symmetric!

(*) The “extra number of  bits” interpretation should make it clear that 𝐾𝐿(𝑝||𝑞) ≥ 0.
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KL Divergence: Information Inequality

(*) KL divergence can be interpreted as the average number of  extra bits needed to encode 

the data – due to the fact that we used distribution q to encode the data instead of  the true 

distribution p. The “extra number of  bits” interpretation should make it clear that 

𝐾𝐿(𝑝||𝑞) ≥ 0.

Theorem (Information inequality): KL(𝑝||𝑞) ≥ 0 𝑎𝑛𝑑 𝐾𝐿 = 0 𝑖𝑓𝑓 𝑝 = 𝑞.
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KL Divergence: Information Inequality

(*) KL divergence can be interpreted as the average number of  extra bits needed to encode 

the data – due to the fact that we used distribution q to encode the data instead of  the true 

distribution p. The “extra number of  bits” interpretation should make it clear that 

𝐾𝐿(𝑝||𝑞) ≥ 0.

Theorem (Information inequality): KL(𝑝||𝑞) ≥ 0 𝑎𝑛𝑑 𝐾𝐿 = 0 𝑖𝑓𝑓 𝑝 = 𝑞.

Pf.
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KL Divergence: Information Inequality

(*) KL divergence can be interpreted as the average number of  extra bits needed to encode 

the data – due to the fact that we used distribution q to encode the data instead of  the true 

distribution p. The “extra number of  bits” interpretation should make it clear that 

𝐾𝐿(𝑝||𝑞) ≥ 0.

Theorem (Information inequality): KL(𝑝||𝑞) ≥ 0 𝑎𝑛𝑑 𝐾𝐿 = 0 𝑖𝑓𝑓 𝑝 = 𝑞.

Pf.
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KL Divergence: Information Inequality

(*) KL divergence can be interpreted as the average number of  extra bits needed to encode 

the data – due to the fact that we used distribution q to encode the data instead of  the true 

distribution p. The “extra number of  bits” interpretation should make it clear that 

𝐾𝐿(𝑝||𝑞) ≥ 0.

Theorem (Information inequality): KL(𝑝||𝑞) ≥ 0 𝑎𝑛𝑑 𝐾𝐿 = 0 𝑖𝑓𝑓 𝑝 = 𝑞.

Pf.

This follows because log is a convex function, i.e. log(x) ≤ x
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KL Divergence: Information Inequality

(*) KL divergence can be interpreted as the average number of  extra bits needed to encode 

the data – due to the fact that we used distribution q to encode the data instead of  the true 

distribution p. The “extra number of  bits” interpretation should make it clear that 

𝐾𝐿(𝑝||𝑞) ≥ 0.

Theorem (Information inequality): KL(𝑝||𝑞) ≥ 0 𝑎𝑛𝑑 𝐾𝐿 = 0 𝑖𝑓𝑓 𝑝 = 𝑞.

Pf.

In summary: KL(𝑝||𝑞) ≥ 0 , as was to be shown. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log |K|, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  



KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log |K|, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log |K|, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log |K|, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log K, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log K, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log K, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log K, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 
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KL Divergence: Information Inequality

(*) One important consequence of  the information inequality (that we alluded to previously) is 

that the discrete distribution with maximum entropy is the uniform distribution. More 

precisely, H(X) ≤ log K, where K is the number of  states for the random variable X, with 

equality holding iff p(x) is uniform.  

Pf. Consider any generic discrete probability distribution p(x), and let u(x)=1/K, the uniform 

distribution on K states. 

(*) In summary: H(X) ≤ log K, where K is the number of  states for the random variable X, 

with equality holding iff p(x) is uniform; thus the discrete distribution with maximum entropy 

is the uniform distribution, as was to be shown. 
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KL Divergence: Information Inequality

• We’ve demonstrated, using the information inequality, that the discrete distribution with 

maximum entropy is the uniform distribution. 

• This is a formulation of  Laplace’s Principle of  Insufficient Reason (PIR) which argues in 

favor of  using uniform distributions when there are no other reasons to favor one distribution 

over another. 

• In Bayesian learning, we typically want a distribution that satisfies certain constraints but is 

otherwise as least-commital as possible (for example we might prefer to choose priors with 

maximum entropy). 

(*) Among all real-valued distributions with a specified variance (i.e. second moment) the 

Gaussian distribution has maximum entropy. 



Mutual Information

• Consider two random variables, X and Y. Suppose we want to know how much knowing one 

variable tells us about the other. We could compute a quantity such a correlation, however, this 

is a very limited measure of  dependence. 

• A more general approach is to determine how similar the joint distribution p(X,Y) is to the 

factored distribution p(X)p(Y). This leads to the definition of  mutual information: 

(*) It follows that I(X,Y) ≥ 0 with equality iff p(X,Y) = p(X)p(Y), meaning that mutual 

information equals zero iff X and Y are independent (Note that, by contrast, correlation 

between X and Y can be zero, even when X and Y are dependent). 
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Mutual Information

(*) It follows that I(X,Y) ≥ 0 with equality iff p(X,Y) = p(X)p(Y), meaning that mutual 

information equals zero iff X and Y are independent (Note that, by contrast, correlation 

between X and Y can be zero, even when X and Y are dependent). 

• Intuitively, mutual information measures the information that X and Y share: It measures 

how much knowing one of  these variables reduces uncertainty about the other. 

For example, if  X and Y are independent, then knowing X does not give any information 

about Y and vice versa, so their mutual information is zero. 

At the other extreme, if  X is a deterministic function of  Y and Y is a deterministic function 

of  X then all information conveyed by X is shared with Y: knowing X determines the value of  

Y and vice versa. As a result, in this case the mutual information is the same as the uncertainty 

contained in Y (or X) alone, namely the entropy of  Y (or X). 
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Mutual Information

(*) One can show that mutual information (MI) is equivalent to: 

Where H(Y|X) is the conditional entropy of  Y given X, which is the average uncertainty in 

the value of  Y after X is observed (H(X|Y) is, similarly, the average uncertainty in value of  X 

after Y is observed). 
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Mutual Information

(*) One can show that mutual information (MI) is equivalent to: 

Where H(Y|X) is the conditional entropy of  Y given X, which is the average uncertainty in 

the value of  Y after X is observed (H(X|Y) is, similarly, the average uncertainty in value of  X 

after Y is observed). 

Consequently, MI between X and Y can be interpreted as the reduction in uncertainty about X 

after observing Y, or by symmetry, the reduction in uncertainty about Y after observing X. 
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(*) One can show that I(X,Y)=H(X)+H(Y)-H(X,Y) 



Mutual Information: Example of  Coding Efficiency

• Consider an example of  a binary image X (shown on the left) transmitted using a noisy 

channel, so that each pixel value has a 10% probability of  being flipped resulting in distorted 

image Y (on right). 

Fist, we’ll compute I(X,Y) and then quantify the transmission efficiency; recall that 

I(X,Y)=H(X)+H(Y)-H(X,Y).



Mutual Information: Example of  Coding Efficiency

• Consider an example of  a binary image X (shown on the left) transmitted using a noisy 

channel, so that each pixel value has a 10% probability of  being flipped resulting in distorted 

image Y (on right). 

Fist, we’ll compute I(X,Y) and then quantify the transmission efficiency; recall that 

I(X,Y)=H(X)+H(Y)-H(X,Y).

(*) In the original image, 0.724 of  the pixels are black (0) and 0.276 are white (1), so the 

entropy is:

H(X)=p(0)log(1/p(0))+p(1)log(1/p(1))=0.851 bits/pixel. (in truth this is an overestimate of  

the entropy, because we ignored adjacency relationships). 



Mutual Information: Example of  Coding Efficiency

Fist, we’ll compute I(X,Y) and then quantify the transmission efficiency; recall that 

I(X,Y)=H(X)+H(Y)-H(X,Y).

(*) In the original image, 0.724 of  the pixels are black (0) and 0.276 are white (1), so the 

entropy is:

H(X)=p(0)log(1/p(0))+p(1)log(1/p(1))=0.851 bits/pixel. (in truth this is an overestimate of  

the entropy, because we ignored adjacency relationships). 

(*) In the corrupted image, a proportion 0.679 of  the pixels are black and 0.322 are white 

(again, we ignore correlations between neighboring pixel values).

H(Y)= p(0)log(1/p(0))+p(1)log(1/p(1))=0.906 bits/pixel. 



Mutual Information: Example of  Coding Efficiency

Fist, we’ll compute I(X,Y) and then quantify the transmission efficiency; recall that 

I(X,Y)=H(X)+H(Y)-H(X,Y).

H(X)= 0.851 bits/pixel.

H(Y)= 0.906 bits/pixel. 

Computing the joint entropy: H(X,Y)=p(0,0)log(1/p(0,0))+…+p(1,1)log(1/p(1,1))=1.32 

bits/pixel. 

I(X,Y)=H(X)+H(Y)-H(X,Y)=0.851+0.906-1.32=0.436 bits. 

This means that each value of  the output Y reduces our uncertainty about the corresponding 

value of  the input X by about half  a bit. 



Mutual Information: Example of  Coding Efficiency

H(X)= 0.851 bits/pixel; H(Y)= 0.906 bits/pixel; H(X,Y)=1.32 bits/pixel. 

I(X,Y)=H(X)+H(Y)-H(X,Y)=0.851+0.906-1.32=0.436 bits. 

This means that each value of  the output Y reduces our uncertainty about the corresponding 

value of  the input X by about half  a bit. 

Lastly, one can quantify the transmission efficiency by computing the ratio:

I(X,Y)/H(Y) = 0.436/0.906 = 0.481.

(*) This implies that almost half  of  the entropy of  the output depends on the input, and the 

remainder is due to noise in the channel. 



Shannon’s Noisy Channel Coding Theorem

• The most general definition of  channel capacity for any channel is: 

This states that the channel capacity is achieved by the distribution p(X) which makes the 

mutual information I(X,Y) between the input and output as large as possible. 

• Using conditional entropy, as previously stated, we can rewrite this equation as: 

Note that if  there is no noise in the channel, then H(X|Y)=0 (why?), in which case the 

channel capacity formula which reduces to the definition of  channel capacity provided earlier 

for the case with no noise. 

 
max ( , )
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capacity I X Y bits
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max ( ) ( | )
p X

capacity H X H X Y bits 



Shannon’s Noisy Channel Coding Theorem

• The most general definition of  channel capacity for any channel is: 

This states that the channel capacity is achieved by the distribution p(X) which makes the 

mutual information I(X,Y) between the input and output as large as possible. 

(*) Shannon’s noisy channel coding theorem states (paraphrasing): it is possible to use a 

communication channel to communicate information with a low error rate, at a rate 

arbitrarily close to the channel capacity, but it is not possible to communication 

information at a rate greater than the channel capacity. 

 
max ( , )
p X

capacity I X Y bits




