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Just a little history: Baconian 

Method
Francis Bacon’s text Novum Organum (1620) -- “New Method” – was highly influential

upon the development of  modern science, chiefly for rejecting medieval Aristotelianism and 

promulgating inductive reasoning in the sciences. 

Bacon's method of  induction is much more complex than the essential inductive process 

of  making generalizations from observations. His method includes a meticulous 

description of  the requirements for making the careful, systematic observations necessary 

to produce quality facts. He then proceeds to use induction, the ability to generalize from 

a set of  facts to one or more axioms. However, he stresses the necessity of  not 

generalizing beyond what the facts truly demonstrate. The next step may be to gather 

additional data, or the researcher may use existing data and the new axioms to establish 

additional axioms. The whole process is repeated in a stepwise fashion to build an 

increasingly complex base of  knowledge, but one which is always supported by observed 

facts/empirical data. 



Learning Feasibility
• In Machine Learning we wish to learn an unknown target function f. A natural question arises: 

how can a limited data set reveal enough information to pin down an entire target function? 

(*) Recommended reading: 

Vapnik, The Nature of 

Statistical Learning Theory



Learning Feasibility
• In Machine Learning we wish to learn an unknown target function f. A natural question arises: 

how can a limited data set reveal enough information to pin down an entire target function? 

f is in fact ambiguous here; f=1 for symmetric 

pattern works – but so does f=1 when top-left 

square is white. 



Learning Feasibility

• A formative question in ML: Does the data set D tell us anything outside of  D that we didn’t 

know before? If  the answer is yes, then we have learned something; otherwise, if  the answer is 

no, we can conclude that learning is not feasible. 

• Because we are never privy to the function f (otherwise learning itself  would be needless), it 

stands to reason that f remains unknown outside of  D. We demonstrate this notion with an 

example. 



Learning Feasibility
• Consider a Boolean target function over a 3-D input space X={0,1}3. We are given a data set 

D of  five examples represented in the table. 

• Where yn=f(xn) for n = 1, 2, 3, 4, 5. Note that there are 28=256 distinct Boolean functions 

defined on 3 Boolean inputs. 



Learning Feasibility
• Consider a Boolean target function over a 3-D input space X={0,1}3. We are given a data set 

D of  five examples represented in the table. 

•Where yn=f(xn) for n = 1, 2, 3, 4, 5. Note that there are 28=256 distinct Boolean functions 

defined on 3 Boolean inputs. 

• Let’s consider the problem of  learning f concretely. Since f is unknown except inside D, any 

function that agrees with D could conceivably be f. The table below shows all such functions 

f1,…,f8; g is the final hypothesis. 



Learning Feasibility

• We cannot exclude any of  the f1,…,f8 from being the true f – this poses a natural dilemma:  

choosing an appropriate g function (to be used for predictions on unseen data) is 

deterministically ill-posed. 

• Furthermore, the performance of  g on D makes no difference whatsoever as far as the 

performance outside of  D is concerned. Nevertheless, the performance outside D is all that 

matters for learning. 

(*) As we show, inference can be done effectively when we introduce a probabilistic framework. 



Learning Feasibility
• Consider a Boolean target function over a 3-D input space X={0,1}3. We are given a data set 

D of  five examples represented in the table. 

•Where yn=f(xn) for n = 1, 2, 3, 4, 5. Note that there are 28=256 distinct Boolean functions 

defined on 3 Boolean inputs. 

• Let’s consider the problem of  learning f concretely. Since f is unknown except inside D, any 

function that agrees with D could conceivably be f. The table below shows all such functions 

f1,…,f8; g is the final hypothesis. 

(*) To infer something outside 

of  D we need to incorporate

probabilistic bounds. 



Learning Feasibility: Hoeffding Inequality
• As a simple example, consider a bin consisting of  green and red marbles; let μ equal the true 

proportion of  red marbles – so 1- μ represents the true proportion of  green marbles. We pick 

a random sample of  N independent marbles (with replacement) from the bin and observe ν, the 

fraction of  red marbles within the sample. 



Learning Feasibility: Hoeffding Inequality
• As a simple example, consider a bin consisting of  green and red marbles; let μ equal the true 

proportion of  red marbles – so 1- μ represents the true proportion of  green marbles. We pick 

a random sample of  N independent marbles (with replacement) from the bin and observe ν, the 

fraction of  red marbles within the sample. 

• To quantify the relationship between and μ (true proportion of  red) and ν (sample proportion 

of  red), we use a simple bound called the Hoeffding Inequality, which states that for any 

sample size N:

• Note: ν is a random variable; μ is a fixed constant. The bound (RHS) is independent of  μ. The 

utility of  the Hoeffding Inequality is to infer the value of  μ using the point-estimate ν; only the 

size of  the sample N (not the bin size itself) affects the bound; a sample value ν “close” to μ

necessitates a large sample size.  

(*) For bounds for sums of  independent random variables, see: Chernoff  bounds.
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Learning Feasibility: Hoeffding Inequality
Q: How does the Hoeffding Inequality relate to the general learning problem?

• Take any single hypothesis h 𝜖 H and compare it to f  on each point x 𝜖 X. If  ℎ(𝒙) = 𝑓(𝒙), 

color the point x green (we got it right) – otherwise if  ℎ(𝒙) ≠ 𝑓(𝒙)) color the point x red. 

• The color that each point gets is not known to us, since f is unknown. However, if  we pick x at 

random according to some probability distribution P over the input space X, we know that x will 

be red with some probability, call it μ, and green with probability 1- μ. Regardless of  the value of  

μ, the space X now behaves like the bin we previously described. 



Learning Feasibility: Hoeffding Inequality
Q: How does the Hoeffding Inequality relate to the general learning problem?

• Take any single hypothesis h 𝜖 H and compare it to f  on each point x 𝜖 X. If  ℎ(𝒙) = 𝑓(𝒙), 

color the point x green (we got it right) – otherwise if  ℎ(𝒙) ≠ 𝑓(𝒙) color the point x red. 

• The color that each point gets is not known to us, since f is unknown. However, if  we pick x at 

random according to some probability distribution P over the input space X, we know that x will 

be red with some probability, call it μ, and green with probability 1- μ. Regardless of  the value of  

μ, the space X now behaves like the bin we previously described. 

(*) The training examples play the role of  a sample from the bin. If  the inputs x1, …, xN in D are 

picked independently according to P, we will get a random sample of  red (ℎ(𝒙) ≠ 𝑓(𝒙)) and 

green (ℎ(𝒙) = 𝑓(𝒙)) points. The color of  each point will be known to us, since both h(xn) and 

f(xn) are known for n = 1,…, N. The learning problem is thus reduced to the bin problem. 



Learning Feasibility: Hoeffding Inequality
(*) With this equivalence, the Hoeffding Inequality can be applied to the learning problem –

which enables us to make predictions outside of  D. 

• Using ν to predict μ tells us something about f, although it doesn’t tell us what f is. What μ tells 

us is the error rate h makes in approximating f.  If  ν happens to be close to zero, we can predict 

that h will approximate f well over the entire input space. 



Learning Feasibility: Hoeffding Inequality
• For a more complete equivalence, we want to consider the case where we have multiple 

hypotheses, in order to capture real learning. 

Define the in-sample error for hypothesis h: 

where I denotes the indicator function. Define the out-of-sample error: 

which corresponds to μ in the bin model. The probability is bsed on the distribution P over X

which is used to sample the data points x. 
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Learning Feasibility: Hoeffding Inequality

• With these definitions, we can apply the Hoeffding Inequality using Ein for ν and Eout for μ: 

• Recall that the in-sample error Ein, just like ν, is a random variable that depends on the sample. 

The out-of-sample error, Eout, just like μ, is unknown but fixed. 
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Learning Feasibility: Hoeffding Inequality

• With these definitions, we can apply the Hoeffding Inequality using Ein for ν and Eout for μ: 

• Recall that the in-sample error Ein, just like ν, is a random variable that depends on the sample. 

The out-of-sample error, Eout, just like μ, is unknown but fixed. 

(*) Notice that this bound makes a subtle assumption. Here we presume that the hypothesis h is 

fixed before we generate the data set. If  you are allowed to change h after you generate the data 

set, the assumptions that are needed to prove the Hoeffding Inequality no longer hold!

(*) We are in fact most interested in a bound (as it applies to 

the general learning problem) of  the form:
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Learning Feasibility: Hoeffding Inequality

• With these definitions, we can apply the Hoeffding Inequality using Ein for ν and Eout for μ: 

• Recall that the in-sample error Ein, just like ν, is a random variable that depends on the sample. 

The out-of-sample error, Eout, just like μ, is unknown but fixed. 

(*) Notice that this bound makes a subtle assumption. Here we presume that the hypothesis h is 

fixed before we generate the data set. If  you are allowed to change h after you generate the data 

set, the assumptions that are needed to prove the Hoeffding Inequality no longer hold!

(*) We are in fact most interested in a bound (as it applies to 

the general learning problem) of  the form:

Where g is not fixed before generating the data – all the more:

which hypothesis is selected to be g depends on the data. 
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Learning Feasibility: Hoeffding Inequality

Q: How do we generalize the Hoeffding Inequality to the case of  g, the final hypothesis that we 

choose (which depends on the data)?  



Learning Feasibility: Hoeffding Inequality

Q: How do we generalize the Hoeffding Inequality to the case of  g, the final hypothesis that we 

choose (which depends on the data)?  

A: There is an elementary method. Notice that it follows that: 

where we assume H={h1, h2,…, hM}, i.e., the hypothesis space is finite. 
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Learning Feasibility: Hoeffding Inequality

Q: How do we generalize the Hoeffding Inequality to the case of  g, the final hypothesis that we 

choose (which depends on the data)?  

A: There is an elementary method. Notice that it follows that: 

where we assume H={h1, h2,…, hM}, i.e., the hypothesis space is finite. 
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Learning Feasibility: Hoeffding Inequality

Q: How do we generalize the Hoeffding Inequality to the case of  g, the final hypothesis that we 

choose (which depends on the data)?  

A: There is an elementary method. Notice that it follows that: 

where we assume H={h1, h2,…, hM}, i.e., the hypothesis space is finite. 
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Why? The “union bound”: 

P(A1 OR A2) ≤ P(A1)+P(A2)



Learning Feasibility: Hoeffding Inequality
Q: How do we generalize the Hoeffding Inequality to the case of  g, the final hypothesis that we 

choose (which depends on the data)?  

A: There is an elementary method. Notice that it follows that: 

where we assume H={h1, h2,…, hM}, i.e., the hypothesis space is finite. 

This implies:

(*) Now we can apply the Hoeffding Inequality to the M terms one at a time, bounding each by 

2𝑒−2ε
2𝑁.

(*) This yields a “uniform” bound; the downside for this uniform estimate is that the 

probability bound is a factor of  M looser than the bound for a single hypothesis, and is only 

meaningful if  M is finite. 
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Learning Feasibility
• Let’s now reconcile the issue of  whether D tells us anything outside of  D that we didn’t know 

before. 

(*) If  we insist on a deterministic answer, which means that D tells us something certain about f

outside of  D – then the answer is NO. 

(*) However, if  we accept a probabilistic answer, which means that D tells us something likely

about f outside of D then the answer is YES. (the only assumption we made was that the 

examples in D are generated independently) 



Learning Feasibility
• Next, let’s pin down what we mean by the feasibility of  learning. 

• If  learning is successful, then g should approximate f  well, which means that 𝐸𝑜𝑢𝑡 𝑔 ≈ 0.
However, this is not what we get from the probabilistic analysis. What we get instead is: 

𝐸𝑜𝑢𝑡 𝑔 ≈ 𝐸𝑖𝑛 𝑔 . 

• We still have to make 𝐸𝑖𝑛 𝑔 ≈ 0 in order to conclude that 𝐸𝑜𝑢𝑡 𝑔 ≈ 0. We cannot guarantee 

that we will find a hypothesis that achieves 𝐸𝑖𝑛 𝑔 ≈ 0. The Hoeffding Inequality nevertheless 

assures us that 𝐸𝑜𝑢𝑡 𝑔 ≈ 𝐸𝑖𝑛 𝑔 , so we can use Ein as a proxy for Eout. 

In general, the feasibility of  learning boils down to (2) conditions:

(1) Can we make sure that Eout(g) is close enough to Ein(g)?  (Hoeffding Inequality addresses 

this)

(2) Can we make Ein(g) small enough? 

(*) The second question is answered after we run the learning algorithm on the actual data and 

see who small we can get Ein to be. 



Learning Feasibility
In general, the feasibility of  learning boils down to (2) conditions:

(1) Can we make sure that Eout(g) is close enough to Ein(g)?  (Hoeffding Inequality addresses 

this)

(2) Can we make Ein(g) small enough? 

(*) The second question is answered after we run the learning algorithm on the actual data and 

see who small we can get Ein to be. 

Complexity of  H: If  the number of  hypotheses M goes up, we run more risk that Ein(g) will 

be a poor estimator of  Eout(g) according to the Hoeffding Inequality. M can thus be thought of  

as a measure of  the “complexity” of  the hypothesis set H that we use. 

If  we want to satisfy issue (1) above, we need a relatively small M. Conversely, if  we want to 

satisfy condition (2), it is better to have a large hypothesis space H. 

(*) This tradeoff  is, naturally, a major theme in ML. 



Learning Feasibility
In general, the feasibility of  learning boils down to (2) conditions:

(1) Can we make sure that Eout(g) is close enough to Ein(g)?  (Hoeffding Inequality addresses 

this)

(2) Can we make Ein(g) small enough? 

(*) The second question is answered after we run the learning algorithm on the actual data and 

see who small we can get Ein to be. 

Complexity of  f: If  f is complex, this should be harder to learn than a simple f. Note that the 

complexity of  f does not affect how well Ein(g) approximate Eout(g). 

However, this doesn’t imply that we can learn complex functions as easily as simple functions. 

If  the target function is complex, then this affects condition (2), since the data are hard to fit 

for a complex f. In order to decrease Ein(g) for a complex f we need to increase M (the size of  

the hypothesis set), which in turn makes learning more difficult. 



Theory of  Generalization
• We have previously discussed how the value of  Ein does not always generalize to a similar 

value of  Eout. Generalization is a key issue in learning. One can define the generalization error 

as the discrepancy between Ein and Eout. 

The Hoeffding Inequality furnished a way to characterize the generalization error with a 

probabilistic bound: 

We can rephrase this as follows: given a tolerance level δ, one can assert with probability at 

least 1 – δ that: 

(*) This is known as a generalization bound because it bounds Eout in terms of  Ein. 
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Theory of  Generalization
• We have previously discussed how the value of  Ein does not always generalize to a similar 

value of  Eout. Generalization is a key issue in learning. One can define the generalization error 

as the discrepancy between Ein and Eout. 

The Hoeffding Inequality (HI) furnished a way to characterize the generalization error with a 

probabilistic bound: 

We can rephrase this as follows: given a tolerance level δ, one can assert with probability at 

least 1 – δ that: 

(*) This is known as a generalization bound because it bounds Eout in terms of  Ein. 

Pf. 

By HI, we have: with probability at least 1- 2𝑀𝑒−2ε
2𝑁, 𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛 ≤ 𝜀.
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Theory of  Generalization
• We have previously discussed how the value of  Ein does not always generalize to a similar 

value of  Eout. Generalization is a key issue in learning. One can define the generalization error 

as the discrepancy between Ein and Eout. 

The Hoeffding Inequality (HI) furnished a way to characterize the generalization error with a 

probabilistic bound: 

We can rephrase this as follows: given a tolerance level δ, one can assert with probability at 

least 1 – δ that: 

(*) This is known as a generalization bound because it bounds Eout in terms of  Ein. 

Pf. 

By HI, we have: with probability at least 1- 2𝑀𝑒−2ε
2𝑁, 𝐸𝑜𝑢𝑡 − 𝐸𝑖𝑛 ≤ 𝜀.

This implies that Eou𝑡 ≤ 𝐸𝑖𝑛 + 𝜀; we then identify δ = 2𝑀𝑒−2ε
2𝑁; solving for ε yields the result. 
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Theory of  Generalization

• Given a tolerance level δ, one can assert with probability at least 1 – δ that: 

• This is known as a generalization bound because it bounds Eout in terms of  Ein. 

(*) Observe that the “other” inequality suggested by the HI is also useful. Namely: ȁ
ȁ

𝐸𝑜𝑢𝑡 −
𝐸𝑖𝑛 ≤ 𝜀 also implies 𝐸𝑜𝑢𝑡 ≥ 𝐸𝑖𝑛 − ε for all h 𝜖 H. 

This second inequality assures us that every hypothesis with a higher Ein than g (our chosen 

model) will also have a comparably higher Eout. 
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Theory of  Generalization

• Given a tolerance level δ, one can assert with probability at least 1 – δ that: 

• This is known as a generalization bound because it bounds Eout in terms of  Ein. 

(*) Notice that the “error bar” , 
1

2𝑁
𝑙𝑛

2𝑀

δ
, in the bound above, depends explicitly on M, the 

size of  the hypothesis set H. When M is infinite this bound becomes meaningless. Next we 

consider how to deal with infinite H. 
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Theory of  Generalization: Effective 

Number of  Hypotheses
• We begin by defining the growth function (i) – a combinatorial quantity that captures how 

different the hypotheses in H are, and hence how much overlap they contain. 

• Next we give a bound for the growth function (ii); finally, we show that we can subsequently 

replace M in the generalization bound with the growth function (iii). Together, these steps will 

yield a generalization bound that applies to the case when H is finite or infinite. 



Theory of  Generalization: Effective 

Number of  Hypotheses
• We begin by defining the growth function – a combinatorial quantity that captures how 

different the hypotheses in H are, and hence how much overlap they contain. 

• Next we give a bound for the growth function; finally, we show that we can subsequently 

replace M in the generalization bound with the growth function. Together, these steps will yield 

a generalization bound that applies to the case when H is finite or infinite. 

• For mathematical simplicity, consider the case of  binary target functions, so that for each h 𝜖
H, h maps X to {-1, +1}.

• If  h is applied to a finite sample of  points x1, …, xN 𝜖 X, we get an N-tuple: h(x1),…,h(xN) of  

+/-1’s. 

• We call such an N-tuple a dichotomy on x1,…,xN, since it splits x1,…,xN into two groups: 

those whose points for which h is -1 and those for which h is +1.  In this way, each h 𝜖 H

generates a dichotomy on x1,…,xN. 



Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. Let x1, …, xN 𝜖 X. The dichotomies generated by the hypothesis set H on these 

points are defined by:

• One can think of  the dichotomies H(x1,…,xN) as a set of  hypotheses just like H is, except that 

the hypotheses are seen through the eyes of  N points only. A larger H(x1,…,xN) signifies a 

more “diverse” H. 

       1 1,..., ,..., |N NH h h h H x x x x



Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. Let x1, …, xN 𝜖 X. The dichotomies generated by the hypothesis set H on these 

points are defined by:

• One can think of  the dichotomies H(x1,…,xN) as a set of  hypotheses just like H is, except that 

the hypotheses are seen through the eyes of  N points only. A larger H(x1,…,xN) signifies a 

more “diverse” H. 

Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

(*) In other words, mH(N) is the maximum number of  dichotomies that can be generated by H

on any N points. 
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

(*) In other words, mH(N) is the maximum number of  dichotomies that can be generated by H

on any N points. 

• To compute mH(N), we consider all possible choices of  N points x1,…,XN from X and pick 

the one that gives us the most dichotomies. Like M, mH(N) is a measure of  the number of  

hypotheses in H, except that a hypothesis is now considered on N points instead of  the entire 

X. 

It follows that mH(N) ≤ 2N. (why?)

• If  H is capable of  generating all possible dichotomies on x1,…,xN, then H(x1,…,xN) =

{-1,+1}N and we say that H can shatter x1,.., xN. This shows that H is as diverse as can be on 

this particular sample. 
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

Example. If  X is the Euclidean plane, and H is a 2-D perceptron, what are mH(3) and mH(4)? 
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

Example. If  X is the Euclidean plane, and H is a 2-D perceptron, what are mH(3) and mH(4)?

mH(3) = 8 for a perceptron, because it can shatter all possible combinations of  3 points, which 

yields 8 total dichotomies. 

mH(4) = 14 (less obvious); notice that there are 24=16 possible dichotomies for 4 points; recall 

that the XOR (and its symmetric counterpart) cannot be shattered by a 2-D perceptron. 
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

Example. Consider mH(N) for the following cases:

(1) Positive rays: H consists of  all hypotheses h: R →{-1, +1} of  the form h(x)=sign(x-a), i.e. the 

hypotheses are defined in a 1-D input space, and they return -1 to the left of  some value a

and +1 to the right of  a. 

Q: What is mH(N) in this case? 
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

Example. Consider mH(N) for the following cases:

(1) Positive rays: H consists of  all hypotheses h: R →{-1, +1} of  the form h(x)=sign(x-a), i.e. the 

hypotheses are defined in a 1-D input space, and they return -1 to the left of  some value a

and +1 to the right of  a. 

Q: What is mH(N) in this case? A: mH(N) = N + 1; since mH(N) is defined as the maximum 

number of  dichotomies, and as we vary a we get N+1 different dichotomies.  
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

Example. Consider mH(N) for the following cases:

(2) Positive Intervals: H consist of  all hypotheses in one dimension that return +1 within some 

interval and -1 otherwise. Each hypothesis is specified by two end points. 

Q: What is mH(N)? 
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Theory of  Generalization: Effective 

Number of  Hypotheses
Definition. The growth function is defined for a hypothesis set H, by: 

Where |∙| denotes the cardinality of  a set. 

Example. Consider mH(N) for the following cases:

(2) Positive Intervals: H consist of  all hypotheses in one dimension that return +1 within some 

interval and -1 otherwise. Each hypothesis is specified by two end points. 

Q: What is mH(N)? A: Given N points, the line is split by the points into N+1 regions. The 

dichotomy we get is decided by which two regions contain the end values of  the interval 

resulting in C(N+1,2) different dichotomies; lastly, if  both end points fall in the same region, 

the resulting hypothesis is the constant -1 regardless of  which region it is. This gives: is 

mH(N)=C(N+1,2)+1. 
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Theory of  Generalization: Effective 

Number of  Hypotheses

• Even with a few relatively simple examples, we start to see that computing mH(N) exactly can 

be challenging – if  not impossible – in general. Instead, we prefer to compute a more amenable 

upper-bound based on the notion of  a break point. 

Definition. If  no data of  size k can be shattered by H, then k is said to be a break point for 

H. 

(*) Naturally, if  k is a break point, then mH(k)<2k. For example, for 2-D perceptrons, k=4 is a 

break point. Consequently mH(4) < 24=16 (previously we noted that mH(4)=14). 

• Next we use the break point k to derive a bound on the growth function mH(N) for all values 

of  N.



Theory of  Generalization: Bounding the 

Growth Function

• Crucially, if  the condition mH(N)=2N breaks at any point, we can bound mH(N) for all values 

of  N by a simple polynomial based on this break point (for intuitive clarity: mH(N) breaks for 

N=4 for the 2-D perceptron, which means that mH(N) is likewise bounded for N=5, etc.). 

(*) The fact that the bound is polynomial is significant. Absent a polynomial bound (due to the 

presence of  a break point), the bound , 
1

2𝑁
𝑙𝑛

2𝑀

δ
, on the generalization error would not go to 

zero regardless of  how many training examples N we have!



Theory of  Generalization: Bounding the 

Growth Function

Theorem. Given a break point k, mH(k) < 2k, and it follows that:

(*) We omit the proof  for brevity; notice that the RHS is a polynomial in N of  degree k-1. Main 

point: If  H has a break point, we have what we want to ensure good generalization; a polynomial 

bound on mH(N).  The smaller the break point, the better the bound. 
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VC Dimension
• VC dimension is an important and deep concept in ML.

V. Vapnik

• VC dimension is a measure of  the capacity (i.e. complexity, expressive power, 

richness, or flexibility) of  a hypothesis set H that can be learned by a 

classification algorithm. 

Definition. VC dimension (of  a hypothesis set), denoted dvc(H), is the largest 

value of  N for which mH(N) = 2N. In other words maximum number of  

points that can be shattered by H. If  mH(N)=2N for all N, then dvc(H)=∞. 



VC Dimension
• Example: If  H corresponds with the set of  constant classifiers, its VC dimension is zero, 

since it cannot shatter even a single point. 



VC Dimension
• Example: If  H corresponds with the set of  constant classifiers, its VC dimension is zero, 

since it cannot shatter even a single point. 

• Example: If  is a straight line classifier (in 2-D). There exist sets of  3 points that can indeed be 

shattered using the model (any 3 points that are non-collinear can be shattered). However, no 

set of  4 points can be shattered. Thus the VC dimension of  a straight line is 3. 

Note we only show 3 of  the 

23=8 possible binary labelings

for 3 points. 



VC Dimension
• Example: If  H corresponds with the set of  constant classifiers, its VC dimension is zero, 

since it cannot shatter even a single point. 

• Example: If  is a straight line classifier (in 2-D). There exist sets of  3 points that can indeed be 

shattered using the model (any 3 points that are non-collinear can be shattered). However, no 

set of  4 points can be shattered. Thus the VC dimension of  a straight line is 3. 

• Example: consider the set of  hypotheses defined by a single-parameter “sine classifier”, i.e. for 

a certain parameter θ, the classifier fθ returns 1 if  the input number x is larger than sin(θx) and 

0 otherwise. 

• The VC dimension of  f is infinite, since it can 

shatter the set:                       for any positive m. 

(*) Note the last example shows, importantly, that 

VC dimension is not directly related to the number of

model parameters! 

Note we only show 3 of  the 

23=8 possible binary labelings

for 3 points. 

 2 |m m 



VC Dimension

• Another example: the VC dimension of  a rectangle in R2 (where the rectangle 

encompasses all data of  a particular class). 

• The diagram shows that a rectangle shatters at least 4 points in the plane; 

for 5 points there exists a counter-example (try it). 

• In general, the VC dimension of  a hyperplane in Rd  is d+1.

(e.g. in R2 we previously showed a hyperplane has VC dimension = 3). 



VC Dimension
• Another example: the VC dimension of  a spherical indicator function in R2 (where 

the sphere encompasses all data of  a particular class). 

• Three points in R2 can be shattered, but four cannot; thus VC dim(H) = 3 in 

R2 (useful for nearest neighbors classifiers, radial basis functions).

• The VC dimension of  a d-dimensional perceptron is d+1. 

For the curious, on VC dimension of  NNs: 
https://pdfs.semanticscholar.org/48ff/5cecb0f23714c50f2641e8565a3dba5eec88.pdf
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VC Dimension
Again, here is our polynomial bound for mH(N), based on a break point value k. Given a break 

point k, mH(k) < 2k, and it follows that:

• If  dvc (H) is the VC dimension of  H, then k=dvc+1 is a break point for mH, since mH(N) 

cannot equal 2N for any N > dvc by definition. Also, no smaller break point exists since H can 

shatter dvc points, hence it can also shatter any subset of  these points. 
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VC Dimension
Again, here is our polynomial bound for mH(N), based on a break point value k. Given a break 

point k, mH(k) < 2k, and it follows that:

• If  dvc (H) is the VC dimension of  H, then k=dvc+1 is a break point for mH, since mH(N) 

cannot equal 2N for any N > dvc by definition. Also, no smaller break point exists since H can 

shatter dvc points, hence it can also shatter any subset of  these points. 

• Putting this together, it follows that:

Thus, the VC dimension is the order of  the polynomial bound on mH(N) (since no smaller 

break point than k = dvc+1 exists). In fact one can show that: MH(N) ≤ Ndvc+1.
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VC Dimension
• Putting this together, it follows that:

Thus, the VC dimension is the order of  the polynomial bound on mH(N) (since no smaller 

break point than k = dvc+1 exists). In fact one can show that: mH(N) ≤ Ndvc+1 (using 

induction).

Notice that the growth function is bounded in terms of  VC dimension, as desired. Our last 

required task is to replace the number of  hypotheses M in the generalization bound with the 

growth function mH(N). 

(*) When dvc(H) is finite this procedure will basically work; however, we still need to sort out 

the case when dvc(H)=∞. 
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The VC Generalization Bound
Theorem. (VC generalization bound). For any tolerance δ > 0,

with probability ≥ 1- δ.

(*) The VC generalization bound is the most important mathematical result in the theory of  

learning. It establishes the feasibility of  learning – even in the case of  infinite hypothesis sets. 

• Since mH(2N) is a polynomial of  order dVC in N, with enough data, each and every hypothesis 

in an infinite H with a finite VC dimension will generalize well from Ein to Eout.

(*) Notice that with an infinite dVC, no matter how large the data set is, we cannot make 

generalization conclusion from Ein to Eout based on the VC analysis. 
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The VC Generalization Bound
Theorem. (VC generalization bound). For any tolerance δ > 0,

with probability ≥ 1- δ.

• The formal proof  of  the VC generalization bound is technical, so let’s only consider a very 

brief  sketch. 

The bulk of  the VC proof  deals with how to 

account for overlaps of  hypotheses.
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The VC Generalization Bound: 

Interpretation
Theorem. (VC generalization bound). For any tolerance δ > 0,

with probability ≥ 1- δ.

• The VC generalization bound is a universal result in the sense that it applies to all hypothesis 

sets, learning algorithms, input spaces, probability distributions, and binary target functions (it 

can be extended to other types of  target functions as well). 

Because of  this generality, the VC bound is quite loose. Why? Three main reasons: 

(1) It uses the Hoeffding Inequality which already incorporates some slack. 

(2) Using mH(N) to quantify the number of  dichotomies on N points, regardless of  which N 

points are in the data set, gives us a worst-case estimate.

(3) Bounding mH(N) by a simple polynomial of  order dVC also contributes to the slack in the 

VC bound. 
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The VC Generalization Bound: 

Interpretation
Theorem. (VC generalization bound). For any tolerance δ > 0,

with probability ≥ 1- δ.

• On-going analysis has only slightly diminished the looseness of  the VC bound. 

Q: So why bother using it? 

A: (i) VC analysis establishes the feasibility of  learning for infinite hypothesis sets – the only 

ones we use in practice. 

(ii) Despite the bound being loose, it tends to be equally loose for different learning models. It 

is therefore effective for comparing generalization performance of  these models. 
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The VC Generalization Bound: Sample 

Complexity 
Theorem. (VC generalization bound). For any tolerance δ > 0,

with probability ≥ 1- δ.

• The sample complexity denotes how many training examples N are needed to achieve a 

certain generalization performance. 

• This performance is specified by two parameters: ε and δ. The error tolerance ε determines the 

allowed generalization error, and the confidence parameter δ determines how often the error 

tolerance is violated. How fast N grows as ε and δ become smaller indicates how much data are 

needed to render good generalization. 

Solving the inequality:                                     for N gives: 
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The VC Generalization Bound: Sample 

Complexity 
• The sample complexity denotes how many training examples N are needed to achieve a 

certain generalization performance. 

• This performance is specified by two parameters: ε and δ. The error tolerance ε determines the 

allowed generalization error, and the confidence parameter δ determines how often the error 

tolerance is violated. How fast N grows as ε and δ become smaller indicates how much data are 

needed to render good generalization. 

Example. Suppose that we have a learning model with dVC=3 (e.g. a line in R2) and we would 

like the generalization error to be at most 0.1 with confidence 90% (i.e. ε = 0.1 and δ = 0.1). 

How big does our data set need to be? 

We need: 
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The VC Generalization Bound: Model 

Complexity
• Sample complexity fixes the performance parameters ε (generalization) and δ (confidence 

parameter) and estimates how many examples N are needed. 

In most practical situations, however, we are given a fixed data set D, so N is also fixed. In this 

case, the relevant question is what performance can we expect given this particular N. The VC 

generalization bound quantifies this. With probability at least 1- δ:

Example. Suppose that N=100 and we have a 90% confidence requirement (δ=0.1). We could 

ask what error bar can we offer with this confidence if  H has dVC=1. 

With confidence ≥ 90%.
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The VC Generalization Bound: Model 

Complexity
• Let’s consider the two parts that make up the bound on Eout in the VC generalization bound 

more closely. 

The first part is Ein, and the second part is a term that increases as the VC dimension of  H 

increases. 

where 

One way to think of  Ω(N,H,δ) is that it is a penalty for model complexity. It penalizes us by 

worsening the bound on Eout when we use a more complex H (i.e. larger dVC). The penalty 

Ω(N,H,δ) gets worse if  we insist on high confidence (i.e. lower δ), and it gets better when we 

have more training examples, as we would expect. 
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The VC Generalization Bound: Model 

Complexity
•The first part is Ein, and the second part is a term that increases as the VC dimension of  H 

increases. 

• One way to think of  Ω(N,H,δ) is that it is a penalty for model complexity. It penalizes us by 

worsening the bound on Eout when we use a more complex H (i.e. larger dVC). The penalty 

Ω(N,H,δ) gets worse if  we insist on high confidence (i.e. lower δ), and it gets better when we 

have more training examples, as we would expect. 

Although Ω(N,H,δ) goes up when H has 

higher VC dimension, Ein is likely to go 

down with A higher VC dimension as we 

have more choices within H to fit the data. 

Therefore, we have a tradeoff: more complex

models help Ein and hurt Ω(N,H,δ). 

(*) The optimal model is a compromise that

minimizes a combination of  the two. 
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Generative and Discriminative 

Models

• A discriminative classifier directly fits the class posterior, e.g. SVMs, decision trees, 

logistic regression: 

• A generative classifier specifies how to generate data using the class-conditional density 

p(x|y = c) and the class prior p(y = c), e.g., Naïve Bayes, GMM, HMM, generative 

adversarial networks (GAN).  
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Bayesian Concept Learning
• We begin with a simple example (due to Tenebaum*) of  Bayesian concept learning called 

the number game. 

• The game proceeds as follows: I choose some simple arithmetical concept C, such as 

“prime number” or “a number between 1 and 10”; I then give you a series of  

randomly chosen positive examples: D={x1,…,xN} drawn from C, and ask you 

whether some new test case ො𝑥 belong to C, i.e., I ask you to classify ො𝑥. 

*https://dspace.mit.edu/bitstream/handle/1721.1/16714/42471842-MIT.pdf



Bayesian Concept Learning
• We begin with a simple example (due to Tenebaum*) of  Bayesian concept learning called 

the number game. 

• The game proceeds as follows: I choose some simple arithmetical concept C, such as 

“prime number” or “a number between 1 and 10”; I then give you a series of  

randomly chosen positive examples: D={x1,…,xN} drawn from C, and ask you 

whether some new test case ො𝑥 belong to C, i.e., I ask you to classify ො𝑥. 

• For simplicity, let’s consider the case that we are dealing with the domain of  integers 

between 1 and 100. Now suppose I tell you “16” is a positive example of  the 

concept. What other numbers do you think are positive? 17? 6? 32? 99? It’s 

obviously hard to tell with one example. 

• Presumably numbers that are similar in some sense to 16 are more likely. But similar 

in what way? 17 is “close by”; 6 has a digit in common; 32 is similar because it also 

even and a power of  2; 99 on the other hand seems “dissimilar.” 



Bayesian Concept Learning

• Thus some numbers are more likely than others. Naturally, we can encapsulate this 

concept via probability distribution: p( ො𝑥 |D), which is the probability that ො𝑥 𝜖 C 

given the data D for any ො𝑥 𝜖 {1,…,100}. This is called the posterior predictive 

distribution. 



Bayesian Concept Learning
• If  I tell you that in addition, 8, 2 and 64 are also positive examples. Then you are 

likely to guess that the hidden concept is “powers of  2.” This is an example of  

induction. 

• Given this hypothesis, the predictive distribution is quite specific, and puts most of  

its mass on powers of  2. 

• Conversely, if  I tell you that the data is D={16, 23, 19, 20}, you will get a different 

kind of  generalization gradient. 



Bayesian Concept Learning
• How do we arrange these ideas formally? In the framework of  induction, we 

suppose that there is a hypothesis space of  concepts H, such as: odd numbers, 

even numbers, all numbers between 1 and 100, powers of  two, all numbers ending in 

the digit j (e.g. j = 3). 

• The subsets of  H that are consistent with the data D is called the version space. As 

we observe data the version space becomes smaller and smaller, and we presumably 

become increasingly certain about the underlying concept. 



Bayesian Concept Learning
• How do we arrange these ideas formally? In the framework of  induction, we 

suppose that there is a hypothesis space of  concepts H, such as: odd numbers, 

even numbers, all numbers between 1 and 100, powers of  two, all numbers ending in 

the digit j (e.g. j = 3). 

• The subsets of  H that are consistent with the data D is called the version space. As 

we observe data the version space becomes smaller and smaller, and we presumably 

become increasingly certain about the underlying concept. 

• Notice that the version space is only part of  the story. After observing D = {16}, 

for example, there are still many consistent rules. We still need to resolve the 

question of  determining the probability that a new datum belongs to a particular 

concept, in addition to determining the most likely concept, given a set of  

observations. A Bayesian template will allow us to reasonably answer these 

questions. 



Bayesian Concept Learning
Likelihood

• We need to formalize why, for instance, we might choose htwo:=“powers of  two” and 

not, say heven=“even numbers” after observing D={16, 8, 2, 64}, despite the fact that 

both hypotheses are consistent with the evidence. 

(*) The key intuition is that we want to eschew suspicious coincidences. 

• To this end,  let us assume that examples are sampled uniformly at random from the 

extension of  a concept (where the extension of  a concept is just the set of  numbers 

that belong to it).

• Given this assumption, the probability of  independently sampling N items (with 

replacement) from hypothesis h is given by: 

 
1 1

|
( )

NN

P D h
size h h

  
    
   



Bayesian Concept Learning
Likelihood

• Given this assumption, the probability of  independently sampling N items (with 

replacement) from hypothesis h is given by: 

• Notice that this equation encompasses Occam’s Razor, in that the model favors the simplest 

(i.e. smallest) hypothesis consistent with the data. 

Example: Let D = {16}; then p(D|htwo)=1/6, since there are only 6 powers of  two less than 

100, but p(D|heven)=1/50. So the likelihood that h=htwo is higher than if  h=heven. 

• After 4 examples, the likelihood of  htwo is (1/6)4=7.7*10-4, whereas the likelihood of  even 

is (1/50)4 = 1.6*10-7. This is a likelihood ratio of  almost 5000:1 in favor of  htwo. This 

quantifies our earlier intuition that D={16, 8, 2, 64} would indeed be a very suspicious 

coincidence if  generated by heven. 
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Bayesian Concept Learning
Prior

• Suppose that D={16, 8, 2, 64}. Given this data, the concept h’ = “powers of  two except 

32” is more likely than h=“power of  two”, since h’ does not need to explain the coincidence 

that 32 is missing from the set of  examples. 

• However, the hypothesis h’=“ powers of  2 except 32” seems conceptually unnatural. We 

can capture this intuition by assigning low prior probability to unnatural concepts. The prior 

– while potentially subjective – is the mechanism by which background knowledge can be 

brought to bear on a problem. 

• In practice, priors can be subjective (but nevertheless a prior is usually informed by 

experience or background knowledge), data-driven, or uninformative (when, without 

compelling evidence, there is no reason to favor one outcome over another). 



Bayesian Concept Learning
Posterior

• Recall that the posterior is the likelihood times the prior, normalized:

where I is the indicator function, so I(D 𝜖 Ch) 

= 1 iff all the data are in the extension of  the 

hypothesis h. The figure on the right shows 

the prior, likelihood and posterior after having 

observed D = {16}. 
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Bayesian Concept Learning
Posterior

• The figure plots the prior, likelihood and posterior after seeing D = {16, 8, 2, 64}. We see 

the likelihood is much more peaked on the powers of  two concept, so this dominates the 

posterior. (This is akin to the learner having a Gestalt moment). 
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Bayesian Concept Learning
Posterior

• In general, when we have a sufficient amount of  data, the posterior p(h|D) becomes 

peaked on a single concept (viz., the data overwhelms the prior) – namely the MAP

estimate. In other words: 

Where ෠ℎMAP = argmaxh p(h|D) is the posterior mode, and δ is the Dirac measure defined 

by:

(*) Note that the MAP estimate can be written as: 
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Bayesian Concept Learning
Posterior

• In our example of  the “number game” the prior stays constant and the likelihood term 

depends exponentially on N, and thus the MAP estimate converges toward the MLE 

(maximum likelihood estimate):
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Bayesian Concept LearningPosterior

(*) This formally shows an example for which the “data overwhelms the prior.” This 

captures a fundamental idea in ML: (for independent data) in general, as the data sample 

grows in size, the MAP converges to the MLE. 

Pf. 

Ergo, 

(*) Note that when the data set is small in size, then the prior “protects” us from incomplete 

observations. Both the MLE and MAP are consistent estimators, meaning that they converge 

to the correct hypothesis as the amount of  data increases. 

   

 

 1 2

ˆ argmax |

argmax log | log ( )

argmax log

MAP

h

h

h

h p D h p h

p D h p h

N c c



   

 

 ˆ ˆlim argmax log |MAP mle

N h

h p D h h


   



Bayesian Concept Learning

Posterior Predictive Distribution

• The posterior encompasses our internal belief  state about the world. The way to test if  

our beliefs are justified is to use them to predict objectively observable quantities – this is the 

basis of  the scientific method. 

Specifically, the posterior predictive distribution in this context is given by: 

This is just the weighted average of  the predictions of  each individual hypothesis and is 

called Bayes model averaging. 
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Bayesian Concept Learning
Posterior Predictive Distribution      | 1| , |
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Bayesian Concept Learning
Posterior Predictive Distribution

When we have a small and/or ambiguous data set, the posterior p(h|D) is vague, which 

induces a broad predictive distribution. However, once we have “figured things out”, the 

posterior becomes a delta function centered at the MAP estimate. 
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Bayesian Concept Learning
Posterior Predictive Distribution

When we have a small and/or ambiguous data set, the posterior p(h|D) is vague, which 

induces a broad predictive distribution. However, once we have “figured things out”, the 

posterior becomes a delta function centered at the MAP estimate. 

• In this case, the predictive distribution becomes:

• This is called a plug-in approximation to the predictive density and is very widely used, 

due to its simplicity. (NB: in practice the plug-in approximation can underrepresent our true 

degree of  uncertainty).  
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Bayesian Concept Learning
Posterior Predictive Distribution

• Although MAP learning is simple (this is part of  its intrinsic appeal), it nonetheless cannot 

explain the gradual shift from similarity-based reasoning (i.e. with uncertain posteriors) to rule-

based reasoning (with certain posteriors).

• For instance, suppose we observe D = {16}; if  we use the simple prior (from the previous 

examples), the minimal consistent hypothesis is “all powers of  4”, so only 4 and 16 get non-

zero probability of  being predicted. This is an example of  overfitting. 
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Bayesian Concept Learning
Posterior Predictive Distribution

• For instance, suppose we observe D = {16}; if  we use the simple prior (from the previous 

examples), the minimal consistent hypothesis is “all powers of  4”, so only 4 and 16 get non-zero 

probability of  being predicted. This is an example of  overfitting. 

• Given D = {16, 8, 2, 64}, the MAP hypothesis is “all powers of  2”. Thus the plug-in predictive 

distribution gets broader (or stays the same) as we see more data: it starts narrow, but is forces to 

broaden as it sees more data. 

• In contrast, in the Bayesian approach, we start broad and then narrow down as we learn more. 

In particular, given D={16}, there are many hypotheses with non-negligible posterior support, so 

the predictive distribution is broad. However, when we see D = {16, 8, 2, 64}, the posterior 

concentrates its mass on one hypothesis, so the predictive distribution becomes narrower. 
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Bayesian Concept Learning
Posterior Predictive Distribution

• In summary: the predictions made by a plug-in approach and a Bayesian approach are quite 

different in the small data regime – although they converge to the same answer as we see more 

data. 
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The Beta-Binomial Model 
The Beta Distribution

• The beta distribution is one of  the most commonly applied distributions in statistics; it is 

frequently used as a prior for a model parameter(s), as it has support over [0,1]. It is defined 

as follows:

• Where B(p,q) is the beta function (it simply serves to normalize the distribution), defined 

in terms of  the gamma function:

where a,b >0 are shape parameters (we demonstrate their effects on 

the next slide); the gamma function is defined: 

The Beta function was first introduced by Pearson, one of  founders

of  mathematical statistics. 
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The Beta-Binomial Model 
The Beta Distribution

(*) When a = b = 1, the beta distribution reduces to the uniform distribution (check this); if  

a and b are both less than 1, we get a bimodal distribution with “spikes” at 0 and 1; if  a and 

b are both greater than 1, the distribution is unimodal. 
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The Beta-Binomial Model 
The Bernoulli & Binomial Distributions

• The Bernoulli distribution is the probability distribution of  a random variable which takes 

the value 1 with probability θ and the value 0 with probability 1- θ. That is, the probability 

distribution of  any single experiment that asks a yes-no question; the question results in a 

Boolean-valued outcome/a  single bit of  information. 

The Bernoulli pmf (probability mass function) is typically expressed as:

Using indicator functions, one can also express the Bernoulli pmf:
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The Beta-Binomial Model 
The Bernoulli & Binomial Distributions

• The Bernoulli pmf (probability mass function) is typically expressed as:

• Using indicator functions, one can also express the Bernoulli pmf:

• In the case of  n independent Bernoulli trials with shared parameters, we define the 

binomial distribution for the random variable X ∈ {0,…,n} as the total number of  

“successes” (i.e. x=1 counts) in n trials. The binomial pmf is defined: 

with summary statistics: 
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The Beta-Binomial Model: Conjugacy 
• In combination, the beta-binomial model is a very useful statistical model – particularly 

in Bayesian analysis. Beta-binomial models are common in many ML applications, 

including the naïve Bayes classifier, Markov models and many NLP settings. Its historical 

genesis dates back to Bayes’ original paper (1763). 

• The beta-binomial model is perhaps the most straightforward example of  conjugate 

distributions. In Bayesian theory, if  the posterior distributions p(θ|x) are in the same family 

(e.g. such as the exponential family of  distributions) as the prior distribution p(θ), we say 

the prior and posterior are then called conjugate distributions, and the prior is called a 

conjugate prior for the likelihood. More concretely: when the prior and the posterior 

have the same closed-form, we say the prior is a conjugate prior for the 

corresponding likelihood. 
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The Beta-Binomial Model: Conjugacy 
• The beta-binomial model is perhaps the most straightforward example of  conjugate 

distributions. In Bayesian theory, if  the posterior distributions p(θ|x) are in the same family 

(e.g. such as the exponential family of  distributions) as the prior distribution p(θ), we say 

the prior and posterior are then called conjugate distributions, and the prior is called a 

conjugate prior for the likelihood. More concretely: when the prior and the posterior 

have the same closed-form, we say the prior is a conjugate prior for the 

corresponding likelihood. 

• In addition to the beta-binomial model, the Gaussian-Gaussian and Dirichlet-multinomial 

models are also examples of  conjugate distributions. 

(*) Conjugacy is an attractive quality in statistics because it means that the posterior 

distribution can be tractably calculated – which is to say we can represent it compactly in 

a recognizable closed-form.



The Beta-Binomial Model
Likelihood

• Suppose Xi~Ber(θ) where Xi=1 represents “heads”, Xi=0 represents “tails”, and θ

is the rate parameter (i.e. probability of  heads). If  the data are IID (independent and 

identically distributed), the likelihood has the form:

where we define N1=σ𝑖=1
𝑁 𝐼 𝑥𝑖 = 1 for the total “heads count” and N0= 

σ𝑖=1
𝑁 𝐼 𝑥𝑖 = 0 for the total “tails count.” These two counts are known as the 

sufficient statistics of  the data, because this is all we need to know about D to infer 

θ (note that there are alterative choices for sufficient statistics in this case: N0 and 

N=N0+N1 is another valid choice). 
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The Beta-Binomial Model
Prior

• We need a prior with support over [0, 1]; furthermore, we wish for the prior to 

have the same form as the likelihood, namely: 

• Naturally, this is a beta distribution. In this case, the posterior computation is facile:

(*)  Note that the posterior is of  the same form as the beta prior, confirming that the 

beta prior is a conjugate prior for the binomial likelihood. 
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The Beta-Binomial Model
Posterior

• In summary, when we multiply the binomial likelihood by the beta prior we get a 

posterior of  the following form:

• In particular, the posterior is obtained by adding the prior hyper-parameters to the 

empirical counts (i.e. N1 and N0). For this reason, the hyper-parameters are known as 

pseudo counts. The strength of  the prior, also known as the equivalent sample size of  

the prior, is the sum of  the pseudo counts: α0 = a + b; this plays a role analogous to the 

data set size, N1+N0=N. 
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The Beta-Binomial Model
Posterior

• In summary, when we multiply the binomial likelihood by the beta prior we get a 

posterior of  the following form:

• In particular, the posterior is obtained by adding the prior hyper-parameters to the 

empirical counts (i.e. N1 and N0). For this reason, the hyper-parameters are known as 

pseudo counts. The strength of  the prior, also known as the equivalent sample size of  

the prior, is the sum of  the pseudo counts: α0 = a + b; this plays a role analogous to the 

data set size, N1+N0=N. 
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The Beta-Binomial Model
Posterior

• The MAP estimate is given by:

• If  we use a uniform prior (i.e. a = b = 1), then the MAP estimate reduces to the MLE, 

which is just the empirical fraction of  heads: 

• This makes intuitive sense. The posterior mean is given by:
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The Beta-Binomial Model
Posterior

• Importantly, it is possible to express the posterior mean for the beta-binomial model as 

a convex combination of  the prior mean and the MLE estimate; let α0 = a + b and m = 

a/(a+b), i.e., we set m equal to the prior mean. Then: 

where λ= α0 /(N+ α0), is the ratio of  the prior to posterior equivalent sample size. Thus, the 

weaker the prior, the smaller λ is, and hence the closer to the posterior mean is to the 

MLE as N → ∞. 
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The Beta-Binomial Model

• Recall that the Bayesian solution to the “problem of  induction”/Black swan paradox (viz., 

what to do in the absence of  an observation corresponding with a particular variable 

configuration – or how to draw general conclusions about the future from specific 

observations from the past) is to introduce a prior. 

• Under the aegis of  the principle of  insufficient reason (PIR), we use a uniform or non-

informative prior when there is no compelling evidence to do/presume otherwise. 

• The uniform beta corresponds with a = b = 1; which yields a posterior: Beta(θ|N1+1,N0+1).

From the previous slide, this yields a posterior mean:

Which is precisely the common expression used in Laplace/add-one smoothing (this 

formula easily generalizes for multi-class settings). 
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The Dirichlet-Multinomial Model 

• The Dirichlet-multinomial model is another useful model that is common in ML 

applications – particularly in NLP and biosequence data. It is likewise a conjugate 

model (as we show subsequently) which renders a closed-form posterior. 

(*) Simply put: the Dirichlet-multinomial model is a natural generalization of  the beta-

binomial model to a multi-class setting; respectively, the multinomial distribution is 

simply a generalization of  the binomial distribution to a multi-class setting, and, 

similarly, the Dirichlet distribution generalizes the beta distribution. 



The Dirichlet-Multinomial Model 
The Multinomial Distribution

While the binomial distribution can be used to model the outcomes of  coin tosses, by 

extension, the multinomial distribution generalizes to model the outcomes of  tossing a K-

sided die, Let x=(x1,…,xK) be  random vector, where xj is the number of  times side j of  the 

die occurs. Then x has the following pmf:

Where θj is the probability that side j shows up; the left-most factor in this expression 

represents the number of  ways to divide a set of  size n = x1+…+xK into subsets with sizes 

x1 up to xK. 
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The Dirichlet-Multinomial Model 
The Multinomial Distribution

Let x=(x1,…,xK) be  random vector, where xj is the number of  times side j of  the die occurs. 

Then x has the following pmf:
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The Dirichlet-Multinomial Model 
The Dirichlet Distribution

The Dirichlet distribution is a multi-variate generalization of  the beta distribution, which has 

support over the probability simplex (plural: simplices) defined by:

A simplex is a generalization of  the notion of  a triangle or tetrahedron 

to arbitrary dimensions. Formally, a K-simplex is a K-dimensional 

polytope which is the convex hull of  its K + 1 vertices. A 2-simplex

is a triangle; a 3-simplex is a tetrahedron, etc. 
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The Dirichlet-Multinomial Model 
The Dirichlet Distribution

• The pdf of  the Dirichlet distribution is defined as follows: 

Where B(α1,…,αK) is the natural generalization of  the beta function to K variables:

, for which the gamma function is defined: 

where α0 = σ𝑘=1
𝐾 α𝑘 ;  I(x𝜖Sk) denotes the indicator function for the K-simplex; this just 

means that the support of  the Dirichlet distribution corresponds to the K-simplex.  
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The Dirichlet Distribution  
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The figure shows some 

plots of the Dirichlet when 
K=3. We see that α0 =
σ𝑘=1
𝐾 α𝑘 controls the 

strength of the distribution 

(i.e. how peaked it is), and 

the αk control where the 

peaks occur. 

For example, Dir(1,1,1,) is 

a uniform distribution; 

Dir(2,2,2) is a broad 

distribution centered at 

(1/3,1/3,1/3), and 

Dir(20,20,20) is a narrow 

distribution with the same 

center. If αk <1 for all k, we 

get “spikes” at the corners 

of the simplex.



The Dirichlet-Multinomial Model 
Likelihood

• Suppose we observe N dice rolls, D={x1,…,xN}, where xi 𝜖{1,…,K}. If  we assume 

the data are IID, the likelihood has the form: 

where Nk= σ𝑘=1
𝐾 I(yi=k) is the number of  times even k occurred. 
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The Dirichlet-Multinomial Model 
Likelihood

• Suppose we observe N dice rolls, D={x1,…,xN}, where xi 𝜖{1,…,K}. If  we assume 

the data are IID, the likelihood has the form: 

where Nk= σ𝑘=1
𝐾 I(yi=k) is the number of  times even k occurred. 

Prior 

• Since the parameter vector lives in the K-dimensional probability simplex, we need a 

prior that has support over this simplex. Ideally it would also be conjugate. Happily, 

the Dirichlet distribution satisfies both criteria. Hence we use the following prior: 
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The Dirichlet-Multinomial Model 
Likelihood

Prior 

Posterior

(*) We see that the prior and posterior have the same form (i.e. they are both Dirichlet 

distributions) – namely,  the prior is a conjugate prior for the corresponding multinomial 

likelihood. Note that the posterior is obtained simply by adding the prior hyper-parameters 

(pseudo-counts) αk’s to the empirical counts, Nk’s. 
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The Dirichlet-Multinomial Model 
Posterior

Using the method of  Lagrange Multipliers (we’ll walk through this method in more detail 

in future lectures to brush up), one can solve for the posterior mode, i.e. MAP for the 

Dirichlet-multinomial model:
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The Dirichlet-Multinomial Model 
Posterior

Using the method of  Lagrange Multipliers (we’ll walk through this method in more 

detail in future lectures to brush up), one can solve for the posterior mode, i.e. MAP for 

the Dirichlet-multinomial model:

Observe that if  we use a uniform prior, α=1 (i.e. the alpha vector consists of  all 1’s), then 

the MAP reduces to the MLE (once again), whereby: 

This is just the empirical fraction of  times face k shows up. 
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The Dirichlet-Multinomial Model: 

Example 
• One application of  Bayesian analysis using the Dirichlet-multinomial model is to 

language modeling, which means predicting which words might occur next in a 

sequence. 

• Here we will use a standard bag of  words model and assume that the ith word        

Xi 𝜖 {1,…,K} is sampled independently from all other words. 

• Given a past sequence of  words, how can we predict which one is likely to come 

next? 
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The Dirichlet-Multinomial Model: Example 

(*) Notice that the posterior predictive is equivalent to “Laplace smoothing” in a multi-

class setting, i.e. it is the posterior mean. 

     
 

 
0

2

0 0 0 0

1
,  mode ,  var

1

k kk k
k k kE x x x

K

   

   


  

 



The Dirichlet-Multinomial Model: Example 

(*) Notice that the posterior predictive is equivalent to “Laplace smoothing” in a multi-

class setting, i.e. it is the posterior mean. 
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The Dirichlet-Multinomial Model: Research 

Example 
Elkan, C., “Clustering Documents with an Exponential-Family Approximation of  the

Dirichlet Compound Multinomial Distribution”, ICML, 2006. 

Perplexity is a common metric in NLP applications that computes the average uncertainty 

the model assigns to each word in a document collection; low perplexity is preferred. 

http://cseweb.ucsd.edu/~elkan/edcm.pdf

The authors apply the Dirichlet compound multinomial (DCM) as model for 

text documents that takes into account “burstiness” (i.e. the fact that if  a words 

occurs more than once in a document, it is likely to occur repeatedly). They 

derive a new family of  distributions that are approximations to DCM (called 

EDCM distributions). Their new algorithm is competitive with state-of-the-art 

(at the time). 
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