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• In this lecture we examine several new unsolvable problems; our main 

approach to demonstrating that a computational problem is unsolvable will be 

reducibility. 

• A reduction is a way to convert one problem/domain to another 

problem/domain in such a way that a solution to the second problem can be 

applied to solve the first problem. 

Reducibility 



• Reducibility involves two problems: A and B; if  A reduces to B 𝐴 →𝑟𝑒𝑑 𝐵 , 

we can use a solution to B to solve A. 

• Notice that reducibility says nothing about solving A or B alone, but only about 

the solvability of  A in the presence of  a solution to B. 

Reducibility 



• Reducibility involves two problems: A and B; if  A reduces to B 𝐴 →𝑟𝑒𝑑 𝐵 , 

we can use a solution to B to solve A. 

• Notice that reducibility says nothing about solving A or B alone, but only about 

the solvability of  A in the presence of  a solution to B. 

For example: the problem of  (uniquely) solving a square system of  linear equations: 

𝐴𝑥 = 𝑏, reduces to finding 𝐴−1; in other words if  we have 𝐴−1 we can 

necessarily solve 𝐴𝑥 = 𝑏.

Reducibility 



• Reducibility plays an important role in classifying decidable and 

undecidable problems (and complexity theory). 

• If  𝐴 →𝑟𝑒𝑑 𝐵, solving 𝑨 cannot be harder than solving 𝑩 because 

a solution to 𝑩 (always) gives a solution to 𝑨. 

Reducibility 



• In terms of  computability, if  𝐴 →𝑟𝑒𝑑 𝐵 and B is decidable, then 𝑨 is 

also decidable. 

•  Similarly, if  𝐴 →𝑟𝑒𝑑 𝐵 and A is undecidable, then 𝑩 is undecidable. 

Reducibility 



• In terms of  computability, if  𝐴 →𝑟𝑒𝑑 𝐵 and B is decidable, then 𝑨 is 

also decidable. 

•  Similarly, if  𝐴 →𝑟𝑒𝑑 𝐵 and A is undecidable, then 𝑩 is undecidable. 

* In summary, our general method for proving that a problem is 

undecidable entails showing that some problem already known to be 

undecidable reduces to it. 

Reducibility 



𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

• Recall that we have already (using diagonalization) proved the 

undecidability of  𝐴𝑇𝑀. 

Undecidable Problems



𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

• Recall that we have already (using diagonalization) proved the 

undecidability of  𝐴𝑇𝑀. 

• Consider now the problem 𝐻𝐴𝐿𝑇𝑇𝑀, the problem of  determining 

whether a TM halts (by accepting or rejecting) on a given input; this 

problem is widely known as the Halting Problem in computability 

theory. 

Define: 

𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Undecidable Problems



𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 

Undecidable Problems



𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 

Proof  Sketch: (Contradiction) Assume 𝐻𝐴𝐿𝑇𝑇𝑀 is decidable; use this 

assumption to show the implication that 𝐴𝑇𝑀 is consequently 

decidable, a contradiction. 

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝐻𝐴𝐿𝑇𝑇𝑀

Undecidable Problems



𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 

Proof  Sketch: (Contradiction) Assume 𝐻𝐴𝐿𝑇𝑇𝑀 is decidable; use this 

assumption to show the implication that 𝐴𝑇𝑀 is consequently 

decidable, a contradiction. 

* The key step in the proof  is to explicitly use a TM 𝑹 that decides 

𝑯𝑨𝑳𝑻𝑻𝑴 to render a TM deciding 𝑨𝑻𝑴.

Simply use 𝑅 to decide whether 𝑀 halts on input 𝑤. If  it doesn’t –

reject; otherwise, simulate 𝑀 on 𝑤 and return the result of  this 

simulation. 

Undecidable Problems



𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 

Proof. (Contradiction) Assume the TM 𝑅 decides 𝐻𝐴𝐿𝑇𝑇𝑀. We 

construct TM 𝑆 to decide 𝐴𝑇𝑀.

𝑆 = “On input 𝑀,𝑤 , an encoding of  a TM 𝑀 and string 𝑤:

(1) Run TM 𝑅 on input 𝑀,𝑤 .

(2) If  𝑅 rejects, reject.

(3) If  𝑅 accepts, simulate 𝑀 on 𝑤 until it halts. 

(4) If  𝑀 has accepted, accept; if  𝑀 has rejected, reject.”

*Because 𝐴𝑇𝑀 is undecidable, 𝐻𝐴𝐿𝑇𝑇𝑀 is also undecidable. 

Undecidable Problems



𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable. 

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝐸𝑇𝑀

Undecidable Problems



𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable. 

Proof  Sketch: (Contradiction) Assume 𝐸𝑇𝑀 is decidable; use this 

assumption to show the implication that 𝐴𝑇𝑀 is consequently 

decidable, a contradiction. 

* Key step: run TM 𝑅 deciding 𝐸𝑇𝑀 on a modification of  𝑀 . 

We modify 𝑀 so that 𝑀 rejects all strings except 𝑤, but on input 𝑤 it 

works as usual. Now use 𝑅 on this modified TM; 𝑅 will decide 𝐴𝑇𝑀, a 

contradiction. 

Undecidable Problems



𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable. 

Proof. Define the aforementioned, modified TM 𝑀1:

𝑀1= “On input 𝑥:

(1) If  𝑥 ≠ 𝑤, reject.

(2) If  𝑥 = 𝑤, run 𝑀 on input 𝑤 and accept if  𝑀 does. 

Undecidable Problems



𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable. 

Proof. Now using 𝑅, the 𝑇𝑀 that decides 𝐸𝑇𝑀, construct 𝑇𝑀 𝑆 that 

decides 𝐴𝑇𝑀 as follows: 

𝑆 =“On input 𝑀,𝑤 , an encoding of  a TM 𝑀 and a string 𝑤 : 

(1) Use the description of  𝑀 and 𝑤 to construct the TM 𝑀1 just described. 

(2) Run 𝑅 on input 𝑀1 .

(3) If  𝑅 accepts, reject; if  𝑅 rejects, accept.”

*In summary, if  𝑅 were a decider for 𝐸𝑇𝑀 , then 𝐴𝑇𝑀 would be decidable, a 

contradiction. 

Undecidable Problems



𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀is undecidable. 

* This computation problem relates to whether a given TM recognizes a language 

that can also be recognized by a simpler computational model. 

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀

Undecidable Problems



𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable. 

Proof  Sketch: (again: contradiction, reduction from 𝐴𝑇𝑀) We assume 

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is decidable by TM 𝑅, use this fact to show then 𝐴𝑇𝑀 would be 

decidable by some TM 𝑆.

Challenge: How to construct 𝑆 from 𝑅? 𝑆 takes input 𝑀,𝑤 ; we modify 𝑀

(call it 𝑀2) so that the resulting TM recognizes a regular language iff 𝑀 accepts 

𝑤.

Undecidable Problems



𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable. 

Challenge: How to construct 𝑆 from 𝑅? 𝑆 takes input 𝑀,𝑤 ; we modify 𝑀

(call it 𝑀2) so that the resulting TM recognizes a regular language iff 𝑀 accepts 

𝑤.

We define 𝑀2 to recognize the non-regular language 0𝑛1𝑛|𝑛 ≥ 0 if  𝑀 doesn’t 

accept 𝑤; otherwise, 𝑀2 accepts its input iff 𝑀 accepts 𝑤.

In summary, 𝑀2 works by automatically accepting all strings in 0𝑛1𝑛|𝑛 ≥ 0 . In 

addition, if  𝑀 accepts 𝑤, 𝑀2 accepts all other strings. 

Undecidable Problems



𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable. 

Proof. Let 𝑅 be a TM that decides 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 and construct TM 𝑆 to decide 

𝐴𝑇𝑀.

𝑆 = “On input 𝑀,𝑤 , where 𝑀 is a TM and 𝑤 is a string: 

(1) Construct the following TM 𝑀2. 

𝑀2 = “On input 𝑥: 

(i) If  𝑥 has the form 0𝑛1𝑛|𝑛 ≥ 0 , accept. 

(ii) If  𝑥 does not have this form, run 𝑀 on input 𝑤 and accept if  𝑀

accepts 𝑤. 

(2) Run 𝑅 on input 𝑀2 .

(3) If  𝑅 accepts, accept; if  𝑅 rejects, reject. 

Undecidable Problems



𝐸𝑄𝑇𝑀 = 𝑀1, 𝑀2 |𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑇𝑀𝑠 𝑎𝑛𝑑 𝐿 𝑀1 = 𝐿 𝑀2

Theorem. 𝐸𝑄𝑇𝑀 is undecidable. 

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝐸𝑇𝑀 →𝑟𝑒𝑑 𝐸𝑄𝑇𝑀

Undecidable Problems



𝐸𝑄𝑇𝑀 = 𝑀1, 𝑀2 |𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑇𝑀𝑠 𝑎𝑛𝑑 𝐿 𝑀1 = 𝐿 𝑀2

Theorem. 𝐸𝑄𝑇𝑀 is undecidable. 

Proof  Sketch: Recall the undecidable problem from previous slides: 

𝐸𝑇𝑀 = 𝑀 |𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

This time, to show 𝐸𝑄𝑇𝑀 is undecidable, we reduce from 𝐸𝑇𝑀. The idea is 

straightforward: use the fact that 𝐸𝑇𝑀 is a special case of  𝐸𝑄𝑇𝑀.

Undecidable Problems



𝐸𝑄𝑇𝑀 = 𝑀1, 𝑀2 |𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑇𝑀𝑠 𝑎𝑛𝑑 𝐿 𝑀1 = 𝐿 𝑀2

Theorem. 𝐸𝑄𝑇𝑀 is undecidable. 

Proof. Suppose TM R decides 𝐸𝑄𝑇𝑀 and construct TM S to decide 𝐸𝑇𝑀 as 

follows: 

𝑆 =”On input 𝑀 , where 𝑀 is a TM: 

(1) Run 𝑅 on input 𝑀,𝑀1 , where 𝑀1 is the TM that rejects all inputs. 

(2) If  𝑅 accepts, accept; if  𝑅 rejects, reject.”

Undecidable Problems



Theorem. Any nontrivial property about the language recognized by a Turing 

machine is undecidable.

Rice’s Theorem 



Theorem. Any nontrivial property about the language recognized by a Turing 

machine is undecidable.

• More concretely, Rice’s Theorem says that non-trivial semantic properties of  

Turing-recognizable languages are undecidable. 

• Here, non-trivial connotes the fact that the property is neither always true nor 

always false (for computable functions).

Put another way, for a set of  languages S, then S is non-trivial if: 

(1) There exists a TM that recognizes a language in S, 

(2) There exists a TM that recognizes a language which is not in S.

• Semantic properties are properties about the behavior of  a TM (cf. syntactic 

properties). 

Rice’s Theorem 



• Next, we will use the notion of  a computation history to further prove 

undecidability for additional classes of  computation problems. 

Reductions with Computation Histories



• Next, we will use the notion of  a computation history to further prove 

undecidability for additional classes of  computation problems. 

Def. Let 𝑀 be a TM and 𝑤 an input string. An accepting computation 

history for 𝑀 on 𝑤 is a sequence of  configurations, 𝐶1, 𝐶2,…, 𝐶𝐿, where 𝐶1
is the start configuration of  𝑀, 𝐶𝐿 is an accepting configuration of  𝑀, and each 𝐶𝑖
legally follows from 𝐶𝑖−1 according to the rules of  𝑀.

A rejecting computation history for 𝑀 on 𝑤 is defined analogously, except 

that 𝐶𝐿 is a rejecting configuration. 

Reductions with Computation Histories



• Next, we will use the notion of  a computation history to further prove 

undecidability for additional classes of  computation problems. 

Def. Let 𝑀 be a TM and 𝑤 an input string. An accepting computation 

history for 𝑀 on 𝑤 is a sequence of  configurations, 𝐶1, 𝐶2,…, 𝐶𝐿, where 𝐶1
is the start configuration of  𝑀, 𝐶𝐿 is an accepting configuration of  𝑀, and each 𝐶𝑖
legally follows from 𝐶𝑖−1 according to the rules of  𝑀.

A rejecting computation history for 𝑀 on 𝑤 is defined analogously, except 

that 𝐶𝐿 is a rejecting configuration. 

*Note that computation histories are finite sequences; if  M doesn’t halt on w, no accepting or 

rejecting computation history exists for M on w. 

*Deterministic machines have at most one computation history per input; non-deterministic 

machines may have many computation histories per input (corresponding with computation 

branches); for now, consider the machines to be deterministic for simplicity. 

Reductions with Computation Histories



• We now consider TMs with a limited amount of  memory; these machines 

can only solve problems requiring memory that can fit within the tape used 

for the input alphabet. 

• Using a tape alphabet that is larger than the input alphabet allows the 

available memory to be increased up to a constant factor. 

LBA



• We now consider TMs with a limited amount of  memory; these machines 

can only solve problems requiring memory that can fit within the tape used 

for the input alphabet. 

• Using a tape alphabet that is larger than the input alphabet allows the 

available memory to be increased up to a constant factor. 

Def. A linear bounded automaton (LBA) is a restricted TM wherein the 

tape head isn’t permitted to move off  the portion of  the tape containing the 

input (if  the machine tries to move off  on either end the tape head stays 

where it is). 

LBA



• Despite their memory constraint, LBA are quite powerful. 

* For example, the deciders for 𝐴𝐷𝐹𝐴, 𝐴𝐶𝐹𝐺 , 𝐸𝐷𝐹𝐴, 𝐸𝐶𝐹𝐺 are all LBA. 

• In fact, it is not trivial to find a decidable language that can’t be decided by 

an LBA. 

• Before proving decidability/undecidability of  computational problems 

related to LBA, we first devise a useful bound for the number of  distinct 

configurations for LBA. 

LBA



Lemma. Let 𝑀 be an LBA with 𝑞 states and 𝑔 symbols in the tape alphabet. 

There are exactly 𝑞𝑛𝑔𝑛 distinct configurations of  𝑀 for a tape of  length 𝑛. 

LBA



Lemma. Let 𝑀 be an LBA with 𝑞 states and 𝑔 symbols in the tape alphabet. 

There are exactly 𝑞𝑛𝑔𝑛 distinct configurations of  𝑀 for a tape of  length 𝑛. 

Proof. Remember that a “configuration” of  a TM specifies three things: (1) current 

state, (2) location of  tape head, and (3) contents of  the tape. 

Here, 𝑀 has 𝑞 states; the length of  the tape is 𝑛, so the head can be in one of  𝑛
positions; lastly, there are 𝑔𝑛 possible tape contents. We multiply these quantities 

together (using the multiplication principle from combinatorics), yielding the desired 

result. 

LBA



𝐴𝐿𝐵𝐴 = 𝑀,𝑤 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝐿𝐵𝐴 is decidable.

LBA Problems



𝐴𝐿𝐵𝐴 = 𝑀,𝑤 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝐿𝐵𝐴 is decidable.

Proof  Sketch: We simulate LBA 𝑀 on 𝑤; if  M halts and accepts or rejects, we accept or reject 

accordingly. 

Otherwise, we need to detect when M is looping. Because 𝑀 is an LBA, by the previous lemma, 

𝑀 can be in only a limited number of  configurations for the input tape. 

Detecting that M is looping is possible by simulating 𝑀 for the number of  steps prescribed by 

the previous lemma: 𝑞𝑛𝑔𝑛.

LBA Problems



𝐴𝐿𝐵𝐴 = 𝑀,𝑤 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝐿𝐵𝐴 is decidable.

Proof. The algorithm decides 𝐴𝐿𝐵𝐴 as follows. 

𝐿 = “On input 𝑀,𝑤 , where 𝑀 is an LBA and 𝑤 a string:

(1) Simulate 𝑀 on 𝑤 for 𝑞𝑛𝑔𝑛 steps or until it halts. 

(2) If  𝑀 has halted, accept if  it has accepted and reject if  it has rejected. If  

it has not halted, reject. 

*This result shows that LBA and TMs differ in one essential way: for LBA the 

acceptance problem is decidable, whereas with TMs the acceptance problem is 

undecidable. 

*However, many other problems remain undecidable for LBA, as we show next. 

LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Undecidable LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof  Sketch: The proof  is by reduction from 𝐴𝑇𝑀. 

We suppose 𝐸𝐿𝐵𝐴 is decidable. For a TM 𝑀 and input 𝑤, we construct an 

LBA 𝐵 and then test whether L(B) is empty. 

The language that 𝐵 recognizes comprises all accepting computation histories 

for 𝑀 on 𝑤. If  𝑀 accepts 𝑤, this language contains one string and is 

therefore non-empty. If  𝑀 does not accept 𝑤, this language is empty. 

Undecidable LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof  Sketch: We now describe how to construct 𝐵 from 𝑀 and 𝑤; in 

particular, we need to show how a TM can obtain a description of  𝐵 from 𝑀

and 𝑤. 

Construct B to accept its input 𝑥, if  𝑥 is an accepting computation history for 

𝑀 on 𝑤 . For simplicity, assume the computation history consists of  

configurations delimited by #. 

Undecidable LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof  Sketch: The LBA 𝐵 works as follows: given a computation history 𝐶1, 

𝐶2,…, 𝐶𝐿, 𝐵 checks whether: 

(1) 𝐶1 corresponds with the start configuration for 𝑀 on w

(2) Each 𝐶𝑖+1 legally follows from 𝐶𝑖 , and 

(3) 𝐶𝐿 is the accepting configuration for 𝑀. 

Undecidable LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof  Sketch: The LBA 𝐵 works as follows: given a computation history 𝐶1, 

𝐶2,…, 𝐶𝐿, 𝐵 checks whether: 

(1) 𝐶1 corresponds with the start configuration for 𝑀 on w

(2) Each 𝐶𝑖+1 legally follows from 𝐶𝑖 , and 

(3) 𝐶𝐿 is the accepting configuration for 𝑀. 

Regarding (1), the start configuration 𝐶1 for 𝑀 on 𝑤 is the string 𝑞0𝑤1…𝑤𝑛, 

where 𝑞0 is the start state for 𝑀 on 𝑤. 𝐵 has the initial tape string, so this can 

be checked. 

Regarding (3), 𝐵 checks 𝐶𝐿 to see if  it is the accept state. 

Undecidable LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof  Sketch: The LBA 𝐵 works as follows: given a computation history 𝐶1, 

𝐶2,…, 𝐶𝐿, B checks whether: 

(1) 𝐶1 corresponds with the start configuration for 𝑀 on w

(2) Each 𝐶𝑖+1 legally follows from 𝐶𝑖 , and 

(3) 𝐶𝐿 is the accepting configuration for 𝑀. 

Regarding (2), 𝐵 checks whether 𝐶𝑖 and 𝐶𝑖+1 are identical except for the 

position under and adjacent to the tape head; this can be checked by following 

a zig-zagging procedure. 

Undecidable LBA Problems



𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof. Suppose that TM R decides 𝐸𝐿𝐵𝐴. Construct TM S to decide 𝐴𝑇𝑀
as follows: 

𝑆 =“On input 𝑀,𝑤 , where 𝑀 is a TM and 𝑤 is a string: 

(1) Construct LBA 𝐵 from 𝑀 and 𝑤 as described previously.

(2) Run 𝑅 on input 𝐵 .

(3) If  𝑅 rejects, accept; if  𝑅 accepts, reject.” 

*If  R accepts 𝐵 , then L 𝐵 = ∅. Thus, 𝑀 has no accepting computation 

history on 𝑤 and 𝑀 doesn’t accept 𝑤. Consequently, 𝑆 rejects 𝑀,𝑤 .

Undecidable LBA Problems



𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

An Undecidable CFG Problem 



𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof  Idea: By contradiction and reduction from 𝐴𝑇𝑀; the proof  technique is 

similar to that used for the previous theorem, except that we modify the 

representation of  computation histories. 

An Undecidable CFG Problem 



𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof  Idea:

For a TM 𝑀 and input 𝑤, we construct a CFG G that generates all strings iff

𝑀 does not accept 𝑤. 

So, if  𝑀 does accept 𝑤, G does not generate some particular string – the 

string will be the accepting computation history for 𝑀 on 𝑤. 

* 𝐺 is designed to generate all strings that are not accepting computation 

histories for 𝑀 on 𝑤. 

An Undecidable CFG Problem 



𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof  Idea: An accepting configuration history for 𝑀 on 𝑤 appears as 

#𝐶1#…#𝐶𝐿#.

A string may fail to be an accepting computation history for several reasons: 

(1) It doesn’t start with 𝐶1
(2) It doesn’t end with an accepting configuration 

(3) 𝐶𝑖 doesn’t properly yield 𝐶𝑖+1 under the rules of  𝑀

If  𝑀 does not accept 𝑤, no accepting computation history exists, so all strings 

fail in one way or another, i.e. 𝐺 doesn’t generate all strings. 

An Undecidable CFG Problem 



𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof  Idea: We begin with a PDA 𝑫 (instead of  directly constructing 𝐺); 

from previous work, we know that 𝐷 can be converted into a CFG.  We use a 

PDA to begin with, as it is easier than directly designing a CFG for this 

problem. 

𝐷 begins by non-deterministically guessing which of  the (3) preceding 

conditions fail. Conditions (1) and (2) are easy to check – where we start in 

𝐶1 and end in accept. 

(1) It doesn’t start with 𝐶1
(2) It doesn’t end with an accepting configuration 

An Undecidable CFG Problem 



𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof  Idea: For condition (3), we use the stack and compare 𝐶𝑖 and 𝐶𝑖+1 by 

pushing the contents of  𝐶𝑖 until arriving at the delimiter #; next, the stack is 

popped and compared with 𝐶𝑖+1 , a discrepancy with the location of  the 

tape/tape-head yields an accept (recall consecutive legal states only differ by 

the location of  the head and cells adjacent to the head). 

One last detail – because the stack is processed LIFO, the computation history 

is written so that every other configuration is in reverse order. 

An Undecidable CFG Problem 



Post Correspondence Problem
• Undecidability is not confined to problems concerning automata. 

• The Post Correspondence Problem (after Emile Post, pictured) is 

another example of  an undecidable problem that can be stated

independent of  automata. 

• The problem can be described as a puzzle. Consider a 

collection of  dominos (with a top/bottom portion), such as: 

• The task is to make a list of  these dominos (repetition is allowed) so that the 

string yielded by reading off  the “top” row is identical to that of  the “bottom” 

row; such a list is called a match. Here is an example:  



Post Correspondence Problem
• For some collections of  dominos, finding a match is impossible; here is 

one such example (why?):  

• Formally, an instance of  the PCP is a collection P of  dominos: 

And a match is a sequence 𝑖1, 𝑖2, … , 𝑖𝑙 where 𝑡𝑖1𝑡𝑖2…𝑡𝑖𝑙 = 𝑏𝑖1𝑏𝑖2…𝑏𝑖𝑙. 
The problem is to determine whether P has a match. Let: 

𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ



Post Correspondence Problem
𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Theorem. PCP is undecidable. 



Post Correspondence Problem
𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Theorem. PCP is undecidable. 

The proof  will be detailed in (7) parts, including a running example. 

First, for convenience and simplification we apply (3) minor modifications to 

PCP*:

* Note that each of  these requirements can be eliminated and thus PCP can be 

shown to be undecidable in its original form (this proof  is however less concise 

and straightforward).  



Post Correspondence Problem
𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Theorem. PCP is undecidable. 

The proof  will be detailed in (7) parts, including a running example. 

First, for convenience and simplification we apply (3) minor modifications to PCP:

(1) We assume M on w never attempts to move the tape head off  the left-hand end 

of  the tape. 

(2) If  𝑤 = 𝜀, we use the blank symbol ⊔ in place of  𝑤 in the construction.

(3) We modify PCP to require that a match starts with the first domino: 

Call this modified problem the Modified Post Correspondence Problem (MPCP):

𝑀𝑃𝐶𝑃 =
𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃

𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠𝑡𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑑𝑜𝑚𝑖𝑛𝑜



Post Correspondence Problem
Theorem. PCP is undecidable. 

Proof. (Contradiction/reduction) We let TM R decide the PCP and construct S 

deciding 𝐴𝑇𝑀.

Let M = 𝑄,σ, Γ , 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 .

Key insight: S will construct an instance of  the PCP P that has a match iff M 

accepts w.

To this end, S first constructs an instance 𝑃′ of  MPCP; next, we describe the 

construction in (7) parts, each of  which accomplishes a particular aspect of  

simulating M on w. 



Post Correspondence Problem
Theorem. PCP is undecidable. 

Proof. Part 1: The construction begins as follows: 

Recall that we are constructing the computation history on M; accordingly, 𝐶1 is 

given by:



Post Correspondence Problem
Theorem. PCP is undecidable. 

Proof. (Part 2 handles head motions to the right)

Part 2: For every 𝑎, 𝑏 ∈ Γ and every 𝑞, 𝑟 ∈ 𝑄 where 𝑞 ≠ 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ,

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′

:



Post Correspondence Problem
Theorem. PCP is undecidable. 

Proof. (Part 2 handles head motions to the right; Part 3 to the left)

Part 2: For every 𝑎, 𝑏 ∈ Γ and every 𝑞, 𝑟 ∈ 𝑄 where 𝑞 ≠ 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ,

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′

Part 3: For every 𝑎, 𝑏, 𝑐 ∈ Γ and every 𝑞, 𝑟 ∈ 𝑄 where 𝑞 ≠ 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ,

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝐿 , 𝑝𝑢𝑡
𝑐𝑞𝑎

𝑟𝑐𝑏
into 𝑃′



Post Correspondence Problem
Theorem. PCP is undecidable. 

Proof. (Part 4 handles adding any tape symbol)

Part 4: For every 𝑎 ∈ Γ,

𝑝𝑢𝑡
𝑎

𝑎
into 𝑃′



Post Correspondence Problem
Theorem. PCP is undecidable. 

Proof. (Part 4 handles adding any tape symbol)

Part 4: For every 𝑎 ∈ Γ,

𝑝𝑢𝑡
𝑎

𝑎
into 𝑃′

Part 5:

𝑝𝑢𝑡
#

#
𝑎𝑛𝑑

#

⊔#
into 𝑃′

*Note that the first domino allows us to copy the # symbol that marks the 

separation of  the configurations; the second domino allows us to add a blank 

symbol at the end of  the configuration to simulate the end of  the input tape. 



Post Correspondence Problem

Proof. Recapping,

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′ 𝑝𝑢𝑡

𝑎

𝑎
into 𝑃′

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝐿 , 𝑝𝑢𝑡
𝑐𝑞𝑎

𝑟𝑐𝑏
into 𝑃′ 𝑝𝑢𝑡

#

#
𝑎𝑛𝑑

#

⊔#
into 𝑃′

Example: Let Γ= 0,1,2,⊔ ; say 𝑤 = 0100 and that the start state of  M is q0.

In state 𝑞0 upon reading a 0, suppose the transition dictates that M enter state 

𝑞7, writes a 2 on the tape, and moves to the right. 

Part 1: The match begins…

#

#𝑞00100#



Post Correspondence Problem
Proof. Recapping,

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′ 𝑝𝑢𝑡

𝑎

𝑎
into 𝑃′

If  𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝐿 , 𝑝𝑢𝑡
𝑐𝑞𝑎

𝑟𝑐𝑏
into 𝑃′ 𝑝𝑢𝑡

#

#
𝑎𝑛𝑑

#

⊔#
into 𝑃′

Example: Let Γ= 0,1,2,⊔ ; say 𝑤 = 0100 and that the start state of  M is q0.

In state 𝑞0 upon reading a 0, suppose the transition dictates that M enter state 

𝑞7, writes a 2 on the tape, and moves to the right. 

Part 2: Since 𝛿 𝑞0, 0 = 𝑞7, 2, 𝑅 ,we place the domino 

𝑞00

2𝑞7

Part 4: Place the dominos
0

0
, 
1

1
, 
2

2
and 

⊔

⊔



Post Correspondence Problem
Proof.  Example: Let Γ= 0,1,2,⊔ ; say 𝑤 = 0100 and that the start state of  M is q0.In state 𝑞0
upon reading a 0, suppose the transition dictates that M enter state 𝑞7, writes a 2 on the tape, and 

moves to the right. 

Part 2: Since 𝛿 𝑞0, 0 = 𝑞7, 2, 𝑅 , we place the domino 

𝑞00

2𝑞7

Part 4: Place the dominos
0

0
, 
1

1
, 
2

2
and 

⊔

⊔

Together, with Part 5 we can extend the match as follows: 

* Notice that the dominos in parts 2, 3, and 4 allow us to extend the match by 

adding a configuration. 



Post Correspondence Problem
Proof.  Continuing the example…

Suppose that 𝛿 𝑞7, 1 = 𝑞5, 0, 𝑅 , also. This allows us to extend the partial 

match as follows: 



Post Correspondence Problem
Proof.  Further continuing the example…

Suppose that in state 𝑞5, upon reading a 0, 𝑀 goes to state 𝑞9, writes a 2, and 

moves its head to the left. So 𝛿 𝑞5, 0 = 𝑞9, 2, 𝐿 , also. Then we have the 

dominos: 
0𝑞50

𝑞902
, 

010

𝑞912
, 
2𝑞50

𝑞922
and 

⊔𝑞50

𝑞9⊔2

*Notice that as we construct a match, we are forced to simulate 𝑀 on input 

𝑤. This process continues until 𝑀 reaches a halting state. 



Mapping Reducibility

• We now formalize the notion of  reducibility. 

• Roughly speaking, being able to reduce problem A to problem B means that 

a computable function exists that converts instances of  problem A to instances 

of  problem B. 



Mapping Reducibility

• We now formalize the notion of  reducibility. 

• Roughly speaking, being able to reduce problem A to problem B means that 

a computable function exists that converts instances of  problem A to instances 

of  problem B. 

Def. Computable Functions

A function 𝑓: Σ∗ → Σ∗ is a computable function if  some Turing machine M, 

on every input w, halts with just 𝑓 𝑤 on its tape. 



Mapping Reducibility

A function 𝑓: Σ∗ → Σ∗ is a computable function if  some Turing machine 

M, on every input w, halts with just 𝑓 𝑤 on its tape. 

Example: For arithmetic operations, the input 𝑚, 𝑛 would map to m+ n.

Example: A computable function may serve to generation transformations of  

machine descriptions. 

For instance, the computable function f could take input w and return the 

description of  a TM 𝑀 if  w = 𝑀 is an encoding of  a TM 𝑀.  



Mapping Reducibility

Language A is mapping reducible to language B, written 𝐴 ≤𝑚 𝐵, if  there 

is a computable function 𝑓: Σ∗ → Σ∗, where for every w, 

𝑤 ∈ 𝐴 ↔ 𝑓 𝑤 ∈ 𝐵

The function 𝑓 is called the reduction from A to B.



Mapping Reducibility

Language A is mapping reducible to language B, written 𝐴 ≤𝑚 𝐵, if  there 

is a computable function 𝑓: Σ∗ → Σ∗, where for every w, 

𝑤 ∈ 𝐴 ↔ 𝑓 𝑤 ∈ 𝐵

The function 𝑓 is called the reduction from A to B.

• A mapping reduction of  A to 𝐵 provides a way to convert questions 

about membership testing in A to membership testing in 𝐵. 

• To test whether w ∈ A, we use the reduction 𝑓 to map 𝑤 to 𝑓 𝑤 and 

test whether 𝑓 𝑤 ∈ B. 

• Key point: If  one problem is mapping reducible to a second, previously 

solved problem, we can thereby obtain a solution to the original problem. 



Mapping Reducibility

Theorem. If  𝐴 ≤𝑚 𝐵, and B is decidable, then A is decidable. 

Proof. 

Let 𝑀 be the decider for 𝐵 and f  be the reduction from 𝐴 to 𝐵. We describe 

a decider 𝑁 for 𝐴 as follows: 

𝑁 =“On input 𝑤: 

(1) Compute 𝑓 𝑤
(2) Run 𝑀 on input 𝑓 𝑤 and output whatever 𝑀 outputs.” 

Note: Clearly, if  𝑤 ∈ 𝐴, then 𝑓 𝑤 in 𝐵 because 𝑓 is a reduction from 𝐴 to 

𝐵. Thus 𝑀 accepts 𝑓 𝑤 whenever w ∈ 𝐴, so 𝑁 is a decider for 𝐴. 



Mapping Reducibility

Theorem. If  𝐴 ≤𝑚 𝐵, and B is decidable, then A is decidable. 

Corollary. 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable. 

How to prove the corollary from the theorem? 



Mapping Reducibility

Theorem. If  𝐴 ≤𝑚 𝐵, and B is decidable, then A is decidable. 

• Previously, we showed that 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable (from an informal 

reduction from 𝐴𝑇𝑀); we now prove the result anew using mapping 

reducibility. 

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 



Mapping Reducibility

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable. 

Proof. We define a mapping reducibility from 𝐴𝑇𝑀 to 𝐻𝐴𝐿𝑇𝑇𝑀 below; to do so, 

we provide a computable function 𝑓 that takes input of  the form 𝑀,𝑤 and 

returns output of  the form 𝑀′,𝑤′ , where:

𝑀,𝑤 ∈ 𝐴𝑇𝑀 iff  𝑀′,𝑤′ ∈ 𝐻𝐴𝐿𝑇𝑇𝑀



Mapping Reducibility

• Note that mapping reducibility is said to be sensitive to complementation. This means that 

there exist cases for which a mapping reducibility: 𝐴 ≤𝑚 𝐵 exists, but no such mapping 

reducibility exists for 𝐴 to ത𝐵.

• One such example of  this sensitivity arises in the case of  𝐴𝑇𝑀 reduced to 𝐸𝑇𝑀 (which does

have a mapping reduction). However, no such mapping reduction of  𝐴𝑇𝑀 to 𝐸𝑇𝑀 exists! 

(Notice that both 𝐴𝑇𝑀 and 𝐸𝑇𝑀 are nevertheless undecidable). 



Mapping Reducibility

• We can use mapping reducibility to show that problems are not Turing-recognizable. 

Theorem. If  𝐴 ≤𝑚 𝐵 and 𝐵 is Turing-recognizable, then 𝐴 is Turing-recognizable.

Corollary. If 𝐴 ≤𝑚 𝐵 and 𝐴 is not Turing-recognizable, then 𝐵 is not Turing-recognizable.   

* Note that these proofs are analogous to the earlier proofs for decidability/undecidability with 

mapping reducibility. 



Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable. 

Idea: We know that 𝐴𝑇𝑀 is not Turing-recognizable, as shown in a previous 

lecture. 

Notice that the definition of  mapping reducibility implies that 𝐴 ≤𝑚 𝐵 iff
ҧ𝐴 ≤𝑚

ത𝐵.

To prove that 𝐵 is not Turing-recognizable, we may show that 𝐴𝑇𝑀 ≤𝑚
ത𝐵, as 

this implies 𝐴𝑇𝑀 ≤𝑚 𝐵.

Recalling (from previous slide): 

If 𝐴 ≤𝑚 𝐵 and 𝐴 is not Turing-recognizable, then 𝐵 is not Turing-recognizable.   



Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable. 

Proof. First, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀 to 

𝐸𝑄𝑇𝑀 .



Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable. 

Proof. First, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀 to 

𝐸𝑄𝑇𝑀 .

The reducing function 𝑓 works as follows: 

𝐹 = “On input 𝑀,𝑤 where 𝑀 is a TM and w a string: 

(1) Construct the following two machines, 𝑀1 and 𝑀2. 

𝑀1 = “On any input: reject.

𝑀2 = On any input: Run M on 𝑤. If  it accepts, accept.”

(2) Output 𝑀1, 𝑀2 . 

In summary: 𝑀1 accepts nothing; if  𝑀 accepts 𝑤, 𝑀2 accepts everything, and so 

the two machines are not equivalent. Conversely, if  𝑀 doesn’t accept 𝑤, 𝑀2 accepts 

nothing, and they are equivalent. Thus 𝑓 reduced 𝐴𝑇𝑀 to 𝐸𝑄𝑇𝑀, as desired. 



Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable. 

Proof. Second, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀
to the complement of  𝐸𝑄𝑇𝑀, viz., we show: 𝐴𝑇𝑀 ≤𝑚 𝐸𝑄𝑇𝑀. 



Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable. 

Proof. Second, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀
to the complement of  𝐸𝑄𝑇𝑀, viz., we show: 𝐴𝑇𝑀 ≤𝑚 𝐸𝑄𝑇𝑀. 

The following TM 𝐺 computed the reducing function 𝑔: 

𝐺 = “On input 𝑀,𝑤 where 𝑀 is a TM and w a string: 

(1) Construct the following two machines, 𝑀1 and 𝑀2. 

𝑀1 = “On any input: accept.

𝑀2 = On any input: Run M on 𝑤. If  it accepts, accept.”

(2) Output 𝑀1, 𝑀2 . 

In summary: In 𝑔, 𝑀 accepts w iff 𝑀1 and 𝑀2 are equivalent, so 𝑔 is a reduction 

from 𝐴𝑇𝑀 to 𝐸𝑄𝑇𝑀.

Only 

change 

from proof 

of part 1



Fin


