
Reducibility

• Undecidable Problems from Language Theory

• Post Correspondence Problem

• Mapping Reducibility

Contents

• In this lecture we examine several new unsolvable problems; our main

approach to demonstrating that a computational problem is unsolvable will be

reducibility.

• A reduction is a way to convert one problem/domain to another

problem/domain in such a way that a solution to the second problem can be

applied to solve the first problem.

Reducibility

• Reducibility involves two problems: A and B; if A reduces to B 𝐴 →𝑟𝑒𝑑 𝐵 ,

we can use a solution to B to solve A.

• Notice that reducibility says nothing about solving A or B alone, but only about

the solvability of A in the presence of a solution to B.

Reducibility

• Reducibility involves two problems: A and B; if A reduces to B 𝐴 →𝑟𝑒𝑑 𝐵 ,

we can use a solution to B to solve A.

• Notice that reducibility says nothing about solving A or B alone, but only about

the solvability of A in the presence of a solution to B.

For example: the problem of (uniquely) solving a square system of linear equations:

𝐴𝑥 = 𝑏, reduces to finding 𝐴−1; in other words if we have 𝐴−1 we can

necessarily solve 𝐴𝑥 = 𝑏.

Reducibility

• Reducibility plays an important role in classifying decidable and

undecidable problems (and complexity theory).

• If 𝐴 →𝑟𝑒𝑑 𝐵, solving 𝑨 cannot be harder than solving 𝑩 because

a solution to 𝑩 (always) gives a solution to 𝑨.

Reducibility

• In terms of computability, if 𝐴 →𝑟𝑒𝑑 𝐵 and B is decidable, then 𝑨 is

also decidable.

• Similarly, if 𝐴 →𝑟𝑒𝑑 𝐵 and A is undecidable, then 𝑩 is undecidable.

Reducibility

• In terms of computability, if 𝐴 →𝑟𝑒𝑑 𝐵 and B is decidable, then 𝑨 is

also decidable.

• Similarly, if 𝐴 →𝑟𝑒𝑑 𝐵 and A is undecidable, then 𝑩 is undecidable.

* In summary, our general method for proving that a problem is

undecidable entails showing that some problem already known to be

undecidable reduces to it.

Reducibility

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

• Recall that we have already (using diagonalization) proved the

undecidability of 𝐴𝑇𝑀.

Undecidable Problems

𝐴𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤

• Recall that we have already (using diagonalization) proved the

undecidability of 𝐴𝑇𝑀.

• Consider now the problem 𝐻𝐴𝐿𝑇𝑇𝑀, the problem of determining

whether a TM halts (by accepting or rejecting) on a given input; this

problem is widely known as the Halting Problem in computability

theory.

Define:

𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Undecidable Problems

𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Undecidable Problems

𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Proof Sketch: (Contradiction) Assume 𝐻𝐴𝐿𝑇𝑇𝑀 is decidable; use this

assumption to show the implication that 𝐴𝑇𝑀 is consequently

decidable, a contradiction.

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝐻𝐴𝐿𝑇𝑇𝑀

Undecidable Problems

𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Proof Sketch: (Contradiction) Assume 𝐻𝐴𝐿𝑇𝑇𝑀 is decidable; use this

assumption to show the implication that 𝐴𝑇𝑀 is consequently

decidable, a contradiction.

* The key step in the proof is to explicitly use a TM 𝑹 that decides

𝑯𝑨𝑳𝑻𝑻𝑴 to render a TM deciding 𝑨𝑻𝑴.

Simply use 𝑅 to decide whether 𝑀 halts on input 𝑤. If it doesn’t –

reject; otherwise, simulate 𝑀 on 𝑤 and return the result of this

simulation.

Undecidable Problems

𝐻𝐴𝐿𝑇𝑇𝑀 = 𝑀,𝑤 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝑀 ℎ𝑎𝑙𝑡𝑠 𝑜𝑛 𝑖𝑛𝑝𝑢𝑡 𝑤

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Proof. (Contradiction) Assume the TM 𝑅 decides 𝐻𝐴𝐿𝑇𝑇𝑀. We

construct TM 𝑆 to decide 𝐴𝑇𝑀.

𝑆 = “On input 𝑀,𝑤 , an encoding of a TM 𝑀 and string 𝑤:

(1) Run TM 𝑅 on input 𝑀,𝑤 .

(2) If 𝑅 rejects, reject.

(3) If 𝑅 accepts, simulate 𝑀 on 𝑤 until it halts.

(4) If 𝑀 has accepted, accept; if 𝑀 has rejected, reject.”

*Because 𝐴𝑇𝑀 is undecidable, 𝐻𝐴𝐿𝑇𝑇𝑀 is also undecidable.

Undecidable Problems

𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable.

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝐸𝑇𝑀

Undecidable Problems

𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable.

Proof Sketch: (Contradiction) Assume 𝐸𝑇𝑀 is decidable; use this

assumption to show the implication that 𝐴𝑇𝑀 is consequently

decidable, a contradiction.

* Key step: run TM 𝑅 deciding 𝐸𝑇𝑀 on a modification of 𝑀 .

We modify 𝑀 so that 𝑀 rejects all strings except 𝑤, but on input 𝑤 it

works as usual. Now use 𝑅 on this modified TM; 𝑅 will decide 𝐴𝑇𝑀, a

contradiction.

Undecidable Problems

𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable.

Proof. Define the aforementioned, modified TM 𝑀1:

𝑀1= “On input 𝑥:

(1) If 𝑥 ≠ 𝑤, reject.

(2) If 𝑥 = 𝑤, run 𝑀 on input 𝑤 and accept if 𝑀 does.

Undecidable Problems

𝐸𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

Theorem. 𝐸𝑇𝑀is undecidable.

Proof. Now using 𝑅, the 𝑇𝑀 that decides 𝐸𝑇𝑀, construct 𝑇𝑀 𝑆 that

decides 𝐴𝑇𝑀 as follows:

𝑆 =“On input 𝑀,𝑤 , an encoding of a TM 𝑀 and a string 𝑤 :

(1) Use the description of 𝑀 and 𝑤 to construct the TM 𝑀1 just described.

(2) Run 𝑅 on input 𝑀1 .

(3) If 𝑅 accepts, reject; if 𝑅 rejects, accept.”

*In summary, if 𝑅 were a decider for 𝐸𝑇𝑀 , then 𝐴𝑇𝑀 would be decidable, a

contradiction.

Undecidable Problems

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀is undecidable.

* This computation problem relates to whether a given TM recognizes a language

that can also be recognized by a simpler computational model.

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀

Undecidable Problems

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable.

Proof Sketch: (again: contradiction, reduction from 𝐴𝑇𝑀) We assume

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is decidable by TM 𝑅, use this fact to show then 𝐴𝑇𝑀 would be

decidable by some TM 𝑆.

Challenge: How to construct 𝑆 from 𝑅? 𝑆 takes input 𝑀,𝑤 ; we modify 𝑀

(call it 𝑀2) so that the resulting TM recognizes a regular language iff 𝑀 accepts

𝑤.

Undecidable Problems

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable.

Challenge: How to construct 𝑆 from 𝑅? 𝑆 takes input 𝑀,𝑤 ; we modify 𝑀

(call it 𝑀2) so that the resulting TM recognizes a regular language iff 𝑀 accepts

𝑤.

We define 𝑀2 to recognize the non-regular language 0𝑛1𝑛|𝑛 ≥ 0 if 𝑀 doesn’t

accept 𝑤; otherwise, 𝑀2 accepts its input iff 𝑀 accepts 𝑤.

In summary, 𝑀2 works by automatically accepting all strings in 0𝑛1𝑛|𝑛 ≥ 0 . In

addition, if 𝑀 accepts 𝑤, 𝑀2 accepts all other strings.

Undecidable Problems

𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 = 𝑀 | 𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 𝑖𝑠 𝑎 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒

Theorem. 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 is undecidable.

Proof. Let 𝑅 be a TM that decides 𝑅𝐸𝐺𝑈𝐿𝐴𝑅𝑇𝑀 and construct TM 𝑆 to decide

𝐴𝑇𝑀.

𝑆 = “On input 𝑀,𝑤 , where 𝑀 is a TM and 𝑤 is a string:

(1) Construct the following TM 𝑀2.

𝑀2 = “On input 𝑥:

(i) If 𝑥 has the form 0𝑛1𝑛|𝑛 ≥ 0 , accept.

(ii) If 𝑥 does not have this form, run 𝑀 on input 𝑤 and accept if 𝑀

accepts 𝑤.

(2) Run 𝑅 on input 𝑀2 .

(3) If 𝑅 accepts, accept; if 𝑅 rejects, reject.

Undecidable Problems

𝐸𝑄𝑇𝑀 = 𝑀1, 𝑀2 |𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑇𝑀𝑠 𝑎𝑛𝑑 𝐿 𝑀1 = 𝐿 𝑀2

Theorem. 𝐸𝑄𝑇𝑀 is undecidable.

Proof logic: 𝐴𝑇𝑀 →𝑟𝑒𝑑 𝐸𝑇𝑀 →𝑟𝑒𝑑 𝐸𝑄𝑇𝑀

Undecidable Problems

𝐸𝑄𝑇𝑀 = 𝑀1, 𝑀2 |𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑇𝑀𝑠 𝑎𝑛𝑑 𝐿 𝑀1 = 𝐿 𝑀2

Theorem. 𝐸𝑄𝑇𝑀 is undecidable.

Proof Sketch: Recall the undecidable problem from previous slides:

𝐸𝑇𝑀 = 𝑀 |𝑀 𝑖𝑠 𝑎 𝑇𝑀 𝑎𝑛𝑑 𝐿 𝑀 = ∅

This time, to show 𝐸𝑄𝑇𝑀 is undecidable, we reduce from 𝐸𝑇𝑀. The idea is

straightforward: use the fact that 𝐸𝑇𝑀 is a special case of 𝐸𝑄𝑇𝑀.

Undecidable Problems

𝐸𝑄𝑇𝑀 = 𝑀1, 𝑀2 |𝑀1 𝑎𝑛𝑑 𝑀2 𝑎𝑟𝑒 𝑇𝑀𝑠 𝑎𝑛𝑑 𝐿 𝑀1 = 𝐿 𝑀2

Theorem. 𝐸𝑄𝑇𝑀 is undecidable.

Proof. Suppose TM R decides 𝐸𝑄𝑇𝑀 and construct TM S to decide 𝐸𝑇𝑀 as

follows:

𝑆 =”On input 𝑀 , where 𝑀 is a TM:

(1) Run 𝑅 on input 𝑀,𝑀1 , where 𝑀1 is the TM that rejects all inputs.

(2) If 𝑅 accepts, accept; if 𝑅 rejects, reject.”

Undecidable Problems

Theorem. Any nontrivial property about the language recognized by a Turing

machine is undecidable.

Rice’s Theorem

Theorem. Any nontrivial property about the language recognized by a Turing

machine is undecidable.

• More concretely, Rice’s Theorem says that non-trivial semantic properties of

Turing-recognizable languages are undecidable.

• Here, non-trivial connotes the fact that the property is neither always true nor

always false (for computable functions).

Put another way, for a set of languages S, then S is non-trivial if:

(1) There exists a TM that recognizes a language in S,

(2) There exists a TM that recognizes a language which is not in S.

• Semantic properties are properties about the behavior of a TM (cf. syntactic

properties).

Rice’s Theorem

• Next, we will use the notion of a computation history to further prove

undecidability for additional classes of computation problems.

Reductions with Computation Histories

• Next, we will use the notion of a computation history to further prove

undecidability for additional classes of computation problems.

Def. Let 𝑀 be a TM and 𝑤 an input string. An accepting computation

history for 𝑀 on 𝑤 is a sequence of configurations, 𝐶1, 𝐶2,…, 𝐶𝐿, where 𝐶1
is the start configuration of 𝑀, 𝐶𝐿 is an accepting configuration of 𝑀, and each 𝐶𝑖
legally follows from 𝐶𝑖−1 according to the rules of 𝑀.

A rejecting computation history for 𝑀 on 𝑤 is defined analogously, except

that 𝐶𝐿 is a rejecting configuration.

Reductions with Computation Histories

• Next, we will use the notion of a computation history to further prove

undecidability for additional classes of computation problems.

Def. Let 𝑀 be a TM and 𝑤 an input string. An accepting computation

history for 𝑀 on 𝑤 is a sequence of configurations, 𝐶1, 𝐶2,…, 𝐶𝐿, where 𝐶1
is the start configuration of 𝑀, 𝐶𝐿 is an accepting configuration of 𝑀, and each 𝐶𝑖
legally follows from 𝐶𝑖−1 according to the rules of 𝑀.

A rejecting computation history for 𝑀 on 𝑤 is defined analogously, except

that 𝐶𝐿 is a rejecting configuration.

*Note that computation histories are finite sequences; if M doesn’t halt on w, no accepting or

rejecting computation history exists for M on w.

*Deterministic machines have at most one computation history per input; non-deterministic

machines may have many computation histories per input (corresponding with computation

branches); for now, consider the machines to be deterministic for simplicity.

Reductions with Computation Histories

• We now consider TMs with a limited amount of memory; these machines

can only solve problems requiring memory that can fit within the tape used

for the input alphabet.

• Using a tape alphabet that is larger than the input alphabet allows the

available memory to be increased up to a constant factor.

LBA

• We now consider TMs with a limited amount of memory; these machines

can only solve problems requiring memory that can fit within the tape used

for the input alphabet.

• Using a tape alphabet that is larger than the input alphabet allows the

available memory to be increased up to a constant factor.

Def. A linear bounded automaton (LBA) is a restricted TM wherein the

tape head isn’t permitted to move off the portion of the tape containing the

input (if the machine tries to move off on either end the tape head stays

where it is).

LBA

• Despite their memory constraint, LBA are quite powerful.

* For example, the deciders for 𝐴𝐷𝐹𝐴, 𝐴𝐶𝐹𝐺 , 𝐸𝐷𝐹𝐴, 𝐸𝐶𝐹𝐺 are all LBA.

• In fact, it is not trivial to find a decidable language that can’t be decided by

an LBA.

• Before proving decidability/undecidability of computational problems

related to LBA, we first devise a useful bound for the number of distinct

configurations for LBA.

LBA

Lemma. Let 𝑀 be an LBA with 𝑞 states and 𝑔 symbols in the tape alphabet.

There are exactly 𝑞𝑛𝑔𝑛 distinct configurations of 𝑀 for a tape of length 𝑛.

LBA

Lemma. Let 𝑀 be an LBA with 𝑞 states and 𝑔 symbols in the tape alphabet.

There are exactly 𝑞𝑛𝑔𝑛 distinct configurations of 𝑀 for a tape of length 𝑛.

Proof. Remember that a “configuration” of a TM specifies three things: (1) current

state, (2) location of tape head, and (3) contents of the tape.

Here, 𝑀 has 𝑞 states; the length of the tape is 𝑛, so the head can be in one of 𝑛
positions; lastly, there are 𝑔𝑛 possible tape contents. We multiply these quantities

together (using the multiplication principle from combinatorics), yielding the desired

result.

LBA

𝐴𝐿𝐵𝐴 = 𝑀,𝑤 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝐿𝐵𝐴 is decidable.

LBA Problems

𝐴𝐿𝐵𝐴 = 𝑀,𝑤 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝐿𝐵𝐴 is decidable.

Proof Sketch: We simulate LBA 𝑀 on 𝑤; if M halts and accepts or rejects, we accept or reject

accordingly.

Otherwise, we need to detect when M is looping. Because 𝑀 is an LBA, by the previous lemma,

𝑀 can be in only a limited number of configurations for the input tape.

Detecting that M is looping is possible by simulating 𝑀 for the number of steps prescribed by

the previous lemma: 𝑞𝑛𝑔𝑛.

LBA Problems

𝐴𝐿𝐵𝐴 = 𝑀,𝑤 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑡ℎ𝑎𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑠𝑡𝑟𝑖𝑛𝑔 𝑤

Theorem. 𝐴𝐿𝐵𝐴 is decidable.

Proof. The algorithm decides 𝐴𝐿𝐵𝐴 as follows.

𝐿 = “On input 𝑀,𝑤 , where 𝑀 is an LBA and 𝑤 a string:

(1) Simulate 𝑀 on 𝑤 for 𝑞𝑛𝑔𝑛 steps or until it halts.

(2) If 𝑀 has halted, accept if it has accepted and reject if it has rejected. If

it has not halted, reject.

*This result shows that LBA and TMs differ in one essential way: for LBA the

acceptance problem is decidable, whereas with TMs the acceptance problem is

undecidable.

*However, many other problems remain undecidable for LBA, as we show next.

LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Undecidable LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof Sketch: The proof is by reduction from 𝐴𝑇𝑀.

We suppose 𝐸𝐿𝐵𝐴 is decidable. For a TM 𝑀 and input 𝑤, we construct an

LBA 𝐵 and then test whether L(B) is empty.

The language that 𝐵 recognizes comprises all accepting computation histories

for 𝑀 on 𝑤. If 𝑀 accepts 𝑤, this language contains one string and is

therefore non-empty. If 𝑀 does not accept 𝑤, this language is empty.

Undecidable LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof Sketch: We now describe how to construct 𝐵 from 𝑀 and 𝑤; in

particular, we need to show how a TM can obtain a description of 𝐵 from 𝑀

and 𝑤.

Construct B to accept its input 𝑥, if 𝑥 is an accepting computation history for

𝑀 on 𝑤 . For simplicity, assume the computation history consists of

configurations delimited by #.

Undecidable LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof Sketch: The LBA 𝐵 works as follows: given a computation history 𝐶1,

𝐶2,…, 𝐶𝐿, 𝐵 checks whether:

(1) 𝐶1 corresponds with the start configuration for 𝑀 on w

(2) Each 𝐶𝑖+1 legally follows from 𝐶𝑖 , and

(3) 𝐶𝐿 is the accepting configuration for 𝑀.

Undecidable LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof Sketch: The LBA 𝐵 works as follows: given a computation history 𝐶1,

𝐶2,…, 𝐶𝐿, 𝐵 checks whether:

(1) 𝐶1 corresponds with the start configuration for 𝑀 on w

(2) Each 𝐶𝑖+1 legally follows from 𝐶𝑖 , and

(3) 𝐶𝐿 is the accepting configuration for 𝑀.

Regarding (1), the start configuration 𝐶1 for 𝑀 on 𝑤 is the string 𝑞0𝑤1…𝑤𝑛,

where 𝑞0 is the start state for 𝑀 on 𝑤. 𝐵 has the initial tape string, so this can

be checked.

Regarding (3), 𝐵 checks 𝐶𝐿 to see if it is the accept state.

Undecidable LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof Sketch: The LBA 𝐵 works as follows: given a computation history 𝐶1,

𝐶2,…, 𝐶𝐿, B checks whether:

(1) 𝐶1 corresponds with the start configuration for 𝑀 on w

(2) Each 𝐶𝑖+1 legally follows from 𝐶𝑖 , and

(3) 𝐶𝐿 is the accepting configuration for 𝑀.

Regarding (2), 𝐵 checks whether 𝐶𝑖 and 𝐶𝑖+1 are identical except for the

position under and adjacent to the tape head; this can be checked by following

a zig-zagging procedure.

Undecidable LBA Problems

𝐸𝐿𝐵𝐴 = 𝑀 |𝑀 𝑖𝑠 𝑎𝑛 𝐿𝐵𝐴 𝑤ℎ𝑒𝑟𝑒 𝐿 𝑀 = ∅

Theorem. 𝐸𝐿𝐵𝐴 is undecidable.

Proof. Suppose that TM R decides 𝐸𝐿𝐵𝐴. Construct TM S to decide 𝐴𝑇𝑀
as follows:

𝑆 =“On input 𝑀,𝑤 , where 𝑀 is a TM and 𝑤 is a string:

(1) Construct LBA 𝐵 from 𝑀 and 𝑤 as described previously.

(2) Run 𝑅 on input 𝐵 .

(3) If 𝑅 rejects, accept; if 𝑅 accepts, reject.”

*If R accepts 𝐵 , then L 𝐵 = ∅. Thus, 𝑀 has no accepting computation

history on 𝑤 and 𝑀 doesn’t accept 𝑤. Consequently, 𝑆 rejects 𝑀,𝑤 .

Undecidable LBA Problems

𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

An Undecidable CFG Problem

𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof Idea: By contradiction and reduction from 𝐴𝑇𝑀; the proof technique is

similar to that used for the previous theorem, except that we modify the

representation of computation histories.

An Undecidable CFG Problem

𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof Idea:

For a TM 𝑀 and input 𝑤, we construct a CFG G that generates all strings iff

𝑀 does not accept 𝑤.

So, if 𝑀 does accept 𝑤, G does not generate some particular string – the

string will be the accepting computation history for 𝑀 on 𝑤.

* 𝐺 is designed to generate all strings that are not accepting computation

histories for 𝑀 on 𝑤.

An Undecidable CFG Problem

𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof Idea: An accepting configuration history for 𝑀 on 𝑤 appears as

#𝐶1#…#𝐶𝐿#.

A string may fail to be an accepting computation history for several reasons:

(1) It doesn’t start with 𝐶1
(2) It doesn’t end with an accepting configuration

(3) 𝐶𝑖 doesn’t properly yield 𝐶𝑖+1 under the rules of 𝑀

If 𝑀 does not accept 𝑤, no accepting computation history exists, so all strings

fail in one way or another, i.e. 𝐺 doesn’t generate all strings.

An Undecidable CFG Problem

𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof Idea: We begin with a PDA 𝑫 (instead of directly constructing 𝐺);

from previous work, we know that 𝐷 can be converted into a CFG. We use a

PDA to begin with, as it is easier than directly designing a CFG for this

problem.

𝐷 begins by non-deterministically guessing which of the (3) preceding

conditions fail. Conditions (1) and (2) are easy to check – where we start in

𝐶1 and end in accept.

(1) It doesn’t start with 𝐶1
(2) It doesn’t end with an accepting configuration

An Undecidable CFG Problem

𝐴𝐿𝐿𝐶𝐹𝐺 = 𝐺 |𝐺 𝑖𝑠 𝑎 𝐶𝐹𝐺 𝑎𝑛𝑑 𝐿 𝐺 = Σ∗

Theorem. 𝐴𝐿𝐿𝐶𝐹𝐺 is undecidable.

Proof Idea: For condition (3), we use the stack and compare 𝐶𝑖 and 𝐶𝑖+1 by

pushing the contents of 𝐶𝑖 until arriving at the delimiter #; next, the stack is

popped and compared with 𝐶𝑖+1 , a discrepancy with the location of the

tape/tape-head yields an accept (recall consecutive legal states only differ by

the location of the head and cells adjacent to the head).

One last detail – because the stack is processed LIFO, the computation history

is written so that every other configuration is in reverse order.

An Undecidable CFG Problem

Post Correspondence Problem
• Undecidability is not confined to problems concerning automata.

• The Post Correspondence Problem (after Emile Post, pictured) is

another example of an undecidable problem that can be stated

independent of automata.

• The problem can be described as a puzzle. Consider a

collection of dominos (with a top/bottom portion), such as:

• The task is to make a list of these dominos (repetition is allowed) so that the

string yielded by reading off the “top” row is identical to that of the “bottom”

row; such a list is called a match. Here is an example:

Post Correspondence Problem
• For some collections of dominos, finding a match is impossible; here is

one such example (why?):

• Formally, an instance of the PCP is a collection P of dominos:

And a match is a sequence 𝑖1, 𝑖2, … , 𝑖𝑙 where 𝑡𝑖1𝑡𝑖2…𝑡𝑖𝑙 = 𝑏𝑖1𝑏𝑖2…𝑏𝑖𝑙.
The problem is to determine whether P has a match. Let:

𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Post Correspondence Problem
𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Theorem. PCP is undecidable.

Post Correspondence Problem
𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Theorem. PCP is undecidable.

The proof will be detailed in (7) parts, including a running example.

First, for convenience and simplification we apply (3) minor modifications to

PCP*:

* Note that each of these requirements can be eliminated and thus PCP can be

shown to be undecidable in its original form (this proof is however less concise

and straightforward).

Post Correspondence Problem
𝑃𝐶𝑃 = 𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃 𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ

Theorem. PCP is undecidable.

The proof will be detailed in (7) parts, including a running example.

First, for convenience and simplification we apply (3) minor modifications to PCP:

(1) We assume M on w never attempts to move the tape head off the left-hand end

of the tape.

(2) If 𝑤 = 𝜀, we use the blank symbol ⊔ in place of 𝑤 in the construction.

(3) We modify PCP to require that a match starts with the first domino:

Call this modified problem the Modified Post Correspondence Problem (MPCP):

𝑀𝑃𝐶𝑃 =
𝑃 |𝑃 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑃𝐶𝑃

𝑤𝑖𝑡ℎ 𝑎 𝑚𝑎𝑡𝑐ℎ 𝑡ℎ𝑎𝑡 𝑠𝑡𝑎𝑟𝑠 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑑𝑜𝑚𝑖𝑛𝑜

Post Correspondence Problem
Theorem. PCP is undecidable.

Proof. (Contradiction/reduction) We let TM R decide the PCP and construct S

deciding 𝐴𝑇𝑀.

Let M = 𝑄,σ, Γ , 𝛿, 𝑞0, 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 , 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 .

Key insight: S will construct an instance of the PCP P that has a match iff M

accepts w.

To this end, S first constructs an instance 𝑃′ of MPCP; next, we describe the

construction in (7) parts, each of which accomplishes a particular aspect of

simulating M on w.

Post Correspondence Problem
Theorem. PCP is undecidable.

Proof. Part 1: The construction begins as follows:

Recall that we are constructing the computation history on M; accordingly, 𝐶1 is

given by:

Post Correspondence Problem
Theorem. PCP is undecidable.

Proof. (Part 2 handles head motions to the right)

Part 2: For every 𝑎, 𝑏 ∈ Γ and every 𝑞, 𝑟 ∈ 𝑄 where 𝑞 ≠ 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ,

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′

:

Post Correspondence Problem
Theorem. PCP is undecidable.

Proof. (Part 2 handles head motions to the right; Part 3 to the left)

Part 2: For every 𝑎, 𝑏 ∈ Γ and every 𝑞, 𝑟 ∈ 𝑄 where 𝑞 ≠ 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ,

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′

Part 3: For every 𝑎, 𝑏, 𝑐 ∈ Γ and every 𝑞, 𝑟 ∈ 𝑄 where 𝑞 ≠ 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 ,

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝐿 , 𝑝𝑢𝑡
𝑐𝑞𝑎

𝑟𝑐𝑏
into 𝑃′

Post Correspondence Problem
Theorem. PCP is undecidable.

Proof. (Part 4 handles adding any tape symbol)

Part 4: For every 𝑎 ∈ Γ,

𝑝𝑢𝑡
𝑎

𝑎
into 𝑃′

Post Correspondence Problem
Theorem. PCP is undecidable.

Proof. (Part 4 handles adding any tape symbol)

Part 4: For every 𝑎 ∈ Γ,

𝑝𝑢𝑡
𝑎

𝑎
into 𝑃′

Part 5:

𝑝𝑢𝑡
#

#
𝑎𝑛𝑑

#

⊔#
into 𝑃′

*Note that the first domino allows us to copy the # symbol that marks the

separation of the configurations; the second domino allows us to add a blank

symbol at the end of the configuration to simulate the end of the input tape.

Post Correspondence Problem

Proof. Recapping,

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′ 𝑝𝑢𝑡

𝑎

𝑎
into 𝑃′

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝐿 , 𝑝𝑢𝑡
𝑐𝑞𝑎

𝑟𝑐𝑏
into 𝑃′ 𝑝𝑢𝑡

#

#
𝑎𝑛𝑑

#

⊔#
into 𝑃′

Example: Let Γ= 0,1,2,⊔ ; say 𝑤 = 0100 and that the start state of M is q0.

In state 𝑞0 upon reading a 0, suppose the transition dictates that M enter state

𝑞7, writes a 2 on the tape, and moves to the right.

Part 1: The match begins…

#

#𝑞00100#

Post Correspondence Problem
Proof. Recapping,

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝑅 , 𝑝𝑢𝑡
𝑞𝑎

𝑏𝑟
into 𝑃′ 𝑝𝑢𝑡

𝑎

𝑎
into 𝑃′

If 𝛿 𝑞, 𝑎 = 𝑟, 𝑏, 𝐿 , 𝑝𝑢𝑡
𝑐𝑞𝑎

𝑟𝑐𝑏
into 𝑃′ 𝑝𝑢𝑡

#

#
𝑎𝑛𝑑

#

⊔#
into 𝑃′

Example: Let Γ= 0,1,2,⊔ ; say 𝑤 = 0100 and that the start state of M is q0.

In state 𝑞0 upon reading a 0, suppose the transition dictates that M enter state

𝑞7, writes a 2 on the tape, and moves to the right.

Part 2: Since 𝛿 𝑞0, 0 = 𝑞7, 2, 𝑅 ,we place the domino

𝑞00

2𝑞7

Part 4: Place the dominos
0

0
,
1

1
,
2

2
and

⊔

⊔

Post Correspondence Problem
Proof. Example: Let Γ= 0,1,2,⊔ ; say 𝑤 = 0100 and that the start state of M is q0.In state 𝑞0
upon reading a 0, suppose the transition dictates that M enter state 𝑞7, writes a 2 on the tape, and

moves to the right.

Part 2: Since 𝛿 𝑞0, 0 = 𝑞7, 2, 𝑅 , we place the domino

𝑞00

2𝑞7

Part 4: Place the dominos
0

0
,
1

1
,
2

2
and

⊔

⊔

Together, with Part 5 we can extend the match as follows:

* Notice that the dominos in parts 2, 3, and 4 allow us to extend the match by

adding a configuration.

Post Correspondence Problem
Proof. Continuing the example…

Suppose that 𝛿 𝑞7, 1 = 𝑞5, 0, 𝑅 , also. This allows us to extend the partial

match as follows:

Post Correspondence Problem
Proof. Further continuing the example…

Suppose that in state 𝑞5, upon reading a 0, 𝑀 goes to state 𝑞9, writes a 2, and

moves its head to the left. So 𝛿 𝑞5, 0 = 𝑞9, 2, 𝐿 , also. Then we have the

dominos:
0𝑞50

𝑞902
,

010

𝑞912
,
2𝑞50

𝑞922
and

⊔𝑞50

𝑞9⊔2

*Notice that as we construct a match, we are forced to simulate 𝑀 on input

𝑤. This process continues until 𝑀 reaches a halting state.

Mapping Reducibility

• We now formalize the notion of reducibility.

• Roughly speaking, being able to reduce problem A to problem B means that

a computable function exists that converts instances of problem A to instances

of problem B.

Mapping Reducibility

• We now formalize the notion of reducibility.

• Roughly speaking, being able to reduce problem A to problem B means that

a computable function exists that converts instances of problem A to instances

of problem B.

Def. Computable Functions

A function 𝑓: Σ∗ → Σ∗ is a computable function if some Turing machine M,

on every input w, halts with just 𝑓 𝑤 on its tape.

Mapping Reducibility

A function 𝑓: Σ∗ → Σ∗ is a computable function if some Turing machine

M, on every input w, halts with just 𝑓 𝑤 on its tape.

Example: For arithmetic operations, the input 𝑚, 𝑛 would map to m+ n.

Example: A computable function may serve to generation transformations of

machine descriptions.

For instance, the computable function f could take input w and return the

description of a TM 𝑀 if w = 𝑀 is an encoding of a TM 𝑀.

Mapping Reducibility

Language A is mapping reducible to language B, written 𝐴 ≤𝑚 𝐵, if there

is a computable function 𝑓: Σ∗ → Σ∗, where for every w,

𝑤 ∈ 𝐴 ↔ 𝑓 𝑤 ∈ 𝐵

The function 𝑓 is called the reduction from A to B.

Mapping Reducibility

Language A is mapping reducible to language B, written 𝐴 ≤𝑚 𝐵, if there

is a computable function 𝑓: Σ∗ → Σ∗, where for every w,

𝑤 ∈ 𝐴 ↔ 𝑓 𝑤 ∈ 𝐵

The function 𝑓 is called the reduction from A to B.

• A mapping reduction of A to 𝐵 provides a way to convert questions

about membership testing in A to membership testing in 𝐵.

• To test whether w ∈ A, we use the reduction 𝑓 to map 𝑤 to 𝑓 𝑤 and

test whether 𝑓 𝑤 ∈ B.

• Key point: If one problem is mapping reducible to a second, previously

solved problem, we can thereby obtain a solution to the original problem.

Mapping Reducibility

Theorem. If 𝐴 ≤𝑚 𝐵, and B is decidable, then A is decidable.

Proof.

Let 𝑀 be the decider for 𝐵 and f be the reduction from 𝐴 to 𝐵. We describe

a decider 𝑁 for 𝐴 as follows:

𝑁 =“On input 𝑤:

(1) Compute 𝑓 𝑤
(2) Run 𝑀 on input 𝑓 𝑤 and output whatever 𝑀 outputs.”

Note: Clearly, if 𝑤 ∈ 𝐴, then 𝑓 𝑤 in 𝐵 because 𝑓 is a reduction from 𝐴 to

𝐵. Thus 𝑀 accepts 𝑓 𝑤 whenever w ∈ 𝐴, so 𝑁 is a decider for 𝐴.

Mapping Reducibility

Theorem. If 𝐴 ≤𝑚 𝐵, and B is decidable, then A is decidable.

Corollary. 𝐴 ≤𝑚 𝐵 and 𝐴 is undecidable, then 𝐵 is undecidable.

How to prove the corollary from the theorem?

Mapping Reducibility

Theorem. If 𝐴 ≤𝑚 𝐵, and B is decidable, then A is decidable.

• Previously, we showed that 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable (from an informal

reduction from 𝐴𝑇𝑀); we now prove the result anew using mapping

reducibility.

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Mapping Reducibility

Theorem. 𝐻𝐴𝐿𝑇𝑇𝑀 is undecidable.

Proof. We define a mapping reducibility from 𝐴𝑇𝑀 to 𝐻𝐴𝐿𝑇𝑇𝑀 below; to do so,

we provide a computable function 𝑓 that takes input of the form 𝑀,𝑤 and

returns output of the form 𝑀′,𝑤′ , where:

𝑀,𝑤 ∈ 𝐴𝑇𝑀 iff 𝑀′,𝑤′ ∈ 𝐻𝐴𝐿𝑇𝑇𝑀

Mapping Reducibility

• Note that mapping reducibility is said to be sensitive to complementation. This means that

there exist cases for which a mapping reducibility: 𝐴 ≤𝑚 𝐵 exists, but no such mapping

reducibility exists for 𝐴 to ത𝐵.

• One such example of this sensitivity arises in the case of 𝐴𝑇𝑀 reduced to 𝐸𝑇𝑀 (which does

have a mapping reduction). However, no such mapping reduction of 𝐴𝑇𝑀 to 𝐸𝑇𝑀 exists!

(Notice that both 𝐴𝑇𝑀 and 𝐸𝑇𝑀 are nevertheless undecidable).

Mapping Reducibility

• We can use mapping reducibility to show that problems are not Turing-recognizable.

Theorem. If 𝐴 ≤𝑚 𝐵 and 𝐵 is Turing-recognizable, then 𝐴 is Turing-recognizable.

Corollary. If 𝐴 ≤𝑚 𝐵 and 𝐴 is not Turing-recognizable, then 𝐵 is not Turing-recognizable.

* Note that these proofs are analogous to the earlier proofs for decidability/undecidability with

mapping reducibility.

Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable.

Idea: We know that 𝐴𝑇𝑀 is not Turing-recognizable, as shown in a previous

lecture.

Notice that the definition of mapping reducibility implies that 𝐴 ≤𝑚 𝐵 iff
ҧ𝐴 ≤𝑚

ത𝐵.

To prove that 𝐵 is not Turing-recognizable, we may show that 𝐴𝑇𝑀 ≤𝑚
ത𝐵, as

this implies 𝐴𝑇𝑀 ≤𝑚 𝐵.

Recalling (from previous slide):

If 𝐴 ≤𝑚 𝐵 and 𝐴 is not Turing-recognizable, then 𝐵 is not Turing-recognizable.

Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable.

Proof. First, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀 to

𝐸𝑄𝑇𝑀 .

Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable.

Proof. First, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀 to

𝐸𝑄𝑇𝑀 .

The reducing function 𝑓 works as follows:

𝐹 = “On input 𝑀,𝑤 where 𝑀 is a TM and w a string:

(1) Construct the following two machines, 𝑀1 and 𝑀2.

𝑀1 = “On any input: reject.

𝑀2 = On any input: Run M on 𝑤. If it accepts, accept.”

(2) Output 𝑀1, 𝑀2 .

In summary: 𝑀1 accepts nothing; if 𝑀 accepts 𝑤, 𝑀2 accepts everything, and so

the two machines are not equivalent. Conversely, if 𝑀 doesn’t accept 𝑤, 𝑀2 accepts

nothing, and they are equivalent. Thus 𝑓 reduced 𝐴𝑇𝑀 to 𝐸𝑄𝑇𝑀, as desired.

Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable.

Proof. Second, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀
to the complement of 𝐸𝑄𝑇𝑀, viz., we show: 𝐴𝑇𝑀 ≤𝑚 𝐸𝑄𝑇𝑀.

Mapping Reducibility

Theorem. 𝐸𝑄𝑇𝑀 is neither Turing-recognizable nor co-Turing-recognizable.

Proof. Second, we show that 𝐸𝑄𝑇𝑀 is not Turing-recognizable; we use a reduction from 𝐴𝑇𝑀
to the complement of 𝐸𝑄𝑇𝑀, viz., we show: 𝐴𝑇𝑀 ≤𝑚 𝐸𝑄𝑇𝑀.

The following TM 𝐺 computed the reducing function 𝑔:

𝐺 = “On input 𝑀,𝑤 where 𝑀 is a TM and w a string:

(1) Construct the following two machines, 𝑀1 and 𝑀2.

𝑀1 = “On any input: accept.

𝑀2 = On any input: Run M on 𝑤. If it accepts, accept.”

(2) Output 𝑀1, 𝑀2 .

In summary: In 𝑔, 𝑀 accepts w iff 𝑀1 and 𝑀2 are equivalent, so 𝑔 is a reduction

from 𝐴𝑇𝑀 to 𝐸𝑄𝑇𝑀.

Only

change

from proof

of part 1

Fin

