
The Church-Turing Thesis



• Turing Machines

• Variants of  Turing Machines

Contents



• Recalling the computational models we have encountered thus far: 

(*) FA (very limited amount of  memory)

(*) PDA (unlimited memory but limited to LIFO processing) 

• In both cases these models were too restrictive to serve as models for general 

computation. 

• Turing’s 1936 paper “On Computable Numbers,

With an Application to the Entscheidungsproblem”

introduced (concurrent to Church) a general-purpose

computational model – the Turing Machine (TM) –

equivalent in power to modern day (even quantum) computational models. 

• Importantly, Turing showed that even these general-purpose devices cannot 

solve certain problems – that is, these problems are beyond the theoretical 

limits of  computation.  

Turing Machines 



• TMs use an infinite tape for memory; a TM has a tape head that can 

read/write symbols and move left/right along the tape. 

• Initially, the tape contains only the input string and is blank everywhere else; 

the machine continues computing until it produces an output.

• The outputs accept and reject are obtained by entering designated 

accepting/rejecting state. If  the TM doesn’t enter an accepting/rejecting state it will 

go on forever, without halting. 
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• Here is a summary of  the differences between FA and TMs: 

(1) A TM can both read/write with respect to its tape

(2) The tape head can move both left/right

(3) The tape is infinite

(4) The special states for rejecting and accepting take effect immediately

• Let’s consider TM M1for testing membership in the language: B = ሼ
ሽ

𝑤#𝑤|𝑤 ∈
0,1 ∗ .

Basic Idea for M1:

(1) Zig-zag across the tape to corresponding positions on either side of  #; if  

same symbol is found, cross them off; otherwise if  not or no # is found reject. 

(2) When all symbols left of  the # have been crossed off, check to see if  there 

are any remaining symbols to right of  #; if  symbols remain reject; otherwise, 

accept. 
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• Let’s consider TM M1for testing membership in the language: B =
𝑤#𝑤|𝑤 ∈ 0,1 ∗ .

.

Basic Idea for M1:

(1) Zig-zag across the tape to corresponding positions on either side of  #; if  same symbol 

is found, cross them off; otherwise if  not or no # is found reject. 

(2) When all symbols left of  the # have been crossed off, check to see if  there are any 

remaining symbols to right of  #; if  symbols remain reject; otherwise, accept. 

Here is an example run for the input 011000#011000 on M1.
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A few notes: 

• M receives its input w = 𝑤1…𝑤𝑛 ∈ Σ∗on the leftmost n squares of  the tape, and 

the rest of  the tape is blank. Note that Σ does not contain the blank symbol. 

• If  M every tries to move its head to the left of  the left-hand end of  the tape, the 

head stays in the same place. 

• As a TM computes, changes occur in the current state, the current tape contents 

and the current head location. A setting of  these three items is called a 

configuration of  the TM. 

Turing Machines 



• We say that configuration 𝑪𝟏 yields configuration 𝑪𝟐 if  the TM can legally go 

from 𝐶1 to 𝐶2 in a single step. 

• Concretely, suppose we have a, 𝑏, and 𝑐 in Σ, as well as u and 𝑣 in Γand states 𝑞𝑖
and 𝑞𝑗 . In that case, 𝑢𝑎 𝑞𝑖 𝑏𝑣 and 𝑢 𝑞𝑗 𝑎𝑐𝑣 are two configurations. Say that: 

𝑢𝑎 𝑞𝑖 𝑏𝑣 yields 𝑢 𝑞𝑗 𝑎𝑐𝑣

if  in the transition function δ 𝑞𝑖, 𝑏 = 𝑞𝑗 , 𝑐, 𝐿 . That handles the case where the 

TM moves leftward. For rightward move, we say that: 

𝑢𝑎 𝑞𝑖 𝑏𝑣 yields 𝑢𝑎𝑐 𝑞𝑗 𝑣

if  δ 𝑞𝑖 , 𝑏 = 𝑞𝑗 , 𝑐, 𝑅 . 
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• The start configuration of  M on input w is the configuration 𝑞0 𝑤 ; in an 

accepting configuration, the state of  the configuration is 𝑞𝑎𝑐𝑐𝑒𝑝𝑡; in a rejecting 

configuration, the state configuration is 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 . 

• Accepting and rejecting configurations are called halting configurations and 

do not yield further configurations. 

• A TM accepts input 𝑤 if  a sequence of  configurations 𝐶1, 𝐶2 , …, 𝐶𝑘 , where: 

(1) 𝐶1 is the start configuration of  𝑀 on input 𝑤

(2) Each 𝐶𝑖 yields 𝐶𝑖+1

(3) 𝐶𝑘 is an accepting configuration 

Turing Machines 



• The collection of  strings that 𝑀 accepts is the language of  𝑴, denoted 𝐋(𝐌). 

A language is called Turing-recognizable if  some TM recognizes it. 

• Note that when a TM is run on an input, three outcomes are possible: accept, 

reject or loop (indefinitely).

A TM can fail to accept an input by entering the 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 state or by looping. 

A decider is a TM that halts on all inputs (i.e. it always makes a “decision”). 

A language is Turing-decidable or simply decidable if  some TM decides it. 
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• The collection of  strings that 𝑀 accepts it the language of  𝑴, denoted 𝐋(𝐌). 

A language is called Turing-recognizable if  some TM recognizes it. 

• Note that when a TM is run on an input, three outcomes are possible: accept, 

reject or loop (indefinitely).

A TM can fail to accept an input by entering the 𝑞𝑟𝑒𝑗𝑒𝑐𝑡 state or by looping. 

A decider is a TM that halts on all inputs (i.e. it always makes a “decision”). 

A language is Turing-decidable or simply decidable if  some TM decides it. 

(*) Observe that every decidable language is Turing-recognizable; however, there exist 

Turing-recognizable languages that are undecidable. 
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• For simplicity, we typically avoid formal (and thus often tedious) definitions 

of  TMs; instead, we often prefer a high-level description. 
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Variants of  Turing Machines 

• Variants of  TMs include TMs with multiple tapes (and tape heads) and non-deterministic 

machines. 

• Remarkably, these variants all possess the same computational power as the original 

TM we described (meaning that they recognize the same languages); in this way we say that 

TMs are robust, in this sense that they are invariant to these modifications. 



Variants of  Turing Machines 

• A multitape TM is identical to the original TM with the addition of  several tapes. 

Conventionally, the input appears on tape 1 and the other tapes start out blank; each tape  has 

its own head for reading and writing. 

The transition function is altered to accommodate multiple tapes as follows: 

δ: 𝑄 × Γ𝑘 ⟶ 𝑄× Γ𝑘 × 𝐿, 𝑅, 𝑆 𝑘 ,

where k is the number of  tapes (L: left, R: right, S: stay put); the expression: 

δ 𝑞𝑖 , 𝑎1, … , 𝑎𝑘 = 𝑞𝑗 , 𝑏1, … , 𝑏𝑘 , 𝐿, 𝑅, … , 𝐿

means that if  the machine is in state 𝑞𝑖 the heads 1 through k are reading symbols 𝑎1 through 

𝑎𝑘, the machine goes to state 𝑞𝑗, writes symbols 𝑏1 through 𝑏𝑘 , and directs each head to move 

left or right, or to stay put, as specified. 



Variants of  Turing Machines 
Theorem. Every multitape TM has an equivalent single-tape TM, i.e. multitape TMs are 

equivalent in power to single-tape TMs. 

Proof. We describe how to convert a multitape TM M to an equivalent single-tape TM S. 

Say that M has k tapes. Then S simulates the effect of  k tapes by storing their information on 

a single tape. S uses the new symbol # as a delimiter. 

In addition to the contents of  these tapes, S must keep track of  the locations of  the heads. It 

does so by writing a tape symbol with a dot above it to mark the place where the head of  the 

tape would be. 



Variants of  Turing Machines 
Theorem. Every multitape TM has an equivalent single-tape TM, i.e. multitape TMs are 

equivalent in power to single-tape TMs. 



Variants of  Turing Machines 
Corollary. A language is Turing-recognizable iff some multitape TM recognizes it.

Non-deterministic Turing Machines

• Recall that with non-determinism, the transition function outputs a set (of  possible states, 

symbols, etc.). The computation graph of  a non-deterministic TM is a tree whose branches 

correspond to different possibilities for the machine. 

• The transition function for a non-deterministic TM has the form:

δ: 𝑄 × Γ𝑘 ⟶ 𝑃 𝑄 × Γ × 𝐿, 𝑅



Variants of  Turing Machines 
Theorem. Every non−deterministic TM has an equivalent deterministic TM.

Proof  Idea: We can simulate any non-deterministic TM N with a deterministic TM D. The 

idea is to have D try all possible branches of  N’s non-deterministic computation.

• If  D ever finds and accept state on one of  these branches, D accepts. Otherwise, D’s 

simulation will not terminate. 

• Consider N’s computation on an input w as a tree; each branch is a non-deterministic 

computation, and each node is a configuration of  N; the root of  the tree is the start 

configuration. 

In summary, we have D simulate N by performing a BFS (breadth-first search) over the 

computation tree of  N (note that using DFS is a bad idea here – why?). 



Variants of  Turing Machines 
Theorem. Every non−deterministic TM has an equivalent deterministic TM.

Proof. The simulating deterministic TM D has three tapes (which is computationally equivalent 

to one tape by the preceding theorem). 

Tape 1 contains the input string (these tape contents are never altered); Tape 2 maintains a 

copy of  N’s tape on some branch of  its non-deterministic computation;  Tape 3 keeps track of  

D’s location in N’s non-deterministic computation tree. 



Variants of  Turing Machines 
Theorem. Every non−deterministic TM has an equivalent deterministic TM.

Say that every node in the tree has at most b children (so b is the “branching factor” of  the tree); 

to every node in the tree we assign an address that is a string over the alphabet Γ𝑏 =
1,2, … , 𝑏 . For example, we assign the address 231 to the node we arrive at by starting at the 

root, going to its 2nd child, going to that node’s 3rd child, and finally going to the node’s first 

child. In this fashion, Tape 3 contains a string over Γ𝑏. 



Variants of  Turing Machines 
Corollary. A language is Turing−recognizable iff some non−deterministic TM recognizes

it.

• We can modify the previous proof  so that if  N always halts on all branches of  its 

computation, D will always halt. We call a non-deterministic TM a decider if  all branches 

halt on all inputs. 

Corollary. A language is decidable iff some non−determinstic TM decides it.



Variants of  Turing Machines 
Enumerators:

• Note that the term recursively enumerable language is used synonymously (in other 

sources) for a Turing-recognizable language. 

• The term originates from a type of  TM variant called an enumerator. Put informally, an 

enumerator is a TM with an attached “printer.” The TM can use its printer as an output 

device to print strings. 

• An enumerator E starts with a blank input on its work tape. The language enumerated by 

E is the collection of  all the strings that it eventually prints out. Note that E may generate 

the strings of  the language in any order (and possibly with repetition). 



Variants of  Turing Machines 
Theorem. A language is Turing−recognizable iff some enumerator enumerates it.

Proof. First we show that if  we have an enumerator E that enumerates a language A, a TM 

M recognizes A. 

The TM M works in the following way: 

M: on input w

(1) Run E. Every time that E outputs a string, compare it with w. 

(2) If  w every appears in the output of  E, accept. 

Conversely, if  a TM M recognizes a language A, we can construct the following enumerator 

E for A. Say that 𝑠1, 𝑠2, 𝑠3,… is a list of  all possible strings in Σ∗.

E: ignore the input 

(1) Repeat the following for i = 1, 2, 3, …

(2) Run M for i steps on each input, 𝑠1, 𝑠2, …, 𝑠𝑖 . 
(3) If  any computations accept, print out the corresponding 𝑠𝑗 . 

If  M accepts a particular string s, eventually it will appear on the list generate by E. In fact, it will appear 

on the list infinitely many times because M runs from the beginning on each string for each repetition 

of  step 1. This procedure gives the effect of  running M in parallel on all possible input strings. 



Variants of  Turing Machines 

• Many other models of  general-purpose computation have been proposed (e.g. Church’s 

lambda-calculus, among others). All share the essential features of  TMs, namely: 

unrestricted access to unlimited memory. Remarkably, all models with that feature turn 

out to be equivalent in power (under some reasonable requirements, e.g. finite compute 

time). 

• Recall that prior to the work of  Church and Turing, the scientific community was wanting 

of  a formal definition of  an algorithm.



Variants of  Turing Machines 
• In particular, several of  Hilbert’s 23 millennium problems (1900) alluded to 

“processes” which yield a solution in a finite number of  steps. Famously, Hilbert’s 10th 

Problem asks for the derivation of  such a process to determine whether a polynomial has an 

integral root (he presumed that such a procedure exists; in 1970 this was proven 

impossible). 

The Church-Turing Thesis asserts the equivalence of  the intuitive notion of  an algorithm 

(i.e. a sequence of  “pencil and paper operations”) with Turing machine algorithms. 

Church-Turing Thesis.   

Intuitive notion of  algorithms    ⟷ Turing Machine algorithms.
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