
Regular Languages

• Finite Automata

• Non-Determinism

• Regular Expressions

• Non-Regular Languages

Contents

• The theory of computation begins with the basic question: What is a computer?

• In our subsequent discussion we introduce various types of abstract,

computational models. We begin with the simplest such model: a finite state

automaton (FA), plural: automata.

• Finite automata are good models for computers with an extremely limited

amount of memory (e.g. a basic controller). As we will show, this limited

memory significantly limits what is computable by a FA.

Finite Automata

• The figure above is called a state diagram of an automaton, which we will

call M.

• M has three states, labeled q1, q2 and q3. The start state, q1, is indicated by

the arrow pointing at it from nowhere. The accept state, q2, is the one with a

double circle. The arrows going from one state to another are called

transitions.

• When the automaton receives an input string such as 1101, it processes that

string and produces an output; the output is either accept or reject.

Finite Automata

• For example, when we feed the input string 1101 into M, the processing

proceeds as follows:

1. Start in state q1

2. Read 1, follow transition from q1 to q2.

3. Read 1, follow transition from q2 to q2.

4. Read 0, follow transition from q2 to q3.

5. Read 1, follow transition from q3 to q2.

6. Accept because M is in accept state q2 at the end of the input.

Finite Automata

• Formally, a finite automaton is a 5-tuple 𝑄, Σ, δ, 𝑞0, 𝐹 , where:

1. 𝑄 is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ ∶ 𝑄 × Σ ⟶ 𝑄 is the transition function,

4. 𝑞0 ∊ 𝑄 is the start state, and

5. 𝐹 ⊆ 𝑄is the set of accept states (note that 𝐹 = ∅ is permitted).

Finite Automata

• Formally, a finite automaton is a 5-tuple 𝑄, Σ, δ, 𝑞0, 𝐹 , where:

1. 𝑄 is a finite set called the states,

2. Σ is a finite set called the alphabet,

3. δ ∶ Σ ⟶ 𝑄 is the transition function,

4. 𝑞0 ∊ 𝑄 is the start state, and

5. 𝐹 ⊆ 𝑄is the set of accept states (note that 𝐹 = ∅ is permitted).

• From the previous example,

1. 𝑄 = {𝑞1, 𝑞2, 𝑞3},

2. Σ = 0,1 ,

3. δ is described as

4. 𝑞0 is the start state, and

5. 𝐹 = 𝑞2 .

Finite Automata

• If A is the set of all strings that machine M accepts, we say that A is the

language of machine M and write L 𝑀 = 𝐴.

We say that M recognizes A or that M accepts A. Note that a machine may

accept many stings, but it always recognizes only one language. If M accepts no

strings, then L 𝑀 = ∅.

Finite Automata

• Determine the languages accepted by the following FA.

Finite Automata

• Determine the languages accepted by the following FA.

𝐿 𝐴 =
𝑤|𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒

1 𝑎𝑛𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 0𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1

𝐿 𝐴 = 𝑤|𝑤 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 𝑜𝑟 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑏

Finite Automata

• We are now ready to formally define computation:

• Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a finite automaton and let 𝑤 = 𝑤1𝑤2 … 𝑤𝑛

be a string where each 𝑤𝑖 ∊ Σ. Then M accepts 𝑤 if a sequences of states

𝑟0, 𝑟1, … , 𝑟𝑛 in 𝑄 exists with three conditions:

1. 𝑟0 = 𝑞0

2. δ 𝑟𝑖 , 𝑤𝑖+1 = 𝑟𝑖+1 ∀𝑖 = 0, … , 𝑛 − 1 and

3. 𝑟𝑛 ∊ 𝐹.

• We say that M recognizes language A if A = 𝑤|𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 .

Finite Automata

A language is called regular if some finite automaton recognizes it.

• Consequently, both:

𝐿 𝐴 =
𝑤|𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒

1 𝑎𝑛𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 0𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1

and

𝐿 𝐴 = 𝑤|𝑤 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 𝑜𝑟 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑏

are regular languages.

Finite Automata

• So far, we have only been given an automaton and then we determine the

language that it accepts.

• Now we explore the reverse process, i.e. were are given a regular language

and then construct an appropriate FA that accepts this language.

• Consider the problem of building a FA, M, that accepts all strings that

contain the string 001 as a substring.

The are four essential case considerations here:

1. M hasn’t seen any of the symbols in the pattern yet,

2. M has only just seen a 0

3. M has just seen 00, or

4. M has seen the entire pattern.

Finite Automata

• Consider the problem of building a FA, M, that accepts all strings that contain the string

001 as a substring.

The are four essential case considerations here:

1. M hasn’t seen any of the symbols in the pattern yet,

2. M has only just seen a 0

3. M has just seen 00, or

4. M has seen the entire pattern.

Given these observations, we can construct an appropriate FA, M (note

that more than one solution is possible – but we have nevertheless

constructed the simplest such M, in the sense that it contains the least

number of states possible).

Finite Automata

• The regular operations consist of union, concatenation and star

operations:

• Let A and B be languages. We define the regular operations union,

concatenation, and star as follows:

Union: 𝐴 ∪ 𝐵 = 𝑥|𝑥 ∊ 𝐴 𝑜𝑟 𝑥 ∊ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦|𝑥 ∊ 𝐴 𝑎𝑛𝑑 𝑥 ∊ 𝐵

(Kleene) Star: 𝐴∗ = 𝑥1𝑥2 … 𝑥𝑘|𝑘 ≥ 0 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑥𝑖 ∊ 𝐴

Finite Automata

• Notice that the star operation is a unary operation (unlike union and

concatenation which are binary operations); it works by attaching any

number of symbols in A together (including no symbols).

• For example, consider A = 𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛 and B = 𝐵𝑖𝑙𝑙, 𝑇𝑒𝑑 , then:

𝐴 ∪ 𝐵 = 𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛, 𝐵𝑖𝑙𝑙, 𝑇𝑒𝑑

𝐴 ∘ 𝐵 = 𝑤𝑖𝑙𝑑𝐵𝑖𝑙𝑙, 𝑤𝑖𝑙𝑑𝑇𝑒𝑑, 𝑠𝑡𝑙𝑙𝑖𝑜𝑛𝐵𝑖𝑙𝑙, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑇𝑒𝑑 , and

𝐴∗ =
ε, 𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛, 𝑤𝑖𝑙𝑑𝑤𝑖𝑙𝑑, 𝑤𝑖𝑙𝑑𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛,

𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛, …

Finite Automata

• Generally speaking, a collection of objects is closed under a given

operation if applying that operation to members of the collection returns

an object still in the collection.

• For instance, ℤ is closed under multiplication, but ℤ is not closed under

division.

Theorem: The class of regular languages is closed under the union

operation.

• Next, we prove this statement.

Finite Automata

Theorem: The class of regular languages is closed under the union

operation.

• Proof sketch: We need to show that (in all generality), for any two regular languages

𝐴1 and 𝐴2, 𝐴1 ∪ 𝐴2 is also regular.

• The proof will be by construction, meaning that we will explicitly show how to

render a FA, M, that recognizes 𝐴1 ∪ 𝐴2.

• How does this work? We construct M from 𝑀1 (the FA for 𝐴1) and 𝑀2 (the FA for

𝐴2). M must accept its input exactly when either 𝑀1 or 𝑀2 would accept it in order to

recognize 𝐴1 ∪ 𝐴2.

Bottom line: We construct M to simulate 𝑀1 and 𝑀2 simultaneously; the key is to

consider the states in M with respect to the Cartesian product of the states in 𝑀1 and

𝑀2, i.e. 𝑄 = 𝑄1 × 𝑄2.

Finite Automata

Theorem: The class of regular languages is closed under the union

operation.

Pf.

(*) In fact, one can show that regular languages are closed under the union, concatenation,

star, and complement operations. These proofs are much more concise and elegant using the

concept of non-determinism, which we introduce next.

Finite Automata

• Until now, we have only considered deterministic computations (i.e.

computations that are performed sequentially, moving from state to state). In a

non-deterministic machine, several choices may exist for the next state at any

point.

• We will distinguish between deterministic and non-deterministic FA using the

notation: DFA and NFA, respectively. Notice that every DFA is automatically an

NFA.

• In an NFA, a state may have zero, one, or many exiting arrows for each

alphabet symbol (or 𝜀).

One can think of the NFA as splitting into multiple copies of itself and following

all possibilities in parallel (in this way the NFA runs multiple independent

“processes” or “threads” independently).

Non-Determinism

• One can think of the NFA as splitting into multiple copies of itself and following all

possibilities in parallel (in this way the NFA runs multiple independent “processes” or

“threads” independently).

• If at least one of these processes accepts, the entire computation accepts.

Non-Determinism

• Below is an example of an NFA and its corresponding computation “tree”

for the input 010110 (which is accepted).

• A few comments: notice that 𝜺-labeled arrows generate a fork: one branch corresponds

with staying in the state, and the other corresponds with exiting the state along the 𝜀-labeled

arrow (note the computation tree at step “010”). Also notice that threads “die” when they

receive an input symbol but the current state has no corresponding exit arrow.

Non-Determinism

Q: Which language is accepted by the previous NFA?

Non-Determinism

Q: Which language is accepted by the previous NFA?

A: Any strings containing 101 or 11 as a substring.

Non-Determinism

• NFA are useful in several respects: As we show, every NFA can be

converted into an equivalent DFA; NFA are often much simpler

and easier to understand than their corresponding DFA.

Consider the language 𝐴 of all strings over 0,1 containing a 1 in

the third position from the end (e.g., 000100 is in A but 0011 is not).

Non-Determinism

• NFA are useful in several respects: As we show, every NFA can be

converted into an equivalent DFA; NFA are often much simpler

and easier to understand than their corresponding DFA.

Consider the language 𝐴 of all strings over 0,1 containing a 1 in

the third position from the end (e.g., 000100 is in A but 0011 is not).

• Here is an NFA recognizing 𝐴 (notice the elegance of this

construction).

Non-Determinism

Consider the language 𝐴 of all strings over 0,1 containing a 1 in

the third position from the end (e.g., 000100 is in A but 0011 is not).

• Here is an NFA recognizing 𝐴 (notice the elegance of this

construction, only 4 states required).

• By contrast, here is the equivalent DFA recognizing 𝐴 (8 states

required).

Non-Determinism

• DFA can be particularly effective for generating languages that admit of a

construction using “cases.” In these instances, we simply add 𝜀-arrows to

handle the different cases.

• For example, consider a DFA that accepts the unary language over 0
consisting of strings with length 0 𝑚𝑜𝑑 2 or 0 𝑚𝑜𝑑 3.

Non-Determinism

• DFA can be particularly effective for generating languages that admit of a

construction using “cases.” In these instances, we simply add 𝜀-arrows to

handle the different cases.

• For example, consider a DFA that accepts the unary language over 0
consisting of strings with length 0 𝑚𝑜𝑑 2 or 0 𝑚𝑜𝑑 3.

Non-Determinism

• The formal definition of an NFA is very similar to the formal definition of DFA; the

two models differ in only one essential way: with an NFA, the transition function maps

a state symbol pair to a set (δ ∶ Q × Σ𝜀 ⟶ 𝑃 𝑄)

to account for non-determinism.

• The formal description of our previous NFA

example is given by:

Non-Determinism

• Let N = 𝑄, Σ, δ, 𝑞0, 𝐹 and 𝑤 = 𝑤1𝑤2 … 𝑤𝑛 be a string where each 𝑤𝑖 ∊ Σ. Then

N accepts 𝑤 if a sequences of states 𝑟0, 𝑟1, … , 𝑟𝑛 in 𝑄 exists with three conditions:

Non-Determinism

1. 𝑟0 = 𝑞0

2. 𝑟𝑖+1 ∊ δ 𝑟𝑖 , 𝑤𝑖+1 = 𝑟𝑖+1 ∀𝑖 = 0, … , 𝑛 − 1 and

3. 𝑟𝑛 ∊ 𝐹.

• We say that N recognizes language A if A = 𝑤|𝑁 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 .

Equivalence of NFA and DFA

Theorem. Every non-deterministic finite automaton has an equivalent deterministic

finite automaton.

Proof idea: If a language is recognized by an NFA, then we must show the existence of

a DFA that also recognizes; to this end, we convert the NFA into an equivalent DFA

that simulates the NFA.

Key point: If k is the number of states of the NFA, it has 2k subsets of states. Thus,

the DFA simulating the NFA will have 2k states. Lastly, we need to be mindful of

converting the ε-arrows in the NFA to the DFA.

Non-Determinism

Equivalence of NFA and DFA

Theorem. Every non-deterministic finite automaton has an equivalent deterministic

finite automaton.

• For simplicity, consider the case where N contains no ε-arrows.

*For details on the case where N contains ε-arrows, see Sipser 1.2.

Non-Determinism

Equivalence of NFA and DFA

• We use the previous construction to convert the following NFA into a DFA.

• A few comments: the states of the DFA will consist of the power set of the

states of the NFA, namely: ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , 1,2,3 . The start

state of the DFA needs to account for the fact that the start state of the NFA

includes (1) but this state has an ε-arrow to (3); for this reason the start state of

the DFA will be labeled {1,3}. Lastly, the accept states of the DFA are those

containing the NFA’s accept states, i.e., 1 , 1,2 , 1,3 , 1,2,3 .

Non-Determinism

Equivalence of NFA and DFA

• We use the previous construction to convert the following NFA into a DFA.

Non-Determinism

• From the theorem that every finite automaton has an equivalent deterministic finite

automaton, it follows that:

Corollary. A language is regular iff some non-deterministic finite automaton

recognizes it.

Why?

Non-Determinism

• From the theorem that every finite automaton has an equivalent deterministic

finite automaton, it follows that:

Corollary. A language is regular iff some non-deterministic finite automaton

recognizes it.

Why?

A: → Suppose we have a regular language, then there is a corresponding

DFA, and by the theorem: NFA →DFA.

← Conversely, suppose we have an DFA; this is automatically an NFA,

implying the corresponding accepted language is regular.

Non-Determinism

Theorem. The class of regular languages is closed under the union operation.

Basic idea of proof: We have regular languages 𝐴1 and 𝐴2 and want to prove that

𝐴1 ∪ 𝐴2 is regular. The idea is to take two NFAs, 𝑁1 and 𝑁2 for 𝐴1 and 𝐴2, and

combine them into one new NFA, N.

We achieve this by constructing a start state from which two ε-arrows emanate;

each branch corresponds with one of 𝑁1 and 𝑁2 respectively.

Non-Determinism

Theorem. The class of regular languages is closed under the concatenation

operation.

Basic idea of proof: We have regular languages 𝐴1 and 𝐴2 and want to prove that

𝐴1 ∘ 𝐴2 is regular. The idea, again, is to take two NFAs, 𝑁1 and 𝑁2 for 𝐴1 and 𝐴2,

and combine them into one new NFA, N.

We achieve this by constructing ε-arrows between the accept states of 𝑁1and the

start states of 𝑁2; the accept states of N are now designated as the accept states

of 𝑁2.

Non-Determinism

Theorem. The class of regular languages is closed under the star operation.

Basic idea of proof: We have regular languages 𝐴1 and want to prove that 𝐴1* also

is regular. We take an NFA 𝑁1 recognizing 𝐴1 and modify it to recognize 𝐴1*.

We achieve this by constructing ε-arrows returning to the start state from accept

states. Notice that it is necessary to add a new start state with an ε-arrow

connecting it to the previous start state (why?).

Non-Determinism

• Regular expressions (regex) are sequences of characters that define a search

pattern; they have a special role in computer science applications and are commonly

used in text editor and search engines.

• The concept is due to Kleene and came into prominent use with the introduction of

the UNIX OS.

• The formal (inductive) definition of a regular expression is given by:

*Note: Do not confuse the regexs ε and ∅. ε represents the language containing a

single string (namely, the empty string), whereas ∅ denotes the empty language.

Regular Expressions

• In simple terms, a regex is a set of strings built from the three regular

operations, union, concatenation and star; in addition, they use the four special

symbols: + * (); precedence order: star, concatenation and then union.

• We denote a regular expression R and the language that it describes as L(R).

Regular Expressions

Regular Expressions
•In the following examples, we assume that the alphabet is Σ = 0,1 .

Regular Expressions
• Recall that a regular language is one that is recognized by some finite automaton.

Theorem. A language is regular iff some regular expression describes it.

Pf. First, we show that if a language is described by a regular expression, then it is regular. To this end,

suppose we have a regular expression R describing some language A; now we show how to convert R into

an NFA recognizing A.

Regular Expressions
• Recall that a regular language is one that is recognized by some finite automaton.

Theorem. A language is regular iff some regular expression describes it.

Pf. First, we show that if a language is described by a regular expression, then it is regular. To this end,

suppose we have a regular expression R describing some language A; now we show how to convert R into

an NFA recognizing A.

Regular Expressions

Example. We convert the regular expression 𝑎𝑏 ∪ 𝑎 ∗to an NFA.

Regular Expressions

Example. We convert the regular expression 𝑎 ∪ 𝑏 ∗𝑎𝑏𝑎 to an NFA.

Regular Expressions

Theorem. A language is regular iff some regular expression describes it.

• Recall that we have already proven the implication: (1) if a language is described by a regular expression,

then it is regular.

• It still remains to prove the second necessary implication for the theorem, namely: (2) if a language is

regular, then it is described by a regular expression.

We prove (2) in two steps:

(a) We first define a new type of finite automaton called a generalized nondeterministic finite

automaton (GNFA); it can be shown (we omit the proof for brevity) that any DFA can be converted

into a GNFA.

(b) Next, we show that any GNFA can be converted into a regular expression.

Together (1) and (2) prove the required theorem.

Regular Expressions
(a) We first define a new type of finite automaton called a generalized nondeterministic finite

automaton (GNFA); it can be shown (we omit the proof for brevity) that any DFA can be converted into

a GNFA.

• A GNFA is simply an NFA wherein the transition arrows may have regular expression as labels; in this

way the GNFA can read blocks of symbols at a time.

• Here is an example of a GNFA.

• The formal definition of a GNFA is given by:

Regular Expressions

• A GNFA accepts a string 𝒘 in Σ∗ if 𝑤 = 𝑤1𝑤2 … 𝑤𝑛 where each 𝑤𝑖 ∊ Σ∗ and a sequence of states

𝑞0, 𝑞1, … , 𝑞𝑛 exists such that:

1. 𝑞0 = 𝑞𝑠𝑡𝑎𝑟𝑡 is the start state,

2. 𝑞𝑛= 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is the accept state, and

3. for each I, we have 𝑤𝑖 ∊ L 𝑅𝑖 , where 𝑅𝑖 = δ 𝑞𝑖−1, 𝑞𝑖 ; in other words, 𝑅𝑖 is the expression on the

arrow from 𝑞𝑖−1 to 𝑞𝑖 .

This claim follows naturally from the constructive procedure: DFA ⟶ GNFA

(use induction on the number of states).

• Putting this together, we have:

(a) Any DFA can be converted into a GNFA.

(b) Any GNFA can be converted into a regular expression.

(a) and (b) prove the required theorem:

Theorem. A language is regular iff some regular expression describes it.

Regular Expressions

(b) Next, we claim that any GNFA can be converted into a regular expression.

Non-Regular Languages
• Summarizing our major results to date, we have shown the equivalences:

DFA⟷NFA, Regular Language ⟷ REGEX

• Recall that finite automata (FA) possess severe memory limitations (think of the

finite states as imposing an explicit memory restriction). These memory limits

mean that there are some languages that FA cannot recognize; these are called non-

regular languages.

• A classic example of a non-regular (and yet simple) language is given by:

𝐵 = 0𝑛1𝑛|𝑛 ≥ 0

Careful: although it is tempting to think that the reason that B is non-regular is

because the number, say of zeros, is unlimited – the reason is in fact more subtle.

Notice, for instance that while B is non-regular, C, defined below is in fact

regular!

𝐶 = 𝑤|𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 01 𝑎𝑛𝑑 10 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑠

Non-Regular Languages
• Summarizing our major results to date, we have shown the equivalences:

DFA⟷NFA, Regular Language ⟷ REGEX

• Recall that finite automata (FA) possess severe memory limitations (think of the

finite states as imposing an explicit memory restriction). These memory limits

mean that there are some languages that FA cannot recognize; these are called non-

regular languages.

• A classic example of a non-regular (and yet simple) language is given by:

𝐵 = 0𝑛1𝑛|𝑛 ≥ 0

Careful: although it is tempting to think that the reason that B is non-regular is

because the number, say of zeros, is unlimited – the reason is in fact more subtle.

Notice, for instance that while B is non-regular, C, defined below is in fact

regular!

𝐶 = 𝑤|𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 01 𝑎𝑛𝑑 10 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑠

Non-Regular Languages
• Thus we see that determining whether a language is regular or non-regular is in

general not trivial. Our key tool for determining this distinction is the so-called

pumping lemma for regular languages, which we subsequently prove.

Non-Regular Languages

• The pumping lemma provides us with a practical tool to show that a language is

non-regular (notice the “negative use” of the lemma).

• Thus, to show that a A is non-regular, we must provide a string s in A of length

at least p (choose an arbitrary, fixed p) where the conditions of the pumping lemma

fail; because there exists a string in A for which the lemma fails, this proves that

the language is non-regular (since the lemma makes a claim about all strings in A

of length at least p).

Non-Regular Languages

• First, let’s get an intuitive sense of the statement of the lemma, and why it holds for

regular languages.

Proof Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the

pumping length p to be the number of state in M.

• We show that any string 𝑠 of length at least p can be broken into three pieces 𝑠 =
𝑥𝑦𝑧, satisfying the (3) conditions of the lemma. (If no strings in A are of length at

least p then the lemma is vacuously true, why?)

Non-Regular Languages

• First, let’s get an intuitive sense of the statement of the lemma, and why it holds for

regular languages.

Proof Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the

pumping length p to be the number of state in M.

• We show that any string 𝑠 of length at least p can be broken into three pieces 𝑠 =
𝑥𝑦𝑧, satisfying the (3) conditions of the lemma. (If no strings in A are of length at

least p then the lemma is vacuously true, why?)

• Suppose that the sequence of states M executes for 𝑠 is given by 𝑞1, 𝑞2, …, 𝑞𝑛, where

𝑞1 is a start state for M and 𝑞𝑛 is an accept state. Since 𝑠 > p, it stands to reason

that this sequence must contain a repeated state, why?

Non-Regular Languages

Proof Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the pumping length

p to be the number of state in M.

• We show that any string 𝑠 of length at least p can be broken into three pieces 𝑠 = 𝑥𝑦𝑧,

satisfying the (3) conditions of the lemma.

• Suppose that the sequence of states M executes for 𝑠 is given by 𝑞1, 𝑞2, …, 𝑞𝑛, where

𝑞1 is a start state for M and 𝑞𝑛 is an accept state. Since 𝑠 > p, it stands to reason that

this sequence must contain a repeated state, by the pigeonhole principle.

• WLOG (without loss of generality) call the repeated state 𝑞𝑘 with 1≤ 𝑘 ≤ 𝑛, so that the

sequence of states M executes for 𝑠 is:

In particular, we define 𝑠 = 𝑥𝑦𝑧 so that 𝑦 corresponds with the execution “loop” of

states: 𝑞𝑘 ⟶ 𝑞𝑘.
1 2, ,..., ,...., ,....,k k n

zx y

q q q q q

Non-Regular Languages

Proof Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the pumping length

p to be the number of state in M.

• We show that any string 𝑠 of length at least p can be broken into three pieces 𝑠 = 𝑥𝑦𝑧,

satisfying the (3) conditions of the lemma.

• From this construction, it is not hard to see that condition (1) is met, namely: x𝑦𝑖z ∊ 𝐴 ∀𝑖 ≥ 0.
Furthermore, condition (2) holds, 𝑦 > 0, as it was the part of 𝑠 that occurred between two

different occurrences of state 𝑞𝑘.

Lastly, by the pigeonhole principle, the first p+1 states in the sequence must contain a repetition,

therefore 𝑥𝑦 ≤ 𝑝.

1 2, ,..., ,...., ,....,k k n

zx y

q q q q q

Non-Regular Languages

• To prove a language is not regular, we first assume that it is, and then follow the method of

proof by contradiction. Concretely, we construct a string 𝑠 in the language, and then show that 𝑠
cannot be “pumped”, by way of the pumping lemma, i.e. show one of the (3) conditions fails.

Non-Regular Languages

Example. Returning to our previous example, show that the language: 𝐵 = 0𝑛1𝑛|𝑛 ≥ 0 is not

regular.

Pf. We assume that 𝐵 is regular and derive a contradiction using the pumping lemma.

Let 𝑠 = 0𝑝1𝑝, where p is the pumping length; notice that 𝑠 is in 𝐵 and that 𝑠 >p, so the pumping

lemma applies, which states that 𝑠 = 𝑥𝑦𝑧, satisfying the (3) conditions. Consider 3 possible cases, each

one resulting in a contradiction.

(1) The string 𝑦 contains only 0s. Then 𝑥𝑦𝑦𝑧 has more 0s than 1s, so 𝑥𝑦𝑦𝑧 is not a member of 𝐵.

This violates condition (2) of the pumping lemma – a contradiction.

(2) The string 𝑦 contains only 1s, also a contradiction (why?).

(3) The string 𝑦 contains both 0s and 1s; notice in this case 𝑥𝑦𝑦𝑧 will have the same number of

0s and 1s but they will be out of order, so 𝑥𝑦𝑦𝑧 is not a member of 𝐵 – a contradiction.

Non-Regular Languages

Example.

Non-Regular Languages

Example.

Fin

