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• The theory of  computation begins with the basic question: What is a computer? 

• In our subsequent discussion we introduce various types of  abstract, 

computational models. We begin with the simplest such model: a finite state 

automaton (FA), plural: automata.

• Finite automata are good models for computers with an extremely limited 

amount of  memory (e.g. a basic controller). As we will show, this limited 

memory significantly limits what is computable by a FA. 

Finite Automata



• The figure above is called a state diagram of  an automaton, which we will 

call M. 

•  M has three states, labeled q1, q2 and q3. The start state, q1, is indicated by 

the arrow pointing at it from nowhere. The accept state, q2, is the one with a 

double circle. The arrows going from one state to another are called 

transitions. 

• When the automaton receives an input string such as 1101, it processes that 

string and produces an output; the output is either accept or reject. 
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• For example, when we feed the input string 1101 into M, the processing 

proceeds as follows: 

1. Start in state q1

2. Read 1, follow transition from q1 to q2.

3. Read 1, follow transition from q2 to q2.

4. Read 0, follow transition from q2 to q3.

5. Read 1, follow transition from q3 to q2.

6. Accept because M is in accept state q2 at the end of  the input. 

Finite Automata



• Formally, a finite automaton is a 5-tuple 𝑄, Σ, δ, 𝑞0, 𝐹 , where:

1. 𝑄 is a finite set called the states,

2. Σ is a finite set called the alphabet, 

3. δ ∶ 𝑄 × Σ ⟶ 𝑄 is the transition function, 

4. 𝑞0 ∊ 𝑄 is the start state, and 

5. 𝐹 ⊆ 𝑄is the set of  accept states (note that 𝐹 = ∅ is permitted).
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• Formally, a finite automaton is a 5-tuple 𝑄, Σ, δ, 𝑞0, 𝐹 , where:

1. 𝑄 is a finite set called the states,

2. Σ is a finite set called the alphabet, 

3. δ ∶ Σ ⟶ 𝑄 is the transition function, 

4. 𝑞0 ∊ 𝑄 is the start state, and 

5. 𝐹 ⊆ 𝑄is the set of  accept states (note that 𝐹 = ∅ is permitted).

• From the previous example,

1. 𝑄 = {𝑞1, 𝑞2, 𝑞3},

2. Σ = 0,1 ,

3. δ is described as 

4. 𝑞0 is the start state, and 

5. 𝐹 = 𝑞2 .

Finite Automata



• If  A is the set of  all strings that machine M accepts, we say that A is the 

language of  machine M and write L 𝑀 = 𝐴. 

We say that M recognizes A or that M accepts A. Note that a machine may 

accept many stings, but it always recognizes only one language. If  M accepts no 

strings, then L 𝑀 = ∅. 

Finite Automata



• Determine the languages accepted by the following FA. 
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• Determine the languages accepted by the following FA. 

𝐿 𝐴 =
𝑤|𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒

1 𝑎𝑛𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 0𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1

𝐿 𝐴 = 𝑤|𝑤 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 𝑜𝑟 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑏
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• We are now ready to formally define computation:

• Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a finite automaton and let 𝑤 = 𝑤1𝑤2 … 𝑤𝑛

be a string where each 𝑤𝑖 ∊ Σ. Then M accepts 𝑤 if  a sequences of  states 

𝑟0, 𝑟1, … , 𝑟𝑛 in 𝑄 exists with three conditions: 

1. 𝑟0 = 𝑞0

2. δ 𝑟𝑖 , 𝑤𝑖+1 = 𝑟𝑖+1 ∀𝑖 = 0, … , 𝑛 − 1 and

3. 𝑟𝑛 ∊ 𝐹.

• We say that M recognizes language A if  A = 𝑤|𝑀 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 .

Finite Automata



A language is called regular if  some finite automaton recognizes it. 

• Consequently, both: 

𝐿 𝐴 =
𝑤|𝑤 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒

1 𝑎𝑛𝑑 𝑎𝑛 𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 0𝑠 𝑓𝑜𝑙𝑙𝑜𝑤 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 1

and 

𝐿 𝐴 = 𝑤|𝑤 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑒𝑖𝑡ℎ𝑒𝑟 𝑎 𝑜𝑟 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑤𝑖𝑡ℎ 𝑏

are regular languages. 

Finite Automata



• So far, we have only been given an automaton and then we determine the 

language that it accepts. 

• Now we explore the reverse process, i.e. were are given a regular language 

and then construct an appropriate FA that accepts this language.

•  Consider the problem of  building a FA, M, that accepts all strings that 

contain the string 001 as a substring. 

The are four essential case considerations here: 

1. M hasn’t seen any of  the symbols in the pattern yet,

2. M has only just seen a 0

3. M has just seen 00, or

4. M has seen the entire pattern. 
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• Consider the problem of  building a FA, M, that accepts all strings that contain the string 

001 as a substring. 

The are four essential case considerations here: 

1. M hasn’t seen any of  the symbols in the pattern yet,

2. M has only just seen a 0

3. M has just seen 00, or

4. M has seen the entire pattern. 

Given these observations, we can construct an appropriate FA, M (note 

that more than one solution is possible – but we have nevertheless 

constructed the simplest such M, in the sense that it contains the least 

number of  states possible). 

Finite Automata



•  The regular operations consist of  union, concatenation and star 

operations: 

• Let A and B be languages. We define the regular operations union, 

concatenation, and star as follows: 

Union: 𝐴 ∪ 𝐵 = 𝑥|𝑥 ∊ 𝐴 𝑜𝑟 𝑥 ∊ 𝐵

Concatenation: 𝐴 ∘ 𝐵 = 𝑥𝑦|𝑥 ∊ 𝐴 𝑎𝑛𝑑 𝑥 ∊ 𝐵

(Kleene) Star: 𝐴∗ = 𝑥1𝑥2 … 𝑥𝑘|𝑘 ≥ 0 𝑎𝑛𝑑 𝑒𝑎𝑐ℎ 𝑥𝑖 ∊ 𝐴
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•  Notice that the star operation is a unary operation (unlike union and 

concatenation which are binary operations); it works by attaching any 

number of  symbols in A together (including no symbols).

• For example, consider A = 𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛 and B = 𝐵𝑖𝑙𝑙, 𝑇𝑒𝑑 , then: 

𝐴 ∪ 𝐵 = 𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛, 𝐵𝑖𝑙𝑙, 𝑇𝑒𝑑

𝐴 ∘ 𝐵 = 𝑤𝑖𝑙𝑑𝐵𝑖𝑙𝑙, 𝑤𝑖𝑙𝑑𝑇𝑒𝑑, 𝑠𝑡𝑙𝑙𝑖𝑜𝑛𝐵𝑖𝑙𝑙, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑇𝑒𝑑 , and

𝐴∗ =
ε, 𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛, 𝑤𝑖𝑙𝑑𝑤𝑖𝑙𝑑, 𝑤𝑖𝑙𝑑𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛,

𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑤𝑖𝑙𝑑, 𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛𝑠𝑡𝑎𝑙𝑙𝑖𝑜𝑛, …
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•  Generally speaking, a collection of  objects is closed under a given 

operation if  applying that operation to members of  the collection returns 

an object still in the collection.

• For instance, ℤ is closed under multiplication, but ℤ is not closed under 

division. 

Theorem: The class of  regular languages is closed under the union   

operation. 

• Next, we prove this statement. 

Finite Automata



Theorem: The class of  regular languages is closed under the union   

operation. 

• Proof  sketch: We need to show that (in all generality), for any two regular languages 

𝐴1 and 𝐴2, 𝐴1 ∪ 𝐴2 is also regular. 

• The proof  will be by construction, meaning that we will explicitly show how to 

render a FA, M, that recognizes 𝐴1 ∪ 𝐴2. 

• How does this work? We construct M from 𝑀1 (the FA for 𝐴1 ) and 𝑀2 (the FA for 

𝐴2). M must accept its input exactly when either 𝑀1 or 𝑀2 would accept it in order to 

recognize 𝐴1 ∪ 𝐴2. 

Bottom line: We construct M to simulate 𝑀1 and 𝑀2 simultaneously; the key is to 

consider the states in M with respect to the Cartesian product of  the states in 𝑀1 and 

𝑀2, i.e. 𝑄 = 𝑄1 × 𝑄2. 

Finite Automata



Theorem: The class of  regular languages is closed under the union   

operation. 

Pf.

(*) In fact, one can show that regular languages are closed under the union, concatenation, 

star, and complement operations. These proofs are much more concise and elegant using the 

concept of  non-determinism, which we introduce next. 

Finite Automata



• Until now, we have only considered deterministic computations (i.e. 

computations that are performed sequentially, moving from state to state). In a 

non-deterministic machine, several choices may exist for the next state at any 

point. 

• We will distinguish between deterministic and non-deterministic FA using the 

notation: DFA and NFA, respectively. Notice that every DFA is automatically an 

NFA. 

• In an NFA, a state may have zero, one, or many exiting arrows for each 

alphabet symbol (or 𝜀). 

One can think of  the NFA as splitting into multiple copies of  itself  and following 

all possibilities in parallel  (in this way the NFA runs multiple independent 

“processes” or “threads” independently). 
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• One can think of  the NFA as splitting into multiple copies of  itself  and following all 

possibilities in parallel  (in this way the NFA runs multiple independent “processes” or 

“threads” independently). 

• If  at least one of  these processes accepts, the entire computation accepts. 

Non-Determinism



• Below is an example of  an NFA and its corresponding computation “tree” 

for the input 010110 (which is accepted). 

• A few comments: notice that 𝜺-labeled arrows generate a fork: one branch corresponds 

with staying in the state, and the other corresponds with exiting the state along the 𝜀-labeled 

arrow (note the computation tree at step “010”). Also notice that threads “die” when they 

receive an input symbol but the current state has no corresponding exit arrow. 

Non-Determinism



Q: Which language is accepted by the previous NFA? 

Non-Determinism



Q: Which language is accepted by the previous NFA?

A: Any strings containing 101 or 11 as a substring.  

Non-Determinism



• NFA are useful in several respects: As we show, every NFA can be 

converted into an equivalent DFA; NFA are often much simpler

and easier to understand than their corresponding DFA.

Consider the language 𝐴 of  all strings over 0,1 containing a 1 in 

the third position from the end (e.g., 000100 is in A but 0011 is not). 
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• NFA are useful in several respects: As we show, every NFA can be 

converted into an equivalent DFA; NFA are often much simpler

and easier to understand than their corresponding DFA.

Consider the language 𝐴 of  all strings over 0,1 containing a 1 in 

the third position from the end (e.g., 000100 is in A but 0011 is not).

• Here is an NFA recognizing 𝐴 (notice the elegance of  this 

construction).

Non-Determinism



Consider the language 𝐴 of  all strings over 0,1 containing a 1 in 

the third position from the end (e.g., 000100 is in A but 0011 is not).

• Here is an NFA recognizing 𝐴 (notice the elegance of  this 

construction, only 4 states required).

• By contrast, here is the equivalent DFA recognizing 𝐴 (8 states 

required). 

Non-Determinism



• DFA can be particularly effective for generating languages that admit of  a 

construction using “cases.” In these instances, we simply add 𝜀-arrows to 

handle the different cases.  

• For example, consider a DFA that accepts the unary language over 0
consisting of  strings with length 0 𝑚𝑜𝑑 2 or 0 𝑚𝑜𝑑 3.

Non-Determinism



• DFA can be particularly effective for generating languages that admit of  a 

construction using “cases.” In these instances, we simply add 𝜀-arrows to 

handle the different cases.  

• For example, consider a DFA that accepts the unary language over 0
consisting of  strings with length 0 𝑚𝑜𝑑 2 or 0 𝑚𝑜𝑑 3.

Non-Determinism



• The formal definition of  an NFA is very similar to the formal definition of  DFA; the 

two models differ in only one essential way: with an NFA, the transition function maps 

a state symbol pair to a set (δ ∶ Q × Σ𝜀 ⟶ 𝑃 𝑄 )

to account for non-determinism. 

• The formal description of  our previous NFA 

example is given by: 

Non-Determinism



• Let N = 𝑄, Σ, δ, 𝑞0, 𝐹 and 𝑤 = 𝑤1𝑤2 … 𝑤𝑛 be a string where each 𝑤𝑖 ∊ Σ. Then 

N accepts 𝑤 if  a sequences of  states 𝑟0, 𝑟1, … , 𝑟𝑛 in 𝑄 exists with three conditions: 

Non-Determinism

1. 𝑟0 = 𝑞0

2. 𝑟𝑖+1 ∊ δ 𝑟𝑖 , 𝑤𝑖+1 = 𝑟𝑖+1 ∀𝑖 = 0, … , 𝑛 − 1 and

3. 𝑟𝑛 ∊ 𝐹.

• We say that N recognizes language A if  A = 𝑤|𝑁 𝑎𝑐𝑐𝑒𝑝𝑡𝑠 𝑤 .



Equivalence of  NFA and DFA

Theorem. Every non-deterministic finite automaton has an equivalent deterministic 

finite automaton. 

Proof  idea: If  a language is recognized by an NFA, then we must show the existence of  

a DFA that also recognizes; to this end, we convert the NFA into an equivalent DFA 

that simulates the NFA. 

Key point: If  k is the number of  states of  the NFA, it has 2k subsets of  states. Thus, 

the DFA simulating the NFA will have 2k states. Lastly, we need to be mindful of  

converting the ε-arrows in the NFA to the DFA. 

Non-Determinism



Equivalence of  NFA and DFA

Theorem. Every non-deterministic finite automaton has an equivalent deterministic 

finite automaton. 

• For simplicity, consider the case where N contains no ε-arrows. 

*For details on the case where N contains ε-arrows, see Sipser 1.2. 

Non-Determinism



Equivalence of  NFA and DFA

• We use the previous construction to convert the following NFA into a DFA. 

• A few comments: the states of  the DFA will consist of  the power set of  the 

states of  the NFA, namely: ∅, 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , 1,2,3 . The start 

state of  the DFA needs to account for the fact that the start state of  the NFA 

includes (1) but this state has an ε-arrow to (3); for this reason the start state of  

the DFA will be labeled {1,3}. Lastly, the accept states of  the DFA are those 

containing the NFA’s accept states, i.e., 1 , 1,2 , 1,3 , 1,2,3 .

Non-Determinism



Equivalence of  NFA and DFA

• We use the previous construction to convert the following NFA into a DFA. 

Non-Determinism



• From the theorem that every finite automaton has an equivalent deterministic finite 

automaton, it follows that: 

Corollary. A language is regular iff some non-deterministic finite automaton 

recognizes it. 

Why? 
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• From the theorem that every finite automaton has an equivalent deterministic 

finite automaton, it follows that: 

Corollary. A language is regular iff some non-deterministic finite automaton 

recognizes it. 

Why? 

A: → Suppose we have a regular language, then there is a corresponding 

DFA, and by the theorem: NFA →DFA.

← Conversely, suppose we have an DFA; this is automatically an NFA, 

implying the corresponding accepted language is regular. 

Non-Determinism



Theorem. The class of  regular languages is closed under the union operation.

Basic idea of  proof: We have regular languages 𝐴1 and 𝐴2 and want to prove that 

𝐴1 ∪ 𝐴2 is regular. The idea is to take two NFAs, 𝑁1 and 𝑁2 for 𝐴1 and 𝐴2, and 

combine them into one new NFA, N.

We achieve this by constructing a start state from which two ε-arrows emanate; 

each branch corresponds with one of  𝑁1 and 𝑁2 respectively. 

Non-Determinism



Theorem. The class of  regular languages is closed under the concatenation 

operation.

Basic idea of  proof: We have regular languages 𝐴1 and 𝐴2 and want to prove that 

𝐴1 ∘ 𝐴2 is regular. The idea, again, is to take two NFAs, 𝑁1 and 𝑁2 for 𝐴1 and 𝐴2, 

and combine them into one new NFA, N.

We achieve this by constructing ε-arrows between the accept states of  𝑁1and the 

start states of  𝑁2; the accept states of  N are now designated as the accept states 

of  𝑁2. 

Non-Determinism



Theorem. The class of  regular languages is closed under the star operation.

Basic idea of  proof: We have regular languages 𝐴1 and want to prove that 𝐴1* also 

is regular. We take an NFA 𝑁1 recognizing 𝐴1 and modify it to recognize 𝐴1*.

We achieve this by constructing ε-arrows returning to the start state from accept 

states.  Notice that it is necessary to add a new start state with an ε-arrow 

connecting it to the previous start state (why?).

Non-Determinism



• Regular expressions (regex) are sequences of  characters that define a search 

pattern; they have a special role in computer science applications and are commonly 

used in text editor and search engines. 

• The concept is due to Kleene and came into prominent use with the introduction of  

the UNIX OS. 

• The formal (inductive) definition of  a regular expression is given by: 

*Note: Do not confuse the regexs ε and ∅. ε represents the language containing a 

single string (namely, the empty string), whereas ∅ denotes the empty language.

Regular Expressions



• In simple terms, a regex is a set of  strings built from the three regular 

operations, union, concatenation and star; in addition, they use the four special 

symbols: + * ( ); precedence order: star, concatenation and then union. 

• We denote a regular expression R and the language that it describes as L(R).

Regular Expressions



Regular Expressions
•In the following examples, we assume that the alphabet is Σ = 0,1 .



Regular Expressions
• Recall that a regular language is one that is recognized by some finite automaton. 

Theorem. A language is regular iff some regular expression describes it. 

Pf. First, we show that if  a language is described by a regular expression, then it is regular. To this end, 

suppose we have a regular expression R describing some language A; now we show how to convert R into 

an NFA recognizing A. 



Regular Expressions
• Recall that a regular language is one that is recognized by some finite automaton. 

Theorem. A language is regular iff some regular expression describes it. 

Pf. First, we show that if  a language is described by a regular expression, then it is regular. To this end, 

suppose we have a regular expression R describing some language A; now we show how to convert R into 

an NFA recognizing A. 



Regular Expressions

Example. We convert the regular expression 𝑎𝑏 ∪ 𝑎 ∗to an NFA.



Regular Expressions

Example. We convert the regular expression 𝑎 ∪ 𝑏 ∗𝑎𝑏𝑎 to an NFA.



Regular Expressions

Theorem. A language is regular iff some regular expression describes it. 

• Recall that we have already proven the implication: (1) if  a language is described by a regular expression, 

then it is regular. 

• It still remains to prove the second necessary implication for the theorem, namely: (2) if  a language is 

regular, then it is described by a regular expression. 

We prove (2) in two steps: 

(a) We first define a new type of  finite automaton called a generalized nondeterministic finite 

automaton (GNFA); it can be shown (we omit the proof  for brevity) that any DFA can be converted 

into a GNFA.

(b) Next, we show that any GNFA can be converted into a regular expression. 

Together (1) and (2) prove the required theorem. 



Regular Expressions
(a) We first define a new type of  finite automaton called a generalized nondeterministic finite 

automaton (GNFA); it can be shown (we omit the proof  for brevity) that any DFA can be converted into 

a GNFA.

• A GNFA is simply an NFA wherein the transition arrows may have regular expression as labels; in this 

way the GNFA can read blocks of  symbols at a time. 

• Here is an example of  a GNFA.

• The formal definition of  a GNFA is given by: 



Regular Expressions

• A GNFA accepts a string 𝒘 in Σ∗ if  𝑤 = 𝑤1𝑤2 … 𝑤𝑛 where each 𝑤𝑖 ∊ Σ∗ and a sequence of  states 

𝑞0, 𝑞1, … , 𝑞𝑛 exists such that: 

1. 𝑞0 = 𝑞𝑠𝑡𝑎𝑟𝑡 is the start state,

2. 𝑞𝑛= 𝑞𝑎𝑐𝑐𝑒𝑝𝑡 is the accept state, and

3. for each I, we have 𝑤𝑖 ∊ L 𝑅𝑖 , where 𝑅𝑖 = δ 𝑞𝑖−1, 𝑞𝑖 ; in other words, 𝑅𝑖 is the expression on the 

arrow from 𝑞𝑖−1 to 𝑞𝑖 .



This claim follows naturally from the constructive procedure: DFA ⟶ GNFA    

(use induction on the number of  states). 

• Putting this together, we have: 

(a) Any DFA can be converted into a GNFA.

(b) Any GNFA can be converted into a regular expression. 

(a) and (b) prove the required theorem: 

Theorem. A language is regular iff some regular expression describes it. 

Regular Expressions

(b) Next, we claim that any GNFA can be converted into a regular expression. 



Non-Regular Languages
• Summarizing our major results to date, we have shown the equivalences: 

DFA⟷NFA,  Regular Language ⟷ REGEX

• Recall that finite automata (FA) possess severe memory limitations (think of  the 

finite states as imposing an explicit memory restriction). These memory limits 

mean that there are some languages that FA cannot recognize; these are called non-

regular languages. 

• A classic example of  a non-regular (and yet simple) language is given by: 

𝐵 = 0𝑛1𝑛|𝑛 ≥ 0

Careful: although it is tempting to think that the reason that B is non-regular is 

because the number, say of  zeros, is unlimited – the reason is in fact more subtle. 

Notice, for instance that while B is non-regular, C, defined below is in fact 

regular! 

𝐶 = 𝑤|𝑤 ℎ𝑎𝑠 𝑎𝑛 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 01 𝑎𝑛𝑑 10 𝑠𝑢𝑏𝑠𝑡𝑟𝑖𝑛𝑔𝑠



Non-Regular Languages
• Summarizing our major results to date, we have shown the equivalences: 

DFA⟷NFA,  Regular Language ⟷ REGEX

• Recall that finite automata (FA) possess severe memory limitations (think of  the 

finite states as imposing an explicit memory restriction). These memory limits 

mean that there are some languages that FA cannot recognize; these are called non-

regular languages. 

• A classic example of  a non-regular (and yet simple) language is given by: 

𝐵 = 0𝑛1𝑛|𝑛 ≥ 0

Careful: although it is tempting to think that the reason that B is non-regular is 

because the number, say of  zeros, is unlimited – the reason is in fact more subtle. 

Notice, for instance that while B is non-regular, C, defined below is in fact 

regular! 
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Non-Regular Languages
• Thus we see that determining whether a language is regular or non-regular is in 

general not trivial. Our key tool for determining this distinction is the so-called 

pumping lemma for regular languages, which we subsequently prove. 



Non-Regular Languages

• The pumping lemma provides us with a practical tool to show that a language is 

non-regular (notice the “negative use” of  the lemma). 

• Thus, to show that a A is non-regular, we must provide a string s in A of  length 

at least p (choose an arbitrary, fixed p) where the conditions of  the pumping lemma 

fail; because there exists a string in A for which the lemma fails, this proves that 

the language is non-regular (since the lemma makes a claim about all strings in A

of  length at least p). 



Non-Regular Languages

• First, let’s get an intuitive sense of  the statement of  the lemma, and why it holds for 

regular languages. 

Proof  Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the 

pumping length p to be the number of  state in M. 

• We show that any string 𝑠 of  length at least p can be broken into three pieces 𝑠 =
𝑥𝑦𝑧, satisfying the (3) conditions of  the lemma. (If  no strings in A are of  length at 

least p then the lemma is vacuously true, why?)
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• First, let’s get an intuitive sense of  the statement of  the lemma, and why it holds for 

regular languages. 

Proof  Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the 

pumping length p to be the number of  state in M. 

• We show that any string 𝑠 of  length at least p can be broken into three pieces 𝑠 =
𝑥𝑦𝑧, satisfying the (3) conditions of  the lemma. (If  no strings in A are of  length at 

least p then the lemma is vacuously true, why?)

• Suppose that the sequence of  states M executes for 𝑠 is given by 𝑞1, 𝑞2, …, 𝑞𝑛, where

𝑞1 is a start state for M and 𝑞𝑛 is an accept state.  Since 𝑠 > p, it stands to reason 

that this sequence must contain a repeated state, why? 



Non-Regular Languages

Proof  Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the pumping length 

p to be the number of  state in M. 

• We show that any string 𝑠 of  length at least p can be broken into three pieces 𝑠 = 𝑥𝑦𝑧, 

satisfying the (3) conditions of  the lemma.

• Suppose that the sequence of  states M executes for 𝑠 is given by 𝑞1, 𝑞2, …, 𝑞𝑛, where

𝑞1 is a start state for M and 𝑞𝑛 is an accept state.  Since 𝑠 > p, it stands to reason that 

this sequence must contain a repeated state, by the pigeonhole principle. 

• WLOG (without loss of  generality) call the repeated state 𝑞𝑘 with 1≤ 𝑘 ≤ 𝑛, so that the 

sequence of  states M executes for 𝑠 is: 

In particular, we define 𝑠 = 𝑥𝑦𝑧 so that 𝑦 corresponds with the execution “loop” of  

states: 𝑞𝑘 ⟶ 𝑞𝑘.
1 2, ,..., ,...., ,....,k k n

zx y

q q q q q
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Proof  Sketch: Let M = 𝑄, Σ, δ, 𝑞0, 𝐹 be a DFA recognizing A. We assign the pumping length 

p to be the number of  state in M. 

• We show that any string 𝑠 of  length at least p can be broken into three pieces 𝑠 = 𝑥𝑦𝑧, 

satisfying the (3) conditions of  the lemma.

• From this construction, it is not hard to see that condition (1) is met, namely: x𝑦𝑖z ∊ 𝐴 ∀𝑖 ≥ 0.
Furthermore, condition (2) holds, 𝑦 > 0, as it was the part of  𝑠 that occurred between two 

different occurrences of  state 𝑞𝑘.

Lastly, by the pigeonhole principle, the first p+1 states in the sequence must contain a repetition, 

therefore 𝑥𝑦 ≤ 𝑝. 

1 2, ,..., ,...., ,....,k k n

zx y

q q q q q
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• To prove a language is not regular, we first assume that it is, and then follow the method of  

proof  by contradiction. Concretely, we construct a string 𝑠 in the language, and then show that 𝑠
cannot be “pumped”, by way of  the pumping lemma, i.e. show one of  the (3) conditions fails. 



Non-Regular Languages

Example. Returning to our previous example, show that the language: 𝐵 = 0𝑛1𝑛|𝑛 ≥ 0 is not 

regular. 

Pf. We assume that 𝐵 is regular and derive a contradiction using the pumping lemma. 

Let 𝑠 = 0𝑝1𝑝, where p is the pumping length; notice that 𝑠 is in 𝐵 and that 𝑠 >p, so the pumping 

lemma applies, which states that 𝑠 = 𝑥𝑦𝑧, satisfying the (3) conditions. Consider 3 possible cases, each 

one resulting in a contradiction. 

(1) The string 𝑦 contains only 0s. Then 𝑥𝑦𝑦𝑧 has more 0s than 1s, so 𝑥𝑦𝑦𝑧 is not a member of  𝐵. 

This violates condition (2) of  the pumping lemma – a contradiction. 

(2) The string 𝑦 contains only 1s, also a contradiction (why?). 

(3) The string 𝑦 contains both 0s and 1s; notice in this case 𝑥𝑦𝑦𝑧 will have the same number of  

0s and 1s but they will be out of  order, so 𝑥𝑦𝑦𝑧 is not a member of  𝐵 – a contradiction. 
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Example. 
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Example. 
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