e

\

i :,z%,;, . ,,.‘§\‘\\\\\\\\\\\\\\\\\\\\\\\\\\\

i

Regular LLanguages

Contents

* Finite Automata
* Non-Determinism
* Regular Expressions

* Non-Regular Languages

Finite Automata

* The theory of computation begins with the basic question: What is a computer?

* In our subsequent discussion we introduce various types of abstract,
computational models. We begin with the simplest such model: a finite state
automaton (FA), plural: automata.

* Finite automata are good models for computers with an extremely limited

amount of memory (e.g. a basic controller). As we will show, this limited

memory significantly limits what is computable by a FA.

Finite Automata

0 1

e
oW

0,1

* The figure above 1s called a state diagram of an automaton, which we will

call M.

* M has three states, labeled ¢,, ¢, and ¢;. The start state, g, is indicated by
the arrow pointing at it from nowhere. The accept state, ¢,, is the one with a
double circle. The arrows going from one state to another are called
transitions.

* When the automaton receives an input string such as 1101, it processes that
string and produces an output; the output 1s either accept or reject.

Finite Automata

0 1

G CERO

0,1

* For example, when we feed the input string 1101 into M, the processing
proceeds as follows:

1. Start in state g,

2. Read 1, follow transition from ¢, to ¢,.
3. Read 1, follow transition from ¢,to ¢.,.
4. Read 0, follow transition from ¢,to ¢;.
5. Read 1, follow transition from ¢;to g.,.

6. Accept because M is in accept state ¢, at the end of the input.

Finite Automata

* Formally, a finite automaton is a 5-tuple (Q, %, , qq, F), where:

1. Q is a finite set called the states,

2. X 1s a finite set called the alphabet,
3.0: Q XX — (@ is the transition function,
4. qo € @ is the start state, and

5. F € Qis the set of accept states (note that F = @ is permitted).

Finite Automata

* Formally, a finite automaton is a 5-tuple (Q, %, , qq, F), where:
1. Q is a finite set called the states,
2. X 1s a finite set called the alphabet,
3.0 : ¥ — (Q is the transition function,
4. qo € @ is the start state, and

5. F € Qis the set of accept states (note that F = @ is permitted).

0 1

* From the previous example, 1 . 0
1. Q =1{91,92,93}, —’f \j e
2.¥ ={0,1}, |
3. & is described as 0o 1

q1 | 91 g2
qz2 | 43 g2
qs | 42 g2,

4. qq 1s the start state, and
5. F = {q2}.

Finite Automata

* If A 1s the set of all strings that machine M accepts, we say that A is the
language of machine M and write L(M) = A.

We say that M recognizes A or that M accepts A. Note that a machine may
accept many stings, but it always recognizes only one language. If M accepts no

strings, then L(M) = @.

Finite Automata

* Determine the languages accepted by the following FA.

0 1

o | . O e

Finite Automata

* Determine the languages accepted by the following FA.
0 1

G CERO

0,1

w|w contains at least one }
1 and an even numbers of Os follow the last 1

L(A) = {

L(A) = {w]|w start and end with either a or start and end with b}

Finite Automata

* We are now ready to formally define computation:

*Let M = (Q,%, 6, qg, F) be a finite automaton and let w = wyw, ... Wy,
be a string where each w; € 2. Then M accepts w if a sequences of states

To, 11, -, Iy in Q exists with three conditions:
.19 = qo
2.8(r;,wjyq) =141 Vi=0,..,n—1and
3.1, € F.

« We say that M recognizes language A if A = {w|M accepts w}.

Finite Automata

A language 1s called regular if some finite automaton recognizes it.

* Consequently, both:

w|w contains at least one }
1 and an even numbers of Os follow the last 1

L(A) ={

and

L(A) = {w|w start and end with either a or start and end with b}

are regular languages.

Finite Automata

* So far, we have only been given an automaton and then we determine the

language that it accepts.

* Now we explore the reverse process, i.e. were are given a regular language

and then construct an appropriate FA that accepts this language.

* Consider the problem of building a FA, M, that accepts all strings that
contain the string 001 as a substring.

The are four essential case considerations here:

7.

2.
3.
4

M hasn’t seen any of the symbols in the pattern yet,
M has only just seen a
M has just seen 00, or

M has seen the entire pattern.

Finite Automata

* Consider the problem of building a FA, M, that accepts all strings that contain the string

001 as a substring.

The are four essential case considerations here:

1. M hasn’t seen any of the symbols in the pattern yet,
2. M has only just seen a 0

3. M has just seen 00, or
4

M has seen the entire pattern.

Given these observations, we can construct an appropriate FA, M (note
that more than one solution is possible — but we have nevertheless
constructed the siplest such M, in the sense that it contains the least

number of states possible).

Finite Automata

* The regular operations consist of union, concatenation and star
operations:

* Let A and B be languages. We define the regular operations union,
concatenation, and star as follows:

Union: AUB = {x|x € Aor x € B}
Concatenation: A o B = {xy|x € A and x € B}
(Kleene) Star: A* = {x1x5 ... xx |k = 0 and each x; € A }

INTRODUCTION
TO META-
MATHEMATICS

Finite Automata

* Notice that the star gperation 1s a unary operation (unlike union and
concatenation which are binary operations); it works by attaching any
number of symbols in A together (including no symbols).

* For example, consider A = {wild, stallion} and B = {Bill, Ted} , then:
A U B = {wild, stallion, Bill, Ted}

A o B = {wildBill,wildTed, stllionBill, stallionTed}, and

4 = {8, wild, stallion, wildwild, wildstallion, }
4 stallionwild, stallionstallion, ...

Finite Automata

* Generally speaking, a collection of objects 1s closed under a given
operation if applying that operation to members of the collection returns
an object still in the collection.

* For instance, Z 1s closed under multiplication, but Z 1s not closed under

division.

Theorem: The class of regular languages 1s closed under the union

operation.

* Next, we prove this statement.

Finite Automata

Theorem: The class of regular languages 1s closed under the union

operation.

* Proof sketch: We need to show that (in all generality), for any two regular languages
Ai and 4,, 4, U 4, is also regular.

* The proot will be by construction, meaning that we will explicitly show how to
render a FA, M, that recognizes A1 U 4,.

* How does this work? We construct M from M, (the FA for A1) and M, (the FA for
A;). M must accept its input exactly when either My or M, would accept it in order to
recognize 41 U A,.

Bottom line: We construct M to simulate My and My, simultaneously; the key is to
consider the states in M with respect to the Cartesian product of the states in M; and

My, ie Q = Q, X Q.

Finite Automata

Theorem: The class of regular languages 1s closed under the union

operation.

Pf.

Let M, recognize A;, where M; = (Q1,X,d1,¢1, F1), and
A\[g recognize Ag, where A‘[g = (Q_) 2, 62. q2, F_))

Construct M to recognize A; U Ay, where M = (Q, X, 6, qo, F).
1. Q = {(r1,m2)| r1 € Q1 and ry € Q2}.

This set is the Cartesian product of sets 1 and Q> and is written Q1 X Q-.
It is the set of all pairs of states, the first from @, and the second from Q.

2. %, the alphabet, is the same as in M; and Ms. In this theorem and in all
subsequent similar theorems, we assume for simplicity that both M; and
M> have the same input alphabet £. The theorem remains true if they
have different alphabets, ¥; and X5. We would then modify the proof to
let ¥ =3, UZXs.

3. 9, the transition function, is defined as follows. For each (r1,73) € @ and
eacha € X, let

(5((1‘1. 7‘2).(1) = ((51(1'1.(1). 62(7'2.(1)).

Hence ¢ gets a state of M (which actually is a pair of states from M; and
Ms), together with an input symbol, and returns M’s next state.

4. qo is the pair (g1, ¢2).

5. F is the set of pairs in which either member is an accept state of M, or M.
We can write it as

F ={(r1,r2)| r1 € Fyorry € F>}.

This expression is the same as F' = (F; x Q2) U (Q x F»). (Note thatit is
not the same as F' = F; x F». What would that give us instead?s)

(*) In fact, one can show that regular languages are closed under the union, concatenation,
star, and complement operations. These proofs are much more concise and elegant using the
concept of non-determinism, which we introduce next.

Non-Determinism

* Until now, we have only considered deterministic computations (i.e.
computations that are performed sequentially, moving from state to state). In a
non-deterministic machine, several choices may exist for the next state at any
point.

* We will distinguish between deterministic and non-deterministic FA using the
notation: DFA and NFA, respectively. Notice that every DFA is automatically an
NFA.

* In an NFA, a state may have zero, one, or many exiting arrows for each
alphabet symbol (or €).

One can think of the NFA as splitting into multiple copies of itself and following
all possibilities in parallel (in this way the NFA runs multiple independent
“processes” or “threads” independently).

Non-Determinism

* One can think of the NFA as splitting into multiple copies of itself and following all
possibilities in parallel (in this way the NFA runs multiple independent “processes” or
“threads” independently).

* If atleast one of these processes accepts, the entire computation accepts.

Deterministic Nondeterministic
computation computation

:start (.
) s
. reject (\'

(N

* accept or reject * accept

F e N Y N e

Non-Determinism

* Below 1s an example of an NFA and its corresponding computation “tree”
for the input 010110 (which is accepted).

Symbol read

* A few comments: notice that £-labeled arrows generate a fork: one branch corresponds
with staying in the state, and the other corresponds with exiting the state along the €-labeled
arrow (note the computation tree at step “010”). Also notice that threads “die” when they
receive an input symbol but the current state has no corresponding exit arrow.

Non-Determinism
Q: Which language is accepted by the previous NFA?

0,1 0,1
A A

1 0,¢ /|
q2 > g3

Non-Determinism
Q: Which language is accepted by the previous NFA?

0,1 0,1
A A

A: Any strings containing 101 or 11 as a substring.

Non-Determinism

* NFA are useful in several respects: As we show, every NFA can be
converted into an equivalent DFA; NTA are often much simpler
and easier to understand than their corresponding DFA.

Consider the language A of all strings over {0,1} containing a 1 in
the third position from the end (e.g.,, 000100 is in A but 0011 1s not).

Non-Determinism

* NFA are useful in several respects: As we show, every NFA can be
converted into an equivalent DFA; NTA are often much simpler
and easier to understand than their corresponding DFA.

Consider the language A of all strings over {0,1} containing a 1 in
the third position from the end (e.g.,, 000100 is in A but 0011 1s not).

* Here is an NFA recognizing A (notice the elegance of this

| 0,1

construction).

Non-Determinism

Consider the language A of all strings over {0,1} containing a 1 in
the third position from the end (e.g.,, 000100 is in A but 0011 1s not).

* Here is an NFA recognizing A (notice the elegance of this
construction, only 4 states required).

0,1
—»H—‘——‘

* By contrast, here is the equivalent DFA recognizing A (8 states
required).

Non-Determinism

* DFA can be particularly effective for generating languages that admit of a
construction using “cases.” In these instances, we simply add €-arrows to
handle the different cases.

* For example, consider a DFA that accepts the unary language over {0}
consisting of strings with length 0 mod 2 or 0 mod 3.

Non-Determinism

* DFA can be particularly effective for generating languages that admit of a
construction using “cases.” In these instances, we simply add €-arrows to
handle the different cases.

* For example, consider a DFA that accepts the unary language over {0}
consisting of strings with length 0 mod 2 or 0 mod 3.

Non-Determinism

* The formal definition of an NFA 1s very similar to the formal definition of DFA; the
two models differ in only one essential way: with an NFA, the transition function maps
a state symbol pair to aset (§ : Q X X, — P(Q))

to account for non-determinism.

A nondeterministic finite automaton is a 5-tuple (Q, X, 6, qo, F),
where

1. @ is a finite set of states,

2. ¥ is a finite alphabet,

3.0: Q x ¥.—"P(Q) is the transition function,
4. qp € @ is the start state, and

5. F C @ is the set of accept states.

0,1 0,1
- 3 L% (o) 1
* The formal description of our previous NFA ﬂé%) (®) (@) @
CXample iS giV@ﬂ by: The formal description of Ny is (Q, X, 4, q;, F'), where
1. Q= {q.,92,q3. 9},
2. =101},
3. d is given as | 0 1 .
o | {m} {¢q2} 0
a2 | {as) 0 {3}
q3 0 {aa} 0
ga | {ama} {aa} 0,

4. ¢, is the start state, and

5. F={q}.

Non-Determinism

*Let N = (Q,Z%, 6,90 F) and w = wyw, ... wy, be a string where each w; € X. Then
N accepts w if a sequences of states Ty, Ty, ..., I, in Q exists with three conditions:

1.9 = qo
2.7i41 € 6(r;,wjy1) =144 Vi=0,..,n—1and
G N

* We say that N recognizes language A if A = {w|N accepts w}.

Non-Determinism
Equivalence of NFA and DFA

Theorem. Every non-deterministic finite automaton has an equivalent deterministic
finite automaton.

Proof idea: 1t a language is recognized by an NFA, then we must show the existence of
a DFA that also recognizes; to this end, we convert the NFA into an equivalent DFA
that simulates the NFA.

Key point: If £ is the number of states of the NFA, it has 2% subsets of states. Thus,
the DFA simulating the NFA will have 2* states. Lastly, we need to be mindful of
converting the e-arrows in the NFA to the DFA.

Non-Determinism
Equivalence of NFA and DFA

Theotrem. Every non-deterministic finite automaton has an equivalent deterministic
finite automaton.

* For simplicity, consider the case where N contains no e-arrows.

1. Q' =P(Q).
Every state of M is a set of states of N. Recall that P(Q) is the set of
subsets of Q.

2. ForRe Q and a € X, let ' (R, a) = {q € Q| ¢ € 6(r,a) for some r € R}.
If R is a state of M, it is also a set of states of N. When M reads a symbol
a in state R, it shows where a takes each state in R. Because each state may
go to a set of states, we take the union of all these sets. Another way to
write this expression is

3. qo' = {qo}-
M starts in the state corresponding to the collection containing just the
start state of V.

4. F' = {R € @Q'| R contains an accept state of N }.
The machine M accepts if one of the possible states that N could be in at
this point is an accept state.

*For details on the case where N contains e-arrows, see Sipser 1.2.

Non-Determinism
Equivalence of NFA and DFA

* We use the previous construction to convert the following NFA into a DFA.

* A few comments: the states of the DFA will consist of the power set of the

states of the NFA, namely: {@, {13}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}}. The start
state of the DFA needs to account for the fact that the start state of the NFA
includes (1) but this state has an e-arrow to (3); for this reason the start state of
the DFA will be labeled {1,3}. Lastly, the accept states of the DFA are those

containing the NFA’s accept states, i.e., {{1}, {1,2},{1,3}, {1,2,3}}.

Non-Determinism
Equivalence of NFA and DFA

* We use the previous construction to convert the following NFA into a DFA.

Non-Determinism

* From the theorem that every finite automaton has an equivalent deterministic finite

automaton, it follows that:

Corollary. A language 1s regular /ff some non-deterministic finite automaton

recognizes it.

Why?

Non-Determinism

* From the theorem that every finite automaton has an equivalent deterministic
finite automaton, it follows that:

Corollary. A language 1s regular /ff some non-deterministic finite automaton
recognizes it.

Why?
A: (=)Suppose we have a regular language, then there is a corresponding

DFA, and by the theorem: NFA —»DFA.

(«) Conversely, suppose we have an DFA; this is automatically an NFA,
implying the corresponding accepted language 1s regular.

Non-Determinism

Theorem. The class of regular languages is closed under the union operation.

Basic idea of proof: We have regular languages A, and A, and want to prove that
A1 U A, is regular. The idea is to take two NFAs, Ny and N, for A4 and 4,, and

combine them into one new NFA, N.

We achieve this by constructing a start state from which two e-arrows emanate;

each branch corresponds with one of Ny and N, respectively.

Let Ny = (Q1,X,01.q1, F1) recognize Ay, and
.-‘\"7'2 = ((22 ¥, (52. qz2, Fg) rccognizc /12.

N 7 N\
N,) Y Construct N = (Q. X. 4, qp, F') to recognize A; U As.
*O @ ”’O @ 1.Q = {g} UQ 1 UQ,.
© € © The states of N are all the states of N, and N, with the addition of a new
O O O O start state gq.
O O . .
2. The state g is the start state of V.
3. The set of accept states F = Fy U Fs.
N, (\ e\ (\ The accept states of N are all the accept states of Ny and Ny. That way, N
-’O © "O © accepts if either Ny accepts or N accepts.
4. Define d so thatforany g € Q and anya € ¥_,
e © 0 © ’ ’
5O %O hilg.0) qeQ
-/ — . _) d2(g,a) qE€Q2
.) d(g,a) =

{a1.92} g=qanda=c¢
] qg=qpand a # €.

Non-Determinism

Theorem. The class of regular languages is closed under the concatenation
operation.

Basic idea of proof: We have regular languages 44 and A, and want to prove that
Aq o A, is regular. The idea, again, is to take two NFAs, Ny and N, for A and 4,,
and combine them into one new NFA, N.

We achieve this by constructing e-arrows between the accept states of Njand the

start states of INy; the accept states of N are now designated as the accept states
of Nz.

Let Ny = (Q1, 2,01, q1, F1) recognize A, and
Ny = (Q2, X, 02, g2, F>) recognize A,.

v, N,
o @ @ Construct N = (Q, X, d, q1, F) to recognize A; o As.
~O ol |~O0 oo
°° B oo ©O 1. Q=Q1UQe
The states of N are all the states of N} and Ns.
2. The state ¢, is the same as the start state of Nj.
N

3. The accept states F; are the same as the accept states of Ns.

4. Define ¢ so that forany ¢ € Q and any a € X,

g
© o o @ 01(q,a) g€ Qyand g & F
° e ©0© o 8(q.a) = d1(q,a) g€ Franda #¢€

01(q,a)U{q} g€ Franda=c¢
d2(q.a) q € Qs.

Non-Determinism

Theorem. The class of regular languages is closed under the star operation.

Basic idea of proof: We have regular languages A, and want to prove that A,* also
is regular. We take an NFA N; recognizing A and modify it to recognize Aq*.

We achieve this by constructing e-arrows returning to the start state from accept
states. Notice that it is necessary to add a new start state with an e-arrow
connecting it to the previous start state (why?).

PROOF Let N} = (Q1,X,d1,q1, F1) recognize A;.
Construct N = (Q, X, 4, qo, F') to recognize Aj.

1. Q ={q} U Q.

N N\ The states of N are the states of N; plus a new start state.

2. The state qq is the new start state.

3. F = {Q(]} UFl
The accept states are the old accept states plus the new start state.

4. Define 6 so that for any g € Q and any a € ¥,

(61(q. a) g€ Qiandq ¢ Py
01(q,a) g€ Fianda # ¢
0(g,a)U{g1} g€ Franda=c¢
{1} g=qanda=¢

d(q,a) =

U gq=qoand a # ¢.

Regular Expressions

* Regular expressions (regex) are sequences of characters that define a search
pattern; they have a special role in computer science applications and are commonly
used in text editor and search engines.

* The concept is due to Kleene and came into prominent use with the introduction of

the UNILX OS.

* The formal (inductive) definition of a regular expression 1s given by:

Say that R is a regular expression if R is

1. a for some a in the alphabet ¥,
2. g,
3. 0,
4. (R1 U Ry), where Ry and R» are regular expressions,

5. (R1 o Ry), where R, and Ry are regular expressions, or
6. (

*® : .
RY), where R; is a regular expression.

*Note: Do not confuse the regexs ¢ and D.c represents the language containing a
single string (namely, the empty string), whetreas @ denotes the empty language.

Regular Expressions

Say that R is a regular expression if R is

1. a for some a in the alphabet ¥,
2. g,
3. 0,
4. (R1 U Ry), where Ry and R» are regular expressions,

5. (R1 o Ry), where R, and Ry are regular expressions, or
6. (

*® : .
RY), where R; is a regular expression.

* In simple terms, a regex 1s a set of strings built from the three regular
operations, union, concatenation and star; in addition, they use the four special
symbols: + * (); precedence order: star, concatenation and then union.

* We denote a regular expression R and the language that it describes as L(R).

Regular Expressions

*In the following examples, we assume that the alphabet is £ = {0,1}.

10.
11.

12.

e N B A ol

0*10* = {w| w contains a single 1}.

¥*1¥* = {w| w has at least one 1}.

»*001%* = {w| w contains the string 001 as a substring}.

1*(01*)* = {w| every 0 in w is followed by at least one 1}.

(2X)* = {w| wis a string of even length}.?

(XX3)* = {w]| the length of w is a multiple of 3}.

01U 10 = {01,10}.

0X*0 U 1¥*1 U0 U1 = {w| w starts and ends with the same symbol}.
(OUe)1* =01* U 1™,

The expression 0 U e describes the language {0, e}, so the concatenation
operation adds either 0 or € before every string in 1*.

(0Ue)(1Ue) ={e,0,1,01}.

170 = 0.

Concatenating the empty set to any set yields the empty set.
0 ={e}.

The star operation puts together any number of strings from the language
to get a string in the result. If the language is empty, the star operation can
put together 0 strings, giving only the empty string.

Regular Expressions

* Recall that a regular language is one that is recognized by some finite automaton.

Theorem. A language is regular 7ff some regular expression describes it.

Pf. First, we show that if a language is described by a regular expression, then it is regular. To this end,

suppose we have a regular expression R describing some language A; now we show how to convert R into
an NFA]'_'CCOgniZiﬂg A. PROOF Let’s convert R into an NFA N. We consider the six cases in the

formal definition of regular expressions.

1. R = a for some a € . Then L(R) = {a}, and the following NFA recog-

nizes L(R).
OO

Say that R is a regula'r expression if Ris Note that this machine fits the definition of an NFA but not that of
a DFA because it has some states with no exiting arrow for each possible
; input symbol. Of course, we could have presented an equivalent DFA here;

1. a for some a in the alphabet X, DUEES I '

but an NFA is all we need for now, and it is easier to describe.
£ Formally, N = ({q1, 42}, %, 0, q1, {q2}), where we describe § by saying
0 that (¢, a) = {q2} and that §(r,b) = 0 for r # ¢, or b # a.
’ 2. R =¢€. Then L(R) = {e}, and the following NFA recognizes L(R).
R U Ry), where Ry and Rs are regular expressions,

-
. (Ry o Ry), where R; and R are regular expressions, or @
-

R7}), where Ry is a regular expression.

Formally, N = ({¢:1},%,0,q1, {q1}), where §(r,b) = 0 for any r and b.
3. R = 0. Then L(R) = 0, and the following NFA recognizes L(R).

@

Formally, N ({q},%,0,q,0), where 6(r,b) = 0 for any 7 and b.

4. R= R, UR,.

5. R= ll’[O”g.

6. R=R;.

For the last three cases, we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we construct the NFA for R from the NFAs for R, and R, (or just R, in case 6)
and the appropriate closure construction.

Regular Expressions

* Recall that a regular language is one that is recognized by some finite automaton.

Theorem. A language is regular 7ff some regular expression describes it.

Pf. First, we show that if a language is described by a regular expression, then it is regular. To this end,

suppose we have a regular expression R describing some language A; now we show how to convert R into
an NFA]'_'CCOgniZiﬂg A. PROOF Let’s convert R into an NFA N. We consider the six cases in the

formal definition of regular expressions.

1. R = a for some a € . Then L(R) = {a}, and the following NFA recog-

nizes L(R).
OO

Say that R is a regula'r expression if Ris Note that this machine fits the definition of an NFA but not that of
a DFA because it has some states with no exiting arrow for each possible
; input symbol. Of course, we could have presented an equivalent DFA here;

1. a for some a in the alphabet X, DUEES I '

but an NFA is all we need for now, and it is easier to describe.
£ Formally, N = ({q1, 42}, %, 0, q1, {q2}), where we describe § by saying
0 that (¢, a) = {q2} and that §(r,b) = 0 for r # ¢, or b # a.
’ 2. R =¢€. Then L(R) = {e}, and the following NFA recognizes L(R).
R U Ry), where Ry and Rs are regular expressions,

-
. (Ry o Ry), where R; and R are regular expressions, or @
-

R7}), where Ry is a regular expression.

Formally, N = ({¢:1},%,0,q1, {q1}), where §(r,b) = 0 for any r and b.
3. R = 0. Then L(R) = 0, and the following NFA recognizes L(R).

@

Formally, N ({q},%,0,q,0), where 6(r,b) = 0 for any 7 and b.

4. R= R, UR,.

5. R= ll’[O”g.

6. R=R;.

For the last three cases, we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we construct the NFA for R from the NFAs for R, and R, (or just R, in case 6)
and the appropriate closure construction.

Regular Expressions

Example. We convert the regular expression (ab U a)*to an NFA.

; ~0*~0
° ~0=>0
20

a b
€
L .oo OO
e O—0

£
a € C b
@buay »@i»ge i)
g
€

Regular Expressions

Example. We convert the regular expression (a U b)*aba to an NFA.

OO0
alUb ..©

(aUb)* 5 @

aba

(aUb)*aba

Regular Expressions

Theorem. A language is regular 7ff some regular expression describes it.

* Recall that we have already proven the implication: (1) if a language is described by a regular expression,
then it is regular.

e It still remains to prove the second necessary implication for the theorem, namely: (2) if a language is

regular, then it is described by a regular expression.
We prove (2) in two steps:

(a) We first define a new type of finite automaton called a generalized nondeterministic finite
automaton (GNFA); it can be shown (we omit the proof for brevity) that any DFA can be converted
into a GNFA.

(b) Next, we show that any GNFA can be converted into a regular expression.

Together (1) and (2) prove the required theorem.

Regular Expressions

(a) We first define a new type of finite automaton called a generalized nondeterministic finite
automaton (GNFA); it can be shown (we omit the proof for brevity) that any DFA can be converted into
a GNFA.

* A GNFA is simply an NFA wherein the transition arrows may have regular expression as labels; in this
way the GNFA can read blocks of symbols at a time.

* Here is an example of a GNFA.

* The formal definition of a GNFA is e by: A generalized nondeterministic finite automaton is a S-tuple,
((2 25 d, starts ‘]:lccup[), where

1. Q is the finite set of states,

2. ¥ is the input alphabet,

3.4: (Q — {Gaccept}) ¥ (Q — {gstart}) —> R is the transition
function,

4. (are 18 the start state, and

5. Qaccepe 18 the accept state.

Regular Expressions

A generalized nondeterministic finite automaton is a 5-tuple,
((2' E* (53 q\‘t:lrt- q:lrcupt): wherc

1. @ is the finite set of states,

2. ¥ is the input alphabet,

3. 6: (Q — {Gaccept}) * (Q — {@suare}) — R is the transition
function,

4. (yar 1s the start state, and

5. Gaccepe 15 the accept state.

* A GNFA accepts a stting W in " if W = wyw, ... wy, where each w; € ¥ and a sequence of states
d0,91, -+, Qn exists such that:

1. g9 = Gstqrt 1s the start state,

2. qn= Gaccept 1S the accept state, and

3. for each I, we have w; € L(R;), where R; = 6(q;_1, q;); in other words, R; is the expression on the
arrow from @;_q to q;.

Regular Expressions

(b) Next, we claim that any GNFA can be converted into a regular expression.

This claim follows naturally from the constructive procedure: DFA — GNFA
(use znduction on the number of states).

* Putting this together, we have:
(a) Any DFA can be converted into a GNFA.

(b) Any GNFA can be converted into a regular expression.

(a) and (b) prove the required theorem:

Theorem. A language is regular 7ff some regular expression describes it.

Non-Regular LLanguages

* Summarizing our major results to date, we have shown the equivalences:
DFA<NFA, Regular Language <> REGEX

* Recall that finite automata (FA) possess severe memory limitations (think of the
finite states as imposing an explicit memory restriction). These memory limits
mean that there are some languages that FA cannot recognize; these are called non-

regular languages.

* A classic example of a non-regular (and yet simple) language is given by:

B ={0"1"|n = 0}

Careful: although it is tempting to think that the reason that B is non-regular is
because the number, say of zeros, is unlimited — the reason is in fact more subtle.

Notice, for instance that while B is non-regular, C, defined below is in fact
regular!

C = {w|w has an equal number of occurences of 01 and 10 substrings}

Non-Regular LLanguages

* Summarizing our major results to date, we have shown the equivalences:
DFA<NFA, Regular Language <> REGEX

* Recall that finite automata (FA) possess severe memory limitations (think of the
finite states as imposing an explicit memory restriction). These memory limits
mean that there are some languages that FA cannot recognize; these are called non-

regular languages.

* A classic example of a non-regular (and yet simple) language is given by:

B ={0"1"|n = 0}

Careful: although it is tempting to think that the reason that B is non-regular is
because the number, say of zeros, is unlimited — the reason is in fact more subtle.

Notice, for instance that while B is non-regular, C, defined below is in fact
regular!

C = {w|w has an equal number of occurences of 01 and 10 substrings}

Non-Regular Languages

* Thus we see that determining whether a language is regular or non-regular is in
general not trivial. Our key tool for determining this distinction is the so-called
pumping lemma for regular languages, which we subsequently prove.

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, xy’z € A,
2. ly| > 0, and
3. |zyl <p.

Recall the notation where |s| represents the length of string s, y* means that i
copies of y are concatenated together, and 3" equals e.

When s is divided into zyz, either x or z may be e, but condition 2 says that
y # €. Observe that without condition 2 the theorem would be trivially true.
Condition 3 states that the pieces x and y together have length at most p. Itis an
extra technical condition that we occasionally find useful when proving certain
languages to be nonregular.

Non-Regular LLanguages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, 2y'z € A,

2. ly| > 0, and

3. |zy| < p.

* The pumping lemma provides us with a practical tool to show that a language 1s
non-regular (notice the “negative use” of the lemma).

* Thus, to show that a 4 1s non-regular, we must provide a string s in .4 of length
at least p (choose an arbitrary, fixed p) where the conditions of the pumping lemma
fail; because there exists a string in .4 for which the lemma fails, this proves that
the language is non-regular (since the lemma makes a claim about all strings in .4
of length at least p).

Non-Regular LLanguages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,

2. |y| > 0, and

3. Jay| <.
* First, let’s get an intuitive sense of the statement of the lemma, and why 1t holds for
regular languages.

Proof Sketch: Let M = (Q, %, 6, qo, F) be a DFA recognizing 4. We assign the
pumping length p to be the number of state in M.

* We show that any string S of length at least p can be broken into three pieces S =
xyz, satistying the (3) conditions of the lemma. (If no strings in A are of length at
least p then the lemma is vacuously true, why?)

Non-Regular LLanguages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. foreachi > 0, zy'z € A,
2. |y| > 0, and
3. |zy| < p.

* First, let’s get an intuitive sense of the statement of the lemma, and why 1t holds for
regular languages.

Proof Sketch: Let M = (Q, %, 6, qo, F) be a DFA recognizing 4. We assign the
pumping length p to be the number of state in M.

* We show that any string S of length at least p can be broken into three pieces S =
xyz, satistying the (3) conditions of the lemma. (If no strings in A are of length at
least p then the lemma is vacuously true, why?)

* Suppose that the sequence of states M executes for S 1s given by q4, q3, ..., qn, Where
q; is a start state for M and @, is an accept state. Since |s| > p, it stands to reason
that this sequence must contain a repeated state, why?

Non-Regular LLanguages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. foreachi > 0, zy'z € A,

2. |y| > 0, and

3. |zy| < p.

Proof Sketch: I.et M = (Q, %, §, o, F) be a DFA recognizing A. We assign the pumping length
p to be the number of state in M.

* We show that any string s of length at least p can be broken into three pieces S = xyz,
satistying the (3) conditions of the lemma.

* Suppose that the sequence of states M executes for S 1s given by gy, g3, ..., qpn, Where
q; is a start state for M and @, is an accept state. Since|s| > p, it stands to reason that
this sequence must contain a repeated state, by the pigeonhole principle.

* WLOG (without loss of generality) call the repeated state gy with 1< k < n, so that the
sequence of states M executes for S is:

In particular, we define S = XYz so that y corresponds with the execution “loop” of
states: qk — qk q11q21"'1qk1""1qk1""1qn

vV

X y z

Non-Regular Languages

Pumping lemma If A is a regular language then there is a number p (the M h
pumping length) where if s is any string in A of length at least p, then s may be Y
divided into three pieces, s = zyz, satisfying the following conditions: _

1. for each i > 0, zy'z € A, N

2. |ly| > 0, and D T

3. |zy| <p. \4'@ ;)

Proof Sketch: et M = (Q, %, §, g, F) be a DFA recognizing A. We assign the pumping length
p to be the number of state in M.

* We show that any string § of length at least p can be broken into three pieces S = xyz,
satistying the (3) conditions of the lemma.

\q:|_1q21";19k""'1qkjl""lqn

<=
X y Z

* From this construction, it is not hard to see that condition (1) is met, namely: Xy'z € A Vi = 0.
Furthermore, condition (2) holds, |y| > 0, as it was the part of s that occurred between two
different occurrences of state qy.

Lastly, by the pigeonhole principle, the first p+1 states in the sequence must contain a repetition,
therefore |xy| < p.

Non-Regular LLanguages

* To prove a language is not regular, we first assume that it is, and then follow the method of
proof by contradiction. Concretely, we construct a string S in the language, and then show that s

cannot be “pumped”, by way of the pumping lemma, 1.e. show one of the (3) conditions fails.

Non-Regular LLanguages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy'z € A,
2. |yl > 0,and
3. |zy| < p.

Example. Returning to our previous example, show that the language: B = {0™1"|n = 0} is not
regular.

Pf. We assume that B is regular and derive a contradiction using the pumping lemma.

Let s = 0P1P where p is the pumping length; notice that s is in B and that |s| >p, so the pumping
lemma applies, which states that S = xyz, satisfying the (3) conditions. Consider 3 possible cases, each
one resulting in a contradiction.

(1) The string y contains only 0s. Then xyyz has more Os than 1s, so xyyZz is not a member of B.
This violates condition (2) of the pumping lemma — a contradiction.

(2) The string y contains only 1s, also a contradiction (why?).

(3) The string y contains both Os and 1s; notice in this case xyyz will have the same number of

Os and 1s but they will be out of order, so Xyyz is not a member of B — a contradiction.

Non-Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. foreachi > 0, zy'z € A,
2. |yl > 0,and
3. |zy| < p.

Example.

Let F' = {ww| w € {0,1}*}. We show that F' is nonregular, using the pumping
lemma.

Assume to the contrary that F' is regular. Let p be the pumping length given
by the pumping lemma. Let s be the string 0P10P1. Because s is a member of
F and s has length more than p, the pumping lemma guarantees that s can be
split into three pieces, s = xyz, satisfying the three conditions of the lemma.
We show that this outcome is impossible.

Condition 3 is once again crucial because without it we could pump s if we
let and z be the empty string. With condition 3 the proof follows because y
must consist only of 0s, so zyyz & F.

Observe that we chose s = 0P10P1 to be a string that exhibits the “essence” of
the nonregularity of F, as opposed to, say, the string 0P0P. Even though 070P is
a member of F, it fails to demonstrate a contradiction because it can be pumped.

Example.

Non-Regular Languages

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where if s is any string in A of length at least p, then s may be
divided into three pieces, s = zyz, satisfying the following conditions:

1. foreachi > 0, zy'z € A,

2. |yl > 0,and

3. |zyl < p.

Here we demonstrate a nonregular unary language. Let D = {1"*|n > 0}.
In other words, D contains all strings of 1s whose length is a perfect square.
We use the pumping lemma to prove that D is not regular. The proof is by
contradiction.

Assume to the contrary that D is regular. Let p be the pumping length given
by the pumping lemma. Let s be the string 17", Because s is a member of D and
s has length at least p, the pumping lemma guarantees that s can be split into
three pieces, s = xyz, where for any i > 0 the string zy'z is in D. As in the
preceding examples, we show that this outcome is impossible. Doing so in this
case requires a little thought about the sequence of perfect squares:

0,1,4,9,16,25,36,49,...

Note the growing gap between successive members of this sequence. Large
members of this sequence cannot be near each other.

Now consider the two strings zyz and zy*z. These strings differ from each
other by a single repetition of y, and consequently their lengths differ by the
length of y. By condition 3 of the pumping lemma, |zy| < p and thus |y| < p.
We have |zyz| = p? and so |zy?z| < p? +p. Butp? +p < p* +2p+1= (p+1)=2
Moreover, condition 2 implies that y is not the empty string and so |zy?z| >
p?. Therefore, the length of zy?z lies strictly between the consecutive perfect
squares p? and (p + 1)%. Hence this length cannot be a perfect square itself. So
we arrive at the contradiction zy?z € D and conclude that D is not regular.

I

W

