
Preliminaries for the Theory of Computation

• Automata, Computability, and Complexity

• Sets and Elementary Set Theory

• Sequences and Tuples

• Functions

• Graphs

• Strings and Languages

• Boolean Logic

• Logic, Conditionals and Valid Arguments

• Proof Techniques: Direct Proof, Contrapositive, Proof by Cases, Contradiction, Induction

• Cantor’s Methods: Infinities and Diagonalization

Contents

• The Theory of Computation encompasses (3) central domains of study: Automata, Computability, and

Complexity.

Automata Theory

• Automata theory deals with properties of hierarchically related abstract models of

computation. These models play key roles in several applied areas of computer science,

including text and natural language processing, compilers, hardware design, programming

languages and artificial intelligence.

• Classic models falling under the umbrella of automata theory include:

deterministic finite state automata, non-deterministic finite state automata,

pushdown automata, and context-free grammars.

Automata, Computability, and

Complexity

• The Theory of Computation encompasses (3) central domains of study: Automata, Computability, and

Complexity.

Computability Theory

• Computability theory centers around the fundamental question: What is (and isn’t) computable?

The fact that some problems defy solution by any computer (now or in the future!) is a

profound idea. The historical codification of theoretical models of computation – particularly

the Turing machine – led, somewhat paradoxically, to the invention of physically realizable

computers.

• The pinnacle of computability theory is the Church-Turing Thesis which asserts the

equivalence of “effectively calculable” algorithms (i.e. paper-and-pencil methods) with

algorithms that run on Turing Machines.

Automata, Computability, and

Complexity

• The Theory of Computation encompasses (3) central domains of study: Automata, Computability, and

Complexity.

(Computational) Complexity Theory

• Complexity Theory pertains to classifying computational problems according to their inherent

difficulty, and relating these classes to one another.

• Computational complexity theory formalizes this intuition by quantifying the amount of resources

required by models of computation needed to solve a given problem, such as time and storage.

introducing mathematical models of computation. A problem is regarded as inherently difficult if

its solution requires significant resources, whatever the algorithm used.

• The greatest unsolved problem in theoretical computer: P vs. NP asks whether every problem

whose solution can be “efficiently” verified can be “efficiently” solved.

Automata, Computability, and

Complexity

• A set is a group of objects represented as a unit. Sets may contain any type of object, including numbers,

symbols and even other sets.

• The object in a set are called its elements or members.

• Sets may be described in several ways:

Set notation – in which the elements of the set are listed, separated by commas: 𝐴 = 1,2,3 .

Set-builder notation – in which we describe how to “build” elements of the set: 𝐴 = 𝑥|0 < 𝑥 < 1 .

Sets

• Membership in a set is denoted: 1 ∈ 1,2,3 , 14 ∉ 1,2,3 .

• For two sets, we say 𝑨 is a subset of 𝑩, written A ⊆ B if every member of A is also a member of B.

We say that A is a proper subset of B, written A ⊊ B if A is a subset of B – but A is not equal to B.

• To prove that two sets are equal (A = B), we prove both properties: A ⊆ B and B ⊆ A.

• The order or cardinality of a set connotes the size of the set and is written |A|. For finite sets, the

order of the set is equal to the number of elements contained in the set, e.g., 𝑎, 𝑏, 𝑐, 𝑑 = 4. An infinite

set contains infinitely-many elements.

• The set consisting of no elements is called the empty set, written: ∅; note that ∅ ≠ ∅. Note that for

all sets A, ∅ ⊆ A holds.

Sets

• The natural numbers (or “counting numbers”) are defined as the infinite array of non-negative

integers:

ℕ = 1,2,3, …

• The set of integers is defined as the doubly-infinite array:

ℤ = … ,−3,−2,−1,0,1,2,3, …

• The set of all rational numbers (i.e. fractions) is defined:

ℚ =
𝑎

𝑏
|𝑎, 𝑏 ∈ ℤ, 𝑏 ≠ 0

• The set of all reals ℝ forms a continuum and is defined as the union (see below) of ℚ with the set of

irrational numbers (i.e. numbers with non-terminating, non-repeating decimal expansions).

• Notice that: ℕ ⊊ ℤ ⊊ ℚ ⊊ ℝ.

Sets

• As with sets, sequences may be finite or infinite. Finite sequences are often called tuples; a sequence with

k elements is called a k-tuple: 7,21,3 is a 3-tuple; order pairs are 2-tuples.

• The power set of a set A, expressed ℙ 𝐴 is defined as the set of all subsets of A. For example,

ℙ 1,2 = ∅, 1 , 2 , 1,2 . When, 𝐴 < ∞, ℙ 𝐴 =2 𝐴 , why?

• The Cartesian Product of sets 𝐴 and 𝐵, is defined 𝐴 × 𝐵 = 𝑎, 𝑏 |𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 . The Cartesian

product can be extended for more than two sets in a natural way; for example: ℝ× ℝ × ℝ = ℝ3 =
𝑎, 𝑏, 𝑐 |𝑎, 𝑏, 𝑐 ∈ ℝ .

Sets

• There exist two common binary operations on sets: union and intersection. The union of sets A and 𝐵,

written: A⋃𝐵 is defined as the set of all elements either in A or 𝐵 (or both); the intersection of sets,

expressed: A⋂𝐵 is defined as the set of all elements in both A and 𝐵:

𝐴⋃𝐵 = 𝑥|𝑥 ∈ 𝐴 𝑜𝑟 𝑥 ∈ 𝐵 , 𝐴⋂𝐵 = 𝑥|𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝐵

• The unary operation complement, written ҧ𝐴, is defined as the set of all elements under consideration

that are not in 𝐴.

Sets

• A relation R is a set of ordered pairs over a non-empty Domain set D. If for elements 𝑎, 𝑏 ∈ 𝐷, “a

related to b”, we write: 𝑎 𝑅 𝑏; equivalently we can express this relation as the ordered pair 𝑎, 𝑏 . For

example if D = ℤ and R is the “less than” relation (i.e. <); it follows that 1 𝑅 2 is True, but 10 𝑅 7 is

False.

• A function (also called a mapping) is an object that maps elements from one set (Domain) to another

set (Co-Domain); in this way a function determines an element-wise correspondence between sets. The

image of the function is referred to as the Range of the function, notice that Range f ⊆ CoDomain(f),
necessarily.

• The structure of a function is more stringent than that of a relation; a function additionally requires

that each input element is mapped to only one co-domain element.

• Functions can be represented in a variety of ways, including as a set of ordered pairs, e.g.,

−1,5 , 0,3 , 1,5 , 2,11 , 3,21 , or, alternatively using a function diagram or table.

Functions & Relations

• A function is called injective (1-1) if each input element maps to a unique output; a function is said to

be surjective (onto) if Range f = CoDomain(f) – in other words, each element in the range of f is

mapped “onto” by an element in the domain.

• If a function is both injective and surjective we call it a bijection (equivalently: f defines a “one-to-one

correspondence”).

Functions & Relations

• When a function takes single arguments as input, we call it a unary function. Otherwise, if a function

takes sequences of dimension k (also: vectors) as input, we call it a k-ary function.

• Here is an example of a 2-ary function g: 𝑍4 × 𝑍4 ⟶ 𝑍4 that defines addition modulo 4.

For example, g 3,1 = 0.

Functions & Relations

• Relations are called equivalence relations if they satisfy the following (3) properties:

(1) R is reflexive if for every x in D, xRx

(2) R is symmetric if for every x and y in D, xRy implies yRx

(3) R is transitive if for every x, y and z in D, xRy and yRZ implies xRz.

For example, the relation ‘equality’ for D = ℤ defines an equivalence relation.

Functions & Relations

• Graphs are one of the most common structures encountered in computer science. A graph G is a

collection of vertices (sometimes called nodes) (V) and edges (E), so a graph is a 2-tuple, defined: G =
𝑉, 𝐸 . Graphs fundamentally describe relations (i.e. whether there is an edge or not) over a set of objects

(i.e. the vertices).

• An undirected graph (or simple a graph) is a set of points with lines connecting some of the points;

the edges are undirected in this case. Simple graphs have no self-loops (i.e. an edge connecting a vertex

to itself) and no multi-edges (i.e. more than one edge connecting the same pair of vertices). Usually we

simply refer to a simple graph as a “graph.”

• Directed graphs contain oriented edges; typically an oriented edge is expressed as an ordered pair

𝑣1, 𝑣2 , where 𝑣1 is the source vertex and 𝑣2 is the sink/terminal vertex .

Graphs

• The degree of a vertex is defined as the number of edges emanating from a vertex. A graph is regular

if all of the vertices have the same degree. For undirected graphs, we commonly specify two measures

related to degree: indegree(v) and outdegree(v).

• We say that a graph H is a subgraph of a graph G if the nodes of H are a subset of the nodes of G,

and the edges of H are the edges of G on the corresponding nodes, i.e. V H ⊆ V G and E H ⊆ E G .

Graphs

• A path in a graph is a sequence of nodes connected by edges. A graph is connected if, for any two

vertices in the graph, there exists a path between them. A cycle is a path that starts and ends at the same

vertex. A simple cycle is one that contains at least three vertices and repeats only the first and last

vertices.

• A tree is a connected graph with no simple cycles. A tree can be thought of as a minimally connected

graph (with respect to the vertex set). A tree admits of a topological ordering, where a vertex is specially

designated as the root; aside from the root, all vertices of degree 1 in a tree are referred to as the leaves of

the tree.

• In a directed graph G, we say G is strongly connected if a directed path connects every two nodes.

Graphs

• Strings of characters are fundamental building blocks in computer science. The alphabet over which

strings are defined may vary with the application.

• We define an alphabet to be any non-empty finite set, usually we reserve the letters Σ and Γ for

alphabets, e.g. Σ = 0,1 ; the members of the alphabet are the symbols of the alphabet.

• A string over an alphabet is a finite sequence of symbols from that alphabet; for example

𝑐𝑏𝑏𝑎𝑏𝑐𝑎𝑐𝑎 is a string over the alphabet Σ = 𝑎, 𝑏, 𝑐 .

• If 𝑤 is a string over Σ , the length of 𝑤, written, 𝑤 , is the number of symbols that it contains.

The string of length zero is called the empty string and is denoted ε.

• The reverse of a string 𝒘, written 𝑤𝑅, is the string obtained by writing 𝑤 in the opposite order,

e.g. if 𝑤 = 𝑤1, … , 𝑤𝑛 , then 𝑤𝑅 = 𝑤𝑛, … , 𝑤1 .

Strings and Languages

• String 𝑧 is a substring of 𝑤 if 𝑧 appears consecutively within it. For example, cad is a substring of

abracadabra.

• If we have a string 𝑥 of length 𝑚 and a string 𝑦 of length 𝑛, the concatenation of x and y, written 𝑥𝑦,

is the string obtained by appending 𝑥 to the end of y, yielding: xy = 𝑥1, … , 𝑥𝑚, 𝑦1, … , 𝑦𝑚 ,

• The lexicographic order of strings it the same as the familiar dictionary order; shortlex order (or

simply string order) is identical to lexicographic order, except that shorter strings precede longer strings.

Thus the string ordering of all strings over the Σ = 0,1 is:

ε, 0, 1, 00, 01, 10, 11, 000, …

• We say that string 𝑥 is a prefix of string 𝑦 if a string 𝑧 exists where x𝑧 = 𝑦 and that x is a proper

prefix of 𝑦 if in addition x ≠ 𝑦.

• A language is a set of strings. A language is prefix-free if no member is a proper prefix of another

member.

Strings and Languages

• Boolean Logic is a mathematical system built around two values: TRUE and FALSE.

• We can manipulate Boolean values with Boolean operations, including: negation ⌐ (i.e. NOT),

conjunction ⋀ (AND), and disjunction ⋁ (OR).

These Boolean operations can be summarized as follows:

Boolean Logic

0 0 0 0 0 0 0=1

0 1 0 0 1 1 1=0

1 0 0 1 0 1

1 1 1 1 1 1

 =  = 

 =  = 

 =  =

 =  =

• Several other Boolean operations occasionally appear: the exclusive or ⨁ (XOR), which is 1 if either

but not both of its operands is 1; and the equality ⟷ (IFF) which is 1 if both of its operands have the

same value; lastly, implication (⟶) is 0 if its first operand is 1 and its second operand is 0, otherwise is 1.

In summary:

• There exists a natural correspondence between Boolean operations and set operations. The set of

Boolean operations can be reduced, equivalently, to expressions which only involve AND, OR and NOT.

In this way, logic circuits representing wffs (well-formed formulas) can be expressed using combinations

consisting of only these three Boolean operations.

Boolean Logic

0 0 0 0 0 1 0 0 1

0 1 1 0 1 0 0 1 1

1 0 1 1 0 0 1 0 0

1 1 0 1 1 1 1 1 1

 =  = → =

 =  = → =

 =  = → =

 =  = → =

()

() ()

()

P Q is equivalent to: P Q

P Q is equivalent to: P Q

P Q is equivalent to: P Q Q

P Q is equivalent to: P Q

P

   

→  

 →  →

  

• Conditional statements are statements of the form: “if P, then Q” (where P and Q are called predicates,

i.e. Boolean-valued functions); P is referred to as the antecedent and Q is called the consequent of the

conditional statement.. We commonly write a conditional statement using the implication symbol: P ⟶ 𝑄.

• There are three additional related forms of a conditional statement P ⟶ 𝑄.

• The inverse of the corresponding conditional state is defined: ⌐P ⟶ ⌐Q; the converse: Q ⟶ 𝑃 and

the contrapositive: ⌐𝑄 ⟶ ⌐P. Note that the contrapositive is logically equivalent to its

corresponding conditional statement; however, the converse is not logically equivalent to its

corresponding conditional statement. The inverse and converse statements for a corresponding conditional

statement are logically equivalent.

• The logical equivalences mentioned above can be verified using logical rules of deduction – or

equivalently, via truth tables.

Conditional Statements

• The inverse of the corresponding conditional state is defined: ⌐P ⟶ ⌐Q; the converse: Q ⟶ 𝑃 and

the contrapositive: ⌐𝑄 ⟶ ⌐P. Note that the contrapositive is logically equivalent to its

corresponding conditional statement; however, the converse is not logically equivalent to its

corresponding conditional statement. The inverse and converse statements for a corresponding conditional

statement are logically equivalent.

• Note that most theorems in mathematics and computer science are expressed naturally as conditional

statements. In these cases we can always construct the contrapositive of the theorem to generate a logically

equivalent statement – frequently, this contrapositive variant of the theorem is additionally

informative/useful. For example, from calculus we have the following theorem:

Theorem: “If the real-valued function f 𝑥 is differentiable at a point 𝑥 = 𝑝 (i.e. f′ 𝑝 is defined), then

f 𝑥 is continuous at 𝑥 = 𝑝 .”

Contrapositive: “If the real-valued function f 𝑥 is discontinuous at the point 𝑥 = 𝑝 , then f 𝑥 is not

differentiable at 𝑥 = 𝑝 , i.e. (i.e.f′ 𝑝 is undefined)”

Conditional Statements

• An argument in logic is a sequence of statements, where we assert that one of these statements (called

the conclusion) follows from a subset of these statements (called the premises). The argument is deemed

valid if the conclusion can be deduced from the premises using a sequence of “valid argument forms.”

• Importantly, the abstract power of logic follows from the fact that if a valid argument contains true

premises, then the conclusion is necessarily true. An argument is called sound if and only if it is valid and

all of its premises are true.

• Here is a summary of common valid argument forms:

Valid Arguments

• Consider the following example, which we show is a valid argument:

Premise #1: If at least one of these two numbers is even, then the product of these two numbers is even.

Premise #2: Neither of these two numbers is even.

Conclusion: The product of these two numbers is odd.

• Premise #1 can be expressed: E1 ⋁E2 ⟶ PE (where AOE denotes “at least one is even” and PE

denotes “product is even”). Premise #2 can be expressed ⌐E1⋀⌐E1.

• The argument is valid, which we argue as follows:

Valid Arguments

1 2

1 2

(1) (premise #1)

(2) (premise #2)

(3) (modus tollens)

E E PE

E E

PE

 →

 

 

• A proof is a convincing logical argument that a statement is true – the conclusion must follow in a valid

way from the premises. In mathematics, an argument must be airtight; that is, convincing in an absolute

sense.

• A theorem is a mathematical statement proved true. Generally, we reserve the use of that word for

statements of special interest.

• Occasionally we prove statements that are interesting only because they assist in the proof of another,

more significant statement. Such statements are called lemmas. Occasionally a theorem or its proof may

allow us to conclude easily that other, related statements are true. These statements are called corollaries

of the theorem.

• Sometimes the parts of a multi-part statement are not immediately evident. One frequently encountered

type of multi-part statement has the form “P if and only if (iff) Q,” where both P and Q are

mathematical statements. In this case we must prove, in two separate cases, both implications: 𝑃 ⟶ Q
and Q ⟶ P.

• To disprove a mathematical statement, one needs to produce a single counterexample.

Proof Techniques

• Unfortunately, there is no generalizable procedure for constructing mathematical proofs (Turing

proved the impossibility of this endeavor!).

• Nevertheless, it is helpful to consider the following general tips: be patient, come back to it, be neat and precise,

be concise – also, of course, practice makes perfect! Some proofs can be quite challenging and have known to

baffle the greatest minds in science for years (even centuries in some cases).

• Let’s begin by practicing a few proof examples, using a technique known as direct proof –

meaning state the premises, and follow them (using any appropriate definitions and valid

argument deductions) to their logical conclusion, i.e. we show 𝑃 ⟶ Q (where P indicates the

set of premises and Q denotes the conclusion).

Proof Techniques

Theorem: for any two sets 𝐴 and 𝐵, 𝐴 ∪ 𝐵 = ҧ𝐴 ∩ ത𝐵.

Pf. (Direct) First, try and get an intuitive sense of why this property holds (imagine, for instance, a

Venn diagram “argument”). Recall that in order to prove two sets are equal, we need to show that

both subset containment arguments hold.

(1) We show: 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵. Let x ϵ 𝐴 ∪ 𝐵, then x is not in the union of 𝐴 and 𝐵 from the

definition of the completement of a set. Hence, x is not in 𝐴 and x is not in 𝐵. This indicates

that x ϵഥ𝐴 ∩ ത𝐵. Thus 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 follows, as we have shown that any arbitrary element

in 𝐴 ∪ 𝐵 is necessarily in ҧ𝐴 ∩ ത𝐵.

(2) Next, we show: ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵. Let x ϵ ҧ𝐴 ∩ ത𝐵, then x is not in 𝐴 and x is not in 𝐵. Thus, x is in the

completement of the union of A and B, i.e., x ϵ 𝐴 ∪ 𝐵. This proves ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵, as desired.

Since 𝐴 ∪ 𝐵 ⊆ ҧ𝐴 ∩ ത𝐵 and ҧ𝐴 ∩ ത𝐵 ⊆ 𝐴 ∪ 𝐵 both hold, we conclude that: 𝐴 ∪ 𝐵 = ҧ𝐴 ∩ ത𝐵.

QED (quod erat demonstrandum)

Proof Techniques: Direct Proof

Theorem: For every (simple) graph G, the sum of the degrees of all the nodes in G is an even number.

Pf. (Direct) Every edge is connected to two nodes; each edge contributes 1 to the degree of each

node to which it is connected. Therefore, each edge contributes 2 to the sum of the degrees of all

nodes. Consequently, if G contains e edges, then the sum of the degrees of all nodes of G is 2e,

which is an even number. QED

Corollary: We refer to an odd component of a graph G as a maximally connected component with an odd

number of vertices; similarly, we refer to an even component of a graph G as a maximally connected

component with an even number of vertices.

Corollary: Every graph has an odd number of odd components. Why?

Proof Techniques: Direct Proof

• Another standard proof technique is proof by contrapositive. When tasked with proving the

implication: 𝑃 ⟶ Q we can equivalently prove the contrapositive statement: ⌐Q ⟶ ⌐𝑃. Oftentimes the it

is easier to prove the contrapositive of a conditional statement in lieu of the original statement.

Claim: For any integer k, if 3k+1 is even, then k is odd.

• Notice that this statement is awkward to prove in its original form, because we’re trying to use

information about a derived quantity to prove something about a more basic one.

Pf. (Contrapositive) The contrapositive variant of the original conditional statement reads: if k is even,

then 3k+1 is odd.

Assume that 𝑘 is even, so 𝑘 = 2𝑗 for some 𝑗 ∈ ℤ. Now consider the expression:

3𝑘 + 1 = 3 2𝑗 + 1 = 2 3𝑗 + 1

Any integer of the form 2𝑚 + 1 with 𝑚 ∈ ℤ is necessarily odd, so 3𝑘 + 1 is odd. QED

Proof Techniques: Contrapositive

• Proof by cases is an essential proof method that entails partitioning the problem space into (natural)

cases; we show that the required conclusion holds in all cases.

Theorem: If 𝑞 is not divisible by 3, then 𝑞2 ≡ 1 𝑚𝑜𝑑 3 .

• We consider the problem with respect to modulus 3. If 𝑞 is not divisible by 3 , then either: 𝑞 ≡
1 𝑚𝑜𝑑 3 𝑜𝑟 𝑞 ≡ 2 𝑚𝑜𝑑 3 ; our proof accounts for these two cases.

Pf. (Cases) Assume that 𝑞 is not divisible by 3, so either: 𝑞 ≡ 1 𝑚𝑜𝑑 3 𝑜𝑟 𝑞 ≡ 2 𝑚𝑜𝑑 3 .

Case 1: Assume that 𝑞 ≡ 1 𝑚𝑜𝑑 3 , so 𝑞 = 3𝑗 + 1 for some 𝑗 ∈ ℤ. Then:

𝑞2 = 3𝑗 + 1 2 = 9𝑗2 + 6𝑗 + 1 = 3 3𝑗2 + 2𝑗 + 1 ≡ 1 𝑚𝑜𝑑 3

Case 2: Assume that 𝑞 ≡ 2 𝑚𝑜𝑑 3 , so 𝑞 = 3𝑗 + 2 for some 𝑗 ∈ ℤ. Then:

𝑞2 = 3𝑗 + 2 2 = 9𝑗2 + 12𝑗 + 4 = 3 3𝑗2 + 4𝑗 + 1 + 1 ≡ 1 𝑚𝑜𝑑 3

QED

Proof Techniques: Cases

• Proof by contradiction is among the most powerful elementary proof techniques – so much so that

every mathematician and computer science student should be conversant with it.

• The general construct for proof by contradiction is as follows: to show P ⟶ 𝑄 we proceeed in two steps:

(1) First, “suppose not” and assume ⌐𝑷; (2) Next, from ⌐𝑷 derive an (inexorable) contradiction (e.g.

Q and ⌐Q).

Proof Techniques: Contradiction

Theorem: 2 ∉ ℚ (Euclid).

Pf. (Contradiction) Suppose not, and suppose instead that 2 ∊ ℚ ; this implies that 2 =
𝑎

𝑏
for 𝑎, 𝑏 ∊ ℤ

with 𝑏≠ 0.

Note that since all rational numbers admit of a “most simplified form”, we can furthermore assume,

without loss of generality (WLOG), that 𝐺𝐶𝐷 𝑎, 𝑏 = 1 (i.e. 𝑎 and 𝑏 are relatively prime). Next, consider

the following argument:

Observe that the left-hand side of the last line represents an even number; ergo, 𝑎2 is even, ergo 𝑎 is even

(why?). But if 𝑎 is even and 𝑎2 = 2𝑏2, then 4| 2𝑏2 which implies that 2| 𝑏2 (why?), indicating 𝑏 is also

even. Thus, 𝐺𝐶𝐷 𝑎, 𝑏 > 1, a contradiction. It therefore follows that 2 ∉ ℚ.

QED

Proof Techniques: Contradiction

• Recall that a prime number 𝑝 > 1 is an integer whose only positive factors are 1 and itself. All integers

beginning with 2 are either prime or composite (meaning they consist of a product of only primes); the

Fundamental Theorem of Arithmetic (FTA) states furthermore that all such integers greater than 1

admit of a unique prime factorization.

Theorem: There exists an infinite number of primes. (Euclid)

Pf. (Contradiction) Suppose not and so we assume there are only a finite number of primes. If this is the

case, then we can list and order (in ascending fashion) the set of all primes P:

𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑁

Now consider the integer: 𝑝∗ = 𝑝1 · 𝑝2 ··· 𝑝𝑁 + 1. Due to the FTA, because 𝑝∗ > 1, either 𝑝∗ is prime or

it is compositive (but not both and not neither). We show that 𝒑∗ is neither – a contradiction (of the

FTA).

Continued…

Proof Techniques: Contradiction

Theorem: There exists an infinite number of primes. (Euclid)

Pf. (Contradiction) Suppose not and so we assume there are only a finite number of primes. If this is the

case, then we can list and order (in ascending fashion) the set of all primes P:

𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑁

Now consider the integer: 𝑝∗ = 𝑝1 · 𝑝2 ··· 𝑝𝑁 + 1. Due to the FTA, because 𝑝∗ > 1, either 𝑝∗ is prime or

it is compositive (but not both and not neither). We show that 𝒑∗ is neither – a contradiction (of the

FTA).

Case #1: Assume that 𝑝∗ is prime. Upon reflection, this cannot be the case, because 𝑝∗ > 𝑝𝑁 where 𝑝𝑁
is the largest extant prime! (What happens if we revise P so that 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑁 , 𝑝

∗ ?)

Therefore, 𝑝∗ cannot be prime.

Continued…

Proof Techniques: Contradiction

Theorem: There exists an infinite number of primes. (Euclid)

Pf. (Contradiction) Suppose not and so we assume there are only a finite number of primes. If this is the

case, then we can list and order (in ascending fashion) the set of all primes P:

𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑁

Now consider the integer: 𝑝∗ = 𝑝1 · 𝑝2 ··· 𝑝𝑁 + 1. Due to the FTA, because 𝑝∗ > 1, either 𝑝∗ is prime or

it is compositive (but not both and not neither). We show that 𝒑∗ is neither – a contradiction (of the

FTA).

Case #2: Assume that 𝑝∗ is composite. Upon reflection, this also cannot be the case, because, by

construction, 𝑝∗ is not divisible by any prime number (when dividing by a prime it always returns

remainder 1), and thus 𝑝∗ does not admit of a prime factorization. This result contradicts the FTA, so 𝑝∗

is neither composite nor prime!

Conclusion: In either case, when we assume the set of primes is finite we reach a contradiction. It

therefore follows that there exists an infinite number of primes.

QED

Proof Techniques: Contradiction

• Like proof by contradiction, proof by induction is an invaluable proof technique, particularly in

computer science. Proof by induction is generally applicable in cases where we wish to show that all

elements of an infinite set (e.g. ℤ, ℕ) have a specified property.

• Proof by induction works as follows: suppose we wish prove a property, call it P, to be true for every

natural number k ∊ 1,2,3, … . Concretely, our goal is to prove P 𝑘 is true for all k, i.e. we show P 1 is

true, as well as P 2 , P 3 , P 4 , and so on.

The general flow of proof by induction is as follows:

(1) Basis Step: Prove that P 1 is true.

(2) Induction Step: For each k ≥ 1, assume that P 𝑘 holds and use this assumption to show that

P 𝑘 + 1 is also true. (we refer to the assumption that P 𝑘 is true as the inductive hypothesis).

• Why does induction work? Think of an infinite set of dominos labeled 1,2,3, … . In (1) we show that

the first domino “falls” (i.e. P(1) is true); in (2) we show that whenever a domino falls, the next domino

adjected to it also falls. In this way all the dominos fall!

Proof Techniques: Induction

Theorem: For all 𝑛 ≥ 1, σ𝑖=1
𝑛 𝑖 =

𝑛 𝑛+1

2
.

• Consider the formula: P 𝑘 ↔ σ𝑖=1
𝑘 𝑖 =

𝑘 𝑘+1

2
, so that P 𝑘 is true when the formula holds for 𝑘.

Pf. (Induction)

(1) Basis Step: P 1 ↔ σ𝑖=1
1 𝑖 = 1 =

1 1+1

2
, so P 1 holds.

(2) Induction Step: Assume P 𝑘 is true for some arbitrary k ∊ 1,2,3, … . Now we must show that

P 𝑘 + 1 is also true.

We begin with the left-hand side of the formula P 𝑘 + 1 :

෍

𝑖=1

𝑘+1

𝑖 = 1 + 2 +⋯+ 𝑘 + 𝑘 + 1

=
𝑘 𝑘+1

2
+ 𝑘 + 1 (by the inductive hypothesis)

=
𝑘 𝑘+1

2
+ 𝑘 + 1 =

𝑘 𝑘+1

2
+
2 𝑘+1

2
=

𝑘+1 𝑘+2

2
↔ P 𝑘 + 1 is true.

QED

Proof Techniques: Induction

Theorem: 5| 7𝑛 − 2𝑛 ∀ 𝑛 ≥ 0.

• Consider the formula: P 𝑘 ↔ 5| 7𝑘 − 2𝑘 , so that P 𝑘 is true when the formula holds for 𝑘.

Pf. (Induction)

(1) Basis Step: P 0 ↔ 5| 70 − 20 , and 5|0, since 0 = 5 · 0.

(2) Induction Step: Assume P 𝑘 is true for some arbitrary k ∊ 0,1,2, … . Now we must show that

P 𝑘 + 1 is also true.

The inductive hypothesis assumes that P 𝑘 is true, which implies that 5| 7𝑘 − 2𝑘 so 7𝑘 − 2𝑘 = 5𝑗 for

some k ∊ ℤ.

Next, we consider the expression 7𝑘+1 − 2𝑘+1; if we can show this expression is divisible by 5 under the

assumption that P 𝑘 is true, we are done.

Notice that: 7𝑘+1 − 2𝑘+1 = 7 · 7𝑘 − 2 · 2𝑘

= 7 · 7𝑘 + 5 · 2𝑘 − 7 · 2𝑘

= 7 7𝑘 − 2𝑘 + 5 · 2𝑘 = 7 5𝑗 + 5 · 2𝑘 (by the inductive hypothesis)

= 5 7𝑗 + 2𝑘 ↔ P 𝑘 + 1 is true.

QED

*Bonus problem: Prove that the sum of the interior angels of an n-sided polygon equals 180 n − 2 ∀ 𝑛 ≥ 3.

Proof Techniques: Induction

• At the end of the 19th century, the German mathematician Gregor Cantor developed

several remarkable results regarding infinite sets which shook the foundation of

the discipline and had a subsequent impact upon both Gödel and Turing – and

the theory of computation more generally. In particular, Cantor demonstrated that

there exist infinite degrees of infinity!

• Cantor began by investigating the cardinality of infinite sets (following from Galileo’s own musings).

• We say that two sets have the same cardinality (i.e. they are the same “size”) iff there exists a

bijection between them.

• For finite sets, nothing here is remarkable; for example 1,2,3 = 𝑎, 𝑏, 𝑐 , and one possible bijection

between these sets is: 1 ↔ 𝑎, 2 ↔ 𝑏, 3 ↔ 𝑐.

Cantor’s Methods

• We say that two sets have the same cardinality (i.e. they are the same “size” or “equinumerous”)

iff there exists a bijection between them. Notice that cardinality defines an equivalence relation over

sets.

• The case is, however, less straightforward and intuitive for infinite sets. First, notice the self-evident

assertion that if A and 𝐵 are finite sets with A ⊊ 𝐵, then 𝐴 < 𝐵 . For infinite sets A and 𝐵 the claim is

weaker, namely: if A ⊊ 𝐵 then 𝐴 ≤ 𝐵 .

• Now define 2ℤ as the set of all even integers, then 2ℤ is a proper subset of ℤ (i.e., 2ℤ ⊊ ℤ) but as

Cantor showed, 2ℤ < ℤ , because one can define the bijection f: ℤ ⟶ 2ℤ, f 𝑖 = 2𝑖 ∀𝑖 ∊ ℤ.

• Far from being an anomalous example, Cantor in fact demonstrated that this property was a defining

feature of all infinite sets: namely, every infinite set contains a proper subset (also infinite) such that

the subset has the same cardinality of the superset.

• Following this reasoning and proof technique, one can readily show: ℕ = 2ℕ = ℤ .

Cantor’s Methods

• Following this reasoning and proof technique, one can readily show: ℕ = 2ℕ = ℤ .

• Recalling that ℕ ⊊ ℤ ⊊ ℚ, it is natural to wonder whether ℤ = ℚ . The answer is in fact yes.

Theorem. ℕ = ℚ+ , whereℚ+ denotes the set of non-negative rationals.

Pf. We directly construct a bijection between the two sets to prove that they are equinumerous.

Define f: ℚ+ ⟶ ℕ, with f 𝑚/𝑛 = 2𝑚3𝑛 (you should be able to prove that this is a bijection).

QED

• From here, it is not difficult to show that ℚ+ = ℚ , and thus: ℤ = ℚ by the transitivity of the

cardinality equivalence relation.

Cantor’s Methods

• Recapping, we have shown that ℕ ⊊ ℤ ⊊ ℚ ⊊ ℝ, and ℕ = ℤ = ℚ . Cantor next wondered whether

all infinite sets are equinumerous.

• More specifically, does ℚ = ℝ ? Remarkably, the answer is no!

• Before proving the extraordinary result ℚ < ℝ , let’s first address some of the remarkable quirks

surrounding the “algebra of infinities.”

Cantor’s Methods

• We say that a set is countable if it is either finite or is equinumerous with ℕ. Symbolically we denote the

uncountably infinite quantity ℵ0 (pronounced: “aleph-naught” or “aleph-zero”, after aleph, the Hebrew

letter). Thus: ℕ = ℤ = ℚ = ℵ0.

• Observe that if we denote the even natural as 2ℕ and the odd naturals as 𝑂, since 2ℕ = 𝑂 = ℤ
(why?) and 2ℕ ∪ 𝑂 = ℤ, it follows that ℵ0 + ℵ0 = ℵ0 -- a strange result indeed.

• In fact, one can show, by extension that: ℵ0 +⋯+ ℵ0 = ℵ0; moreover, since ℚ = ℕ · ℕ , we can also

conclude that ℵ0
2 = ℵ0, astonishingly, in general we have: ℵ0

𝑛 = ℵ0 ∀𝑛 ∊ ℕ.

• The seemingly bizarre nature of this “algebra of infinites” imparted Cantor and his theories a dubious

reputation during his lifetime; however, today Cantor’s theories are considered some of the most profound

and beautiful results in modern mathematics. Notably, the importance of these results appreciated

subsequently by both Gödel or Turing.

Cantor’s Methods

• We now show that other orders of infinity exist, and that, in particular: ℚ < ℝ .

• To prove this claim we utilize Cantor’s famous diagonalization argument. We begin with the related

claim ℚ < (0,1) , which is to say that the cardinality of the open interval (0,1) is strictly larger than that

of the cardinality of ℚ (this proof is somewhat cleaner than the direct proof of ℚ < ℝ).

Theorem. ℚ < (0,1)

Pf. (By contradiction, using diagonalization). Suppose not, and suppose instead that ℚ = (0,1) , which is

to say we assume that (0,1) is countable. If (0,1) is countable, then we may enumerate its members:

𝑟1, 𝑟2, 𝑟3… , .

Each of the numbers 𝑟𝑖 can be written as a decimal. We will use the following notational convention for

these decimals:

𝑟1 = 0. 𝑎11𝑎12𝑎13…
𝑟2 = 0. 𝑎21𝑎22𝑎23…
𝑟3 = 0. 𝑎31𝑎32𝑎33…

and so on.

Cantor’s Methods: Diagonalization

Theorem. ℚ < (0,1)

Pf. (By contradiction, using diagonalization). Suppose not, and suppose instead that ℚ = (0,1) , which is

to say we assume that (0,1) is countable. If (0,1) is countable, then we may enumerate its members:

𝑟1, 𝑟2, 𝑟3… , .

Each of the numbers 𝑟𝑖 can be written as a decimal. We will use the following notational convention for

these decimals:

𝑟1 = 0. 𝑎11𝑎12𝑎13…
𝑟2 = 0. 𝑎21𝑎22𝑎23…
𝑟3 = 0. 𝑎31𝑎32𝑎33…

and so on.

Writing this in a vertical list gives:

𝑟1 = 0. 𝒂𝟏𝟏𝑎12𝑎13…
𝑟2 = 0. 𝑎21𝒂𝟐𝟐𝑎23…
𝑟3 = 0. 𝑎31𝑎32𝒂𝟑𝟑…

⋮

𝑟𝑖 = 0. 𝑎𝑖1𝑎𝑖2𝑎𝑖3… 𝒂𝒊𝒊…
⋮

Cantor’s Methods : Diagonalization

Theorem. ℚ < (0,1)

Pf. (By contradiction, using diagonalization). Suppose not, and suppose instead that ℚ = (0,1) , which is

to say we assume that (0,1) is countable. If (0,1) is countable, then we may enumerate its members:

𝑟1, 𝑟2, 𝑟3… , .

𝑟1 = 0. 𝒂𝟏𝟏𝑎12𝑎13…
𝑟2 = 0. 𝑎21𝒂𝟐𝟐𝑎23…
𝑟3 = 0. 𝑎31𝑎32𝒂𝟑𝟑…

⋮

𝑟𝑖 = 0. 𝑎𝑖1𝑎𝑖2𝑎𝑖3… 𝒂𝒊𝒊…
⋮

Now construct a real number b = 0. 𝑏1𝑏2𝑏𝑖3… 𝑏𝑖 in the following way. Choose 𝑏1 to be 4 unless 𝑎11 = 4
in which case let 𝑏1 = 3. Similarly, choose 𝑏2 to be 4 unless 𝑎22 = 4 in which case let 𝑏2 = 3, continue in

this fashion. The idea is that we look at the diagonal elements in the list and choose 𝑏𝑖 in such a way that it

differs from the ith diagonal digit.

Notice that b ∊ 0,1 ; we also claim that b is not a member of the table from above. Why?

Cantor’s Methods : Diagonalization

Theorem. ℚ < (0,1)

Pf. (By contradiction, using diagonalization). Suppose not, and suppose instead that ℚ = (0,1) , which is

to say we assume that (0,1) is countable. If (0,1) is countable, then we may enumerate its members:

𝑟1, 𝑟2, 𝑟3… , .

𝑟1 = 0. 𝒂𝟏𝟏𝑎12𝑎13…
𝑟2 = 0. 𝑎21𝒂𝟐𝟐𝑎23…
𝑟3 = 0. 𝑎31𝑎32𝒂𝟑𝟑…

⋮

𝑟𝑖 = 0. 𝑎𝑖1𝑎𝑖2𝑎𝑖3… 𝒂𝒊𝒊…
⋮

Now construct a real number b = 0. 𝑏1𝑏2𝑏𝑖3… 𝑏𝑖 in the following way. Choose 𝑏1 to be 4 unless 𝑎11 = 4
in which case let 𝑏1 = 3. Similarly, choose 𝑏2 to be 4 unless 𝑎22 = 4 in which case let 𝑏2 = 3, continue in

this fashion. The idea is that we look at the diagonal elements in the list and choose 𝑏𝑖 in such a way that it

differs from the ith diagonal digit.

Notice that b ∊ 0,1 ; moreover, b is not on the above (why can’t we simply add it to the list?). This is a

contradiction, since we claimed that 0,1 is countable (and thus enumerable). So no bijection exists

between a countable set and 0,1 , so ℚ < (0,1) .

QED

Cantor’s Methods : Diagonalization

• Now that we have proven ℚ < (0,1) , we want to show the “big reveal”, i.e. ℚ < ℝ .

• This should seem intuitive given since (0,1) ⊊ ℝ. Formally, one can show that (0,1) = ℝ by

constructing an appropriate bijection. Thus, ℚ < ℝ holds by transitivity of the cardinality equivalence

relation.

• Because ℚ < ℝ , we have that ℵ0< ℝ , meaning that we have discovered an additional order of

infinity!

• Cantor’s subsequent investigation (which he never resolved – and which was identified as one of Hilbert’s

millennium problems) was whether there exists a “next” magnitude of infinity, call it ℵ1, where ℵ0< ℵ1< ℝ
(note the strict inequalities).

Cantor’s Methods

• The famous Continuum Hypothesis (1878) asks whether any such cardinality ℵ1, exists where:

ℵ0< ℵ1< ℝ

• In 1940, Gödel proved that the negation of the continuum hypothesis could not be proved in standard set

theory; in 1963 Paul Cohen established the unprovability o the non-existence of such a set. In conclusion,

the continuum hypothesis is undecidable.

• Finally, now that we have discovered a new magnitude of infinity, it is natural to wonder whether we have

stumbled upon something “special” – are these the only two infinities? Are there more? Is there a finite

number – or perhaps an infinite number of infinities?! As we now argue, there are an infinite number of

orders of infinity (what a time to be alive!).

Cantor’s Methods

• One of Cantor’s additional celebrated results is the following: For any set 𝑆, 𝑆 < ℙ 𝑆 ,where ℙ ·
denotes the power set.

• We omit the proof for brevity (it is not difficult). Observe that the result is unremarkable when 𝑆 is finite,

since 𝑆 ⊊ ℙ 𝑆 and 𝑆 < ℙ 𝑆 , automatically.

• However, recall that in general for 𝑆 infinite, 𝑆 ⊊ A need not imply 𝑆 < 𝐴 (consider 𝑆 = ℕ and

𝐴 = ℚ as a counter-example).

• Now we see the significance of this result. It says that for any set, we can always find one with a strictly

larger cardinality – just construct the power set of this set.

• It necessarily follows that there exists an infinite number of magnitudes of infinity! Why? Consider ℚ <

ℝ < ℙ ℝ < ℙ ℙ ℝ < ℙ ℙ ℙ ℝ < ⋯

QED

Cantor’s Methods

Fin

