
Mathematics Preliminaries for Machine Learning 

CS 445/545 
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• Linear Algebra Overview

• Statistics/Probability Overview



Linear Algebra: Vectors & Matrices
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Vector & Matrix Operations

• Matrix multiplication involves a sequence of  dot products; element Cij in 

the resultant matrix is equal to the dot product of  row i (from the left matrix) 

and column j (from the right matrix).
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Vector & Matrix Operations

• Matrix multiplication is associative: A(BC)= (AB)C  (always holds),
but not commutative: AB ≠ BA  (in general).
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• A matrix is called “symmetric” if: AT=A.



Vector Norms
• Norms convey the notion of  the “magnitude” (i.e. size) of  a vector; note that the 

equivalence (in magnitude) of  two vectors is relative to the choice of  norm. 

• There are many types – even “families” – of  norms relevant to ML/data science. 

Here are several of  the most commonly used norms in ML: 

(1) L2 norm (i.e. “Euclidean norm”)

(2) L1 norm (i.e. Manhattan distance) 

(3) ∞ norm 

*For an ML practitioner, the “choice” of  a norm is oftentimes a crucial part of  feature engineering and the ML problem 

formulation process itself; one can think of  the different norm choices as striking a balance between “precision” and 

computational overhead. 

*There exist equivalent norms applied to matrices; the above norms are examples from the family of  p-norms. 
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Dot Product
• The dot product has important geometric properties that are useful in ML.

(*) The dot product can be defined equivalently:

From this equivalent definition of  the dot product, we can show that the dot product 

quantifies the “similarity” between two vectors. Consider (3) cases: 

(i) Vectors x and y are “out of  alignment” and meet at a 90 degree angle; in this       

case: 

(ii) Vectors x and y are “perfectly aligned” (i.e. parallel to one another): 

(iii) Vectors x and y are “oppositely aligned (i.e. they are anti-parallel):
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Special Matrices
• The identity matrix I is a square (nxn matrix); the identity matrix multiplied by any 

matrix A (appropriately shaped) results in the matrix A:

• A matrix A is said to be symmetric if  it equals its transpose:

• For a diagonal matrix, all off-diagonal entries are zero (note that diagonal entries 

are permitted to be zero). 
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Special Matrices
• An upper-triangular matrix has zero elements below the main diagonal. Note that 

Gaussian Elimination (from elementary linear algebra) yields an upper-triangular 

matrix. 

• A lower-triangular matrix has zero elements above the main diagonal. 

• An orthogonal matrix is a matrix with orthonormal rows and columns; equivalently, 

the inverse of  an orthogonal matrix is its transpose. 
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Special Matrices
• A square matrix A is Positive Definite if:

• Analogously, a square matrix A is Positive semi-Definite if  (e.g. covariance 

matrix): 

• We say that the matrix Amxn is invertible (i.e. non-singular) if  there exists A-1
nxm , 

where:

Properties: 
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Linear Systems
• Commonly we encode, and subsequently solve systems of  linear equations :

• When the coefficient matrix A is non-singular, the linear system gives rise to a unique 

solution: 

* Note that matrix inversion requires roughly on the order of  O(n3) arithmetic 

operations. 

11 1 1 1

21 1 2 2

Canonical Matrix Form

1 1

n n

n n

m mn n m

a x a x b

a x a x b
A

a x a x b

+ =

+ =
→ =

+ =

x b

1A A−= → =x b x b



Matrix Factorizations
• Matrix factorizations are immensely useful for identifying an underlying, inherent 

structure in a matrix (i.e. data). 

Here are several important examples: 

LU Factorization

• This factorization encodes the result of  the Gaussian Elimination (GE) procedure 

(note that not all matrices admit of  an LU factorization). L: denotes a lower-triangular 

matrix of  “multipliers” used in GE. U denotes an upper-triangular (i.e. echelon form) 

matrix resulting from GE. 

PALU Factorization (Permuted LU factorization)

• This technique is similar to LU Factorization, except that we perform a pivoting 

operation first (i.e. permute the rows of  A via a permutation matrix, P). LU 

factorization is subsequently performed; all matrices admit of  such a factorization.

A LU=

PA LU=



Matrix Factorizations

Here are several important examples: 

QR Factorization

• Q is an orthogonal matrix and R is upper-triangular -- commonly used for solving both 

regression problems and linear dynamical systems. 

Eigendecomposition

• This is one of  the most useful and commonly-used of  all matrix factorizations. The 

primary use of  an eigendecomposition in ML is to perform dimensionality reduction; as such, 

this technique is closely related to PCA (principal component analysis) and SVD (singular value 

decomposition – see below) methods; Σ is a diagonal matrix consisting of  the eigenvalues of  

A, and V is the matrix of  corresponding eigenvectors. 
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Matrix Factorizations

Here are several important examples: 

Cholesky Factorization

• L is lower-triangular; Cholesky can be used to numerically solve linear systems; every 

positive-definite matrix admits of  a Cholesky factorization. 

SVD (Singular Value  Decomposition) 

• SVD is one of  the most essential matrix factorizations for applications of  ML. U and V 

are orthogonal matrices, and Σ is a diagonal matrix containing the “singular values” (i.e. the 

eigenvalues of  ATA. SVD has many applications (an orthogonal matrix denotes the matrix 

of  eigenvectors of  ATA, including dimensionality reduction and compression. All matrices 

admit of  a singular value decomposition.
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Determinants 
• Geometrically, the determinant of  a square matrix A (written |A|) quantifies the unit increase in 

volume of  the linear transformation defined by A (note that matrix multiplication defines a linear 

transformation). 

Determinants can be computed through recursion; the general formula for a determinant is:

Some Properties of  Determinants:
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Eigenvalues 
• The eigenvalues λ and eigenvectors v of  a matrix A satisfy: 

• Which means that the eigenvectors of  a matrix A are precisely the vectors for which 

multiplication by A is tantamount to scalar multiplication by λ. 

• Determining the exact values of  the set of  eigenvalues for a matrix Anxn is requires solving the 

so-called characteristic equation: |A- λ I|=0, which is an n-degree polynomial equation in the 

variable λ. 

( )     0A v= v v



Linear Independence, Span and Basis

• A set of  vectors is called linearly independent if the set contains “no redundancy”; formally:

• The span of  a set is defined as the set of  all linear combinations of  the set of  vectors. 

• A basis is a set of  linearly independent vectors that spans the parent vector space.
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The Four Fundamental Subspaces
• The Four Fundamental subspaces of  a matrix Amxn:

1. (Column Space) Col(A): the span of  the column vectors of  A.

2. (Null Space) Null(A): the set of  all vectors that satisfy Ax=0.

3. (Row Space) Row(A): the span of  the row vectors of  A.

4. (Null Space of  AT) Null(AT): the set of  all vectors that satisfy ATx=0.



Overview of  Statistics/Probability
• We use statistics and probability to quantify and summarize our beliefs about a “state 

of  the world” in the face of  incomplete or partial knowledge. 

• Denote a random event E; the sample space S consists of  the set of  all possible outcomes 

associated with E (e.g. if  E=“coin flip”, S={H,T}). 

• A random variable (e.g. X, Y) is a variable that is assigned a number based on the outcome 

of  the random event E.

• Random variables are either Discrete (e.g., 0/1) or Continuous (e.g., height, time). 



Overview of  Statistics/Probability
Probability Distributions

• A probability distribution summarizes our total knowledge about the random event E, 

via the random variable X.

• For a discrete random variable, the probability distribution of  X is called a probability 

mass function (pmf); a pmf satisfies the following properties, with |S|=k: 

• Similarly, for a continuous random variable, the probability distribution of  X is called a 

probability density function (pdf); a pdf  satisfies the following properties, with |S|=∞: 
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Overview of  Statistics/Probability
Probability Distributions

• A cumulative density function (cdf) is defined as the cumulative probability up to a given

value of a random variable:

• Percentiles and quartiles can be defined in a natural way with respect to a cdf:

• Note that due to the Fundamental Theorem of  Calculus, it follows that: 
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Overview of  Statistics/Probability
Properties of  Probability Distributions

• Two random events E1 and E2 are disjoint if: S1∩S2 = Ø.

• If  two events E1 and E2 are disjoint, then: 

• More generally, the addition rule of  probability states, that for any two events E1 and E2:

( ) ( ) ( )1 2 1 2P E E P E P E = +

( ) ( ) ( ) ( )1 2 1 2 1 2P E E P E P E P E E = + − 



Overview of  Statistics/Probability
Conditional Probability

• Def. Conditional Probability:

• From this definition, we can derive the multiplication rule of  probability: 

• Equivalently, 

( )
( )

( )
probability of
"A given B"

|
P A B

P A B
P B


=

( ) ( ) ( )|P A B P A B P B =

( ) ( ) ( )|P A B P B A P A =



Overview of  Statistics/Probability
Independence

• We say that events A & B are independent if  the outcome of  A has no bearing on B (and 

vice versa); more formally the joint probability distribution p(A,B) factors. 

• Def. A & B are independent if: 

• Equivalently, if  A & B are independent, it also follows that: 

Thus, in summary, if  A & B are independent: 

*Independence is commonly denoted: 

( ) ( ) ( )P A B P A P B =

( ) ( ) ( ) ( )|         |P A B P A P B A P B= =

( ) ( ) ( ) ( ) ( )|P A B A B P B P A P B = =

A B⊥



Overview of  Statistics/Probability

• Two major theorems in elementary statistics: (1) the Law of  Large Numbers and (2) the 

Central Limit Theorem. 

• The Law of  Large Numbers states (paraphrasing): Experimental (i.e. empirical) probabilities 

converge to their associate theoretical probability as the number of  trials tends to infinity. 



Overview of  Statistics/Probability
The Central Limit Theorem (a conceptual pillar of  statistics)

In words: given a sufficiently large sample size from a population (with a finite level of  variance), the mean of  

all samples from the same population will be approximately equal to the mean of  the population. 

Furthermore, all of the samples will follow an approximate normal distribution pattern, with all variances 

being approximately equal to the variance of  the population divided by each sample's size.

In a picture: 

In a theorem: Suppose {X1,X2,…,} is a sequence of  I.I.D. random variables with E[Xi]=μ and Var[Xi]=σ2<∞   

Then as n approaches infinity, the random variable (1/n)(X1+…+Xn) converges to a normal N(0, σ2/n):
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Whatever the form of  the population distribution, the sampling distribution 

tends to a Gaussian, and its dispersion is given by the Central Limit Theorem.



Probability Distributions

• Here are some (but certainly not all) of  the essential probability distributions for ML and 

applied statistics: 

1-D Gaussian (i.e. Normal)

• When μ=0 and σ=1 (i.e. N(0,1)) we call this the standard Normal model. 



Probability Distributions

Multivariate Gaussian (i.e. MVN) 



Probability Distributions
Bernoulli & Binomial Distributions

• The Bernoulli distribution is a single variable, discrete distribution, describing a random 

variable with two discrete states (e.g. heads/tails for a single coin flip). The Bernoulli 

distribution forms the basis of  the Binomial distribution, which models repetitions of  

independent Bernoulli trials (N total).

Bernoulli pmf

Binomial pmf

• For example, with a biased coin (θ = 0.6), we have: 
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Summary Statistics for Random Variables
Expectation and Variance of  a Random Variable

• The Expected Value of  a random variable X summarizes the outcome: “if the trial were

executed once, on average, this is the numerical value we would expect for X”; E[X] 

accordingly computes the arithmetic mean of  a random variable, i.e. E[X]=μ. 

For example, to compute the expected number of  heads X in 10 flips of a fair coin 

(X~Binomial) we have: 
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Summary Statistics for Random Variables
Properties of  Expected Value and Variance 

• Expected Value is a linear operator (as are matrix multiplication, limits, differentiation and 

integration, among other common mathematical operators) -- meaning that it obeys the

following two linearity properties: 

The following corollary is also useful: 

Proof. 
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Covariance
• Covariance is a measure of  the linear relationship between two random variables, X and Y. 

If  Cov(X,Y) > 0, this indicates a positive linear relationship between the random variables 

(i.e. as X increases, Y increases; as X decreases, Y decreases); when Cov(X,Y) < 0 the

variables share a negative linear relationship; Cov(X,Y) = 0 indicates the absence of a linear 

relationship.  

Def.   

Lemma 

* Note that the converse of  the lemma above fails; in other words Cov(X,Y)=0 need not imply 

that X and Y are independent. 

( )  ( )  ( ),Cov X Y E X E Y X E Y = − − 

( )If ( . . if  and  are independent), then , 0X Y i e X Y Cov X Y⊥ =



Covariance
• The Covariance Matrix (Σ) for a set of  random variables {X1,…,XN} is defined as the 

matrix of  pairwise covariances: 

Def.  

Note that Σ is symmetric and positive semi-definite. The covariance matrix is used to 

parameterize the MVN (multivariate normal distribution); the covariance matrix can likewise 

be computed for a dataset. 
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Bayes’ Theorem
• Bayes’ Theorem is a vital (yet simple) conditional probability formula; today its use is 

omnipresent across ML.

Def.  

Derivation: 

• More importantly, Bayes’ Theorem can be generalized to encapsulate the whole of  the 

inductive element of  the scientific method. To this end, consider H (hypothesis) and D 

(data):

• In this case, Bayes’ Theorem yields a natural mechanism for updating our belief  about the 

world/the plausibility of  a hypothesis (H) given an observation (D). P(H|D) is referred to as 

the posterior probability of  H, P(H) is called the prior probability of  H, P(D|H) defines 

the likelihood of  the data, and P(D) is the data prior. 
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Bayesian and Frequentist Statistics
• There exist two general paradigms for modern statistics: the frequentist and Bayesian

approaches. 

Frequentists: Generally consider model parameters (θ) as fixed; data are drawn from some 

objective distribution, defined by θ. There exists various well-known pathologies associated 

with frequentism, including the “problem of  induction” (Hume), the Black Swan Paradox, 

limited exact solutions and a heavy reliance upon long-term frequencies. 

Bayesians: (Observed) data are fixed; data are observed from a realized sample; we encode 

prior beliefs, and parameters values are described probabilistically. 

• Frequentists use the Maximum Likelihood Estimate (MLE) for point estimates of  

parameters θ :

• Bayesians instead use the Maximum A Posterior (MAP) for parameter estimates:

( )ˆ arg max |MLE P D


 =

( ) ( ) ( )ˆ arg max | arg max |MAP P D P D P
 

   = =



(Very Brief) Information Theory
• The entropy of  a discrete random variable X (equivalently: the entropy of  the pmf

associated with X) is defined: 

• The differential entropy of  a continuous random variable is defined analogously:

• Entropy quantifies disorder/”surprise”; the Principle of  Insufficient Reasons (PIR) 

states (paraphrasing) that in the absence of  compelling evidence, one should adopt a 

maximum entropy probability distribution. The uniform distribution is a maximum 

entropy distribution; the Gaussian distribution is a likewise a maximum entropy 

distribution (up to second moments). Entropy is minimized (i.e. zero) for deterministic 

events, e.g. Dirac delta function. 
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S
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(Very Brief) Information Theory
Ex. The entropy of  a Bernoulli random variable X is given by: 

* Notice that entropy is maximized in this case when θ = 0.5, which corresponds with a 

binary uniform distribution; conversely, entropy is minimized when either θ = 0 or θ = 1, in

which case the even is deterministic.
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(Very Brief) Information Theory

• The Kullback-Leibler Divergence quantifies the difference between two probability

distributions, p(x) and q(x). 

Def. 

The Information Inequality states: 
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(Very Brief) Information Theory

*Recall that covariance/correlation are inherent measures of the linear relationship between

two random variables. Using KL-divergence, we can develop a more general notion of

independence, called mutual information. 

Def.

*From the information inequality, it follows that: 

Thus, MI can be seen as a more general measure of  statistical independence than covariance. 
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