A Brief Overview of General AI/ML Concepts



Al/ML Overview

What 1s Machine Learning?

— Detecting patterns and regularities with a good and generalizable
approximation (“model” or “hypothesis”).

— Execution of a computer program to optimize the parameters of
the model using training data or past experience.

— Automatically identifying patterns in data.
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A Small Subset of Machine Learning Applications

(*) Speech Recognition
(*) NLP (natural language processing); machine translation.
(*) Computer Vision

(*) Medical Diagnosis

(*) Autonomous Driving

, — e Big Data meets Machine Learning in the Car
(*) Statistical Arbitrage $300,000 B 1 i e word resited el pcepionct h
(*) Signal Processing E@%@

(*) Recommender Systems
(*) Fraud Detection
(*) Social Media

(*) Data Security

(*) Search

(*) A.I. & Robotics

(*) Genomics

(*) Computational Creativity
(*) Hi Scores



A Small Subset of Machine Learning Applications

https://www.youtube.com/watch?v=SCE-QeDfXtA



https://www.youtube.com/watch?v=SCE-QeDfXtA
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(2) General Classes of Problems in AT/ML.:
1. Supervised Learning
2. Unsupervised Learning

Supervised Learning:

Goal is to learn a mapping from inputs (X) to labels (Y): f: X ->Y
With supervised learning we are given labels:
D={(x,¥)} , where X, eR’

Commonly X denotes the design matrix (i.e. the matrix of data), where X is
of dimension 7 x d. R
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* Wheny € R (i.e. the label is a real-value) the problem type is known as
regression (this problem context 1s typically broader than say, /Znear
regression). B.g., predict expected income from education level.

* On the other hand, when Yy € {l, b, K} (i.e. the label is categorical) we say
that the problem type is classification. E.g., predict where image contains a
pedestrian (binary classification).

Classification Regression




Al/ML. Overview

* General goal in ML 1s to learn the “true” mapping f:

y=f(x)

* Usually, with real-world applications, we can at best approximate the true
mapping:

y = f(x) + &
irreducible

approximate o

map

* Why do we bother approximating / ? Two basic reasons: (1) Prediction; (2)
Inference.

N

* In general, we want: f ~ f so that our model makes reliable predictions
on all domain-related data.
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* We can quantify the proximity of our approximation f ~ f through the
use of a loss function.

* Two of the most common loss functions used across ML. are the 0-1 and
Quadratic Loss:

0-1 Loss (Binary Classification): L( f (x)’ f(x)) :{O If f (X) = +ff (X)

Quadratic Loss: L(f (X) f(X)) =( f (X)_ f (X))Z
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Machine Learning Workflow:
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1. Collect data: D={(x,y,)} ,, partition data into training and test sets:
D. cD,D._cD

train test

D. uD._=D,D._. nD_ =9

train test train test

2. 'Train model f (e.g. regression, NN) using D

train®
3. Evaluate model with loss function on D,

*Big Idea: The smaller the (total) loss on the test set, the better the model (ideally). We
use the results on the test set to approximate how well the model will generalize to new
data.
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* With unsupervised learning we are given data without labels.

* In this case we aim to discover “interesting structure” in the data; this is

sometimes called knowledge discovery or cluster analysis.

Original unclustered data Clustered data
I e e S

|
= =} - N w ~ %
T T T T T T T

2 I I ! L I I L I )
-3 -2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5 6
x, T

*Note: Reinforcement Learning offers a third problem class in AI/ML,
where an "agent“ learns how to act or behave when given occasional reward

or punishment signals (e.g. Atari w/Deep Q-1 earning (2014), AlphaGo (2010)).

Agent

Action Observation,
Reward

Environment
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Parametric Models vs non-Parametric Models:

* Parametric models consist of a finite (and fixed) number of parameters:
0=(4,...6,)

*Idea: With an ML algorithm, we learn to “tune” these parameters.

Ex. Fit a polynomial curve to a data set (e.g. using OLS).

Linear Regression: f (Xx) =6, +6,x

Quadratic Regression: f (x) =6, +6,x+6,x*

Polynomial Regression: f Z@x (d+1 parameters: 0 =(6,,...,6, ))
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Parametric Models vs non-Parametric Models:

* A non-parametric model contains either an infinite number of parameters

(e.g. Gaussian Process) or a variable number of parameters (e.g. kernel density
estimation) --typically the number of parameters scales with size of the data.

Histograms (left) and kernel density estimation (right) represent examples of
non-parametric models, as each model becomes more complex/refined as the
size of the dataset grows.
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Parametric Models vs non-Parametric Models:

*Note: If we use a model with a small number of parameters, it 1s usually easier to train
(requires less time and data). However, a low dimensional model might not be sufficiently
complex to capture all of the interesting and useful patterns in our data! (This
phenomenon is called underfitting)

e Conversely, a laroe dimensional/complex model requires more computation and time
Ys g p q p

on average; moreovet, an excessively complex model will be “over tuned” to the training
data — this is called overfitting.

Conclusion: There is “no free lunch” in M1
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Parametric Models vs non-Parametric Models:

* How do we know when we get it “right” with respect to fitting a model?
Unfortunately, there is no general-purpose answer — this is the nature of the “art” of ML.
In general, however, we can assess our model accuracy with a loss function:

Quadratic Loss: MSE :li(yi_f(xi))z

mean-squared n le
error

J/

5
over test data
n

0-1 Loss: lz L(yi, f(xi))

N3

counts # of "mistakes"

J/
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Parametric Models vs non-Parametric Models:

*Note: Unfortunately, having a low training error (e.g. MSE) does not guarantee low test

error in general.

* One common remedy for parametric models: train several models of varying
complexity (e.g. linear regression, quadratic, cubic regression), compute MSE for each test
set, choose the model with the lowest MSE.
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Bias-Variance Tradeoff:

* The “U-shape” phenomenon in the test MSE is indicative of two competing properties
of learned models: Bias and Variance.

Low-Dimensional (simple models): High Bias & Low Variance

High-Dimensional (complex/flexible models): Low Bias & High Variance

Total Error
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Bias-Variance Tradeoff:

* More concretely, the expected Test MSE with respect to the parameter estimate
can always be decomposed into the sum (2) fundamental quantities: Bias and Variance.

MSE(d) = E(( — 0)*) = E _(9 ~E(0) + E()) - 8)1
—E|(0-E®)" +2(0- E)EO) - 0) + (£60)-0)
_E (g E(f ) _ +2E[§—E(9)}(E{@)—a)]+E [(E(é)—aﬂ
_E (a Eé) +R(E(6) - 0)E _E:j [;;Ejﬁ')} [(E(é)_a)zl
_E (a E(6 ) +EM (é)—ﬁ')zl
ar(6) + Bias( b, 6)*

*From above, we see that the ideal model will simultaneously achieve low Variance and

low Bias.
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Unsupervised Learning:

* Suppose we have D = {(xi )}n

» with no class labels (i.e. no y values).

* We will use a clustering method to first cluster the data (let £ represent the number of
clusters), then classify a new datum based on a nearest centroid criterion — this algorithm
is called k-means.

34

. cluster
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*In this case, inference for a new datum x* is performed by identifying the cluster ¢ with
the minimum distance from the class centroid (w).

y* =argmin [x*—p.|
ceC
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Clustering Example
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Clustering Example
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Clustering Example
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MNIST Classification
* 00k training/10k test images
* LeCun, Bengio, ¢ al. (1998) used SVMs to get error rate of 0.8%.

* More recent research using CNNs (a type of neural network) yields
0.23% error.
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Logistic Regression:

* Logistic Regression is a standard parametric (binary) classification model in ML.

* Logistic regression makes use of a /gistic (1.e. sigmoid ¢(z)) function that is common to
many different ML models (in particular, sigmoids are often used as actzivation functions in

NNs).

10k
1
¢(z) = 14+e 2
= 0.5
0.0
-B -6 -4 —I2 0 2 4 6 8
gl X 0 L
In general, a multi-variate sigmoid function is defined: || 1ie ¥
input ~ model +€
datum parameters
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Logistic Regression:

pl vy | x, 0 |= Ber [y|sigm(0Tx)J, ye{0,1}

binary iNPUt  model Bernoulli

il sigmoid
class datum  parameters

* Steps to train and evaluate a logistic regression model:
1. Using training data, “tune” model parameters: @ = <6)1 - 9N>

L
2. Inference (1): Pass test datum x* through sigmoid ¢(X* ) 9) = Lo ™
w©
3. Inference (11): Apply a decision rule (i.e. threshold):
4 / Valua rounded off
T L y(x) =10 p(y=1]x+0)205

Probability<0.50
Value rounded off to




The Curse of Dimensionality:

the dimension increases.

Al/ML Overview

In ML we are faced with a fundamental dilemma: to maintain a given
model accuracy in higher dimensions we need a huge amount of datal

An exponential increase in data required to densely populate space as

Points are equally far apart in high dimensional space (this 1s countet-
intuitive).

Representation of 10% sample probability space

(i) 2-D

-
T R

(i)3-D

The Number of Points Would Need to Increase Exponentially

to Maintain a Given Accuracy.

10" samples would be required for a n-dimension problem.
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Confusion Matrix, ROC curves, etc.:

* A Confusion Matrix is a table that is often used to describe the performance of a

classification model (or “classifier”) on a set of test data for which the true values are
known.
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Gradient Descent (the workhorse of ML):

Initial

Weight ,'
Cost I
I
I
l
Incremental

Step \
I
]
I
q
1
]
l

/ Minimum Cost
Derivative of Cost

04 >

Weight

Gradient

C i 2 - | £ - 55 0 1
0, | N
On+1 zen — 77 VF (O )
General formula for Gradient Descent: model parameter “learning  gradient of
estimate rate” oss function

Idea: We incrementally update the estimate of our model parameters by “walking” downhill in the
parameter space.

* The step-size of the parameter updates is modulated by the learning rate parameter (1); a large
value for 7 can lead to a faster convergence of the model parameters — however, we then risk settling
into a local minimum. Ideally v should be set to balance speed of convergence with achieving a
satisfactory approximation of the global minimum of the loss function (F).






