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GAN Applications:
Google DeepDream

*Technically not using a GAN, bust still fundamentally uses a CNN as a generative
model.

https://www.youtube.com/watch?v=sh-MQboWJug



https://www.youtube.com/watch?v=sh-MQboWJug

GAN Applications:
Image/Video Upsamplin

Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial
Network

Christian Ledig, Lucas Theis, Ferenc Huszdr, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi
Twitter

{cledig, ltheis, fhuszar, jcaballero, aacostadiaz, aaitken,atejani, jtotz, zehanw, wshi}@twitter.com

Abstract

Despite the breakthroughs in accuracy and speed of
single image super-resolution using faster and deeper con-
volutional neural networks, one central problem remains
largely unsolved: how do we recover the finer texture details
when we super-resolve at large upscaling factors? The
behavior of optimization-based sup lution methods is
principally driven by the choice of the objective function.
Recent work has largely focused on minimizing the mean
squared reconstruction error. The resulting estimates have
high peak signal-to-noise ratios, but they are often lacking
high-frequency details and are perceptually unsatisfying in
the sense that they fail to match the fidelity expected at
the higher resolution. In this paper, we present SRGAN,
a generative adversarial network (GAN) for image super-

(SR). To our knowledge, it is the first k
capable of inferring photo-realistic natural images for 4x
upscaling factors. To achieve this, we propose a perceptual
loss function which consists of an adversarial loss and a
content loss. The adversarial loss pushes our solution to
the natural image manifold using a discriminator network
that is trained to differentiate between the super-resolved
images and original photo-reali:

2100 0 romtont lnce matiuatad bnin.

*Teco Gan:
https://www.youtube.com/watch?v=pZ XF Xtfd-Ak&t=45s

1. Introduction

The highly challenging task of estimating a high-
resolution (HR) image from its low-resolution (LR)
counterpart is referred to as super-resolution (SR). SR
received substantial attention from within the computer
vision research community and has a wide range of
applications [63, 71, 43].

4x SRGAN (proposed)

original

Figure 1: Super-resolved image (left) is almost indistin-
guishable from original (right). [4x upscaling]

The ill-posed nature of the underdetermined SR problem
is particularly pronounced for high upscaling factors, for
which texture detail in the reconstructed SR images is
typically absent. The optimization target of supervised
SR algorithms is commonly the minimization of the mean

SRGAN
(21.15dB/0.6868)
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LEARNING TEMPORAL COHERENCE VIA SELF-
SUPERVISION FOR GAN-BASED VIDEO GENERATION

Mengyu Chu’, You Xie®, Jonas Mayer, Laura Leal-Taixé, Nils Thuerey

Department of Computer Science

Technical University of Munich

Munich, Germany

{mengyu.chu, you.xie, jonas.a.mayer, leal.taixe, nils.thuerey}@tum.de

ABSTRACT

‘We focus on temporal self-supervision for GAN-based video generation tasks.



https://www.youtube.com/watch?v=pZXFXtfd-Ak&t=45s

GAN Applications: Image Colorization

Image Colorization using
Generative Adversarial Networks

Kamyar Nazeri, Eric Ng, and Mehran Ebrahimi

Faculty of Science, University of Ontario Institute of Technology
2000 Simcoe Street North, Oshawa, Ontario, Canada LI1H 7K4
{kamyar .nazeri,eric.ng,mehran.ebrahimi}@uoit.ca
http://www.Imaginglab.ca/

Abstract. Over the last decade, the process of automatic image col-
orization has been of significant interest for several application areas
including restoration of aged or degraded images. This problem is highly
ill-posed due to the large degrees of freedom during the assignment of
color information. Many of the recent developments in automatic col-
orization involve images that contain a common theme or require highly
processed data such as semantic maps as input. In our approach, we
attempt to fully generalize the colorization procedure using a condi-
tional Deep Convolutional Generative Adversarial Network (DCGAN).
The network is trained over datasets that are publicly available such as
CIFAR-10 and Places365. The results between the generative model and
traditional deep neural networks are compared.

1 Introduction

The automatic colorization of grayscale images has been an active area of re-
search in machine learning for an extensive period of time. This is due to the
large variety of applications such color restoration and image colorization for
animations. In this manuscript, we will explore the method of colorization using
generative adversarial networks (GANs) proposed by Goodfellow et al. [1]. The
network is trained on the datasets CIFAR-10 and Places365 [2] and its results
will be compared with those obtained using existing convolutional neural net-
works (CNN).

Models for the colorization of grayscales began back in the early 2000s. In 2002,
Welsh et al. [3] proposed an algorithm that colorized images through texture
synthesis. Colorization was done by matching luminance and texture informa-
tion between an existing color image and the grayscale image to be colorized.
However, this proposed algorithm was defined as a forward problem, thus all so-
lutions were deterministic. Levin et al. [4] proposed an alternative formulation to
the colorization problem in 2004. This formulation followed an inverse approach,
where the cost function was designed by penalizing the difference between each
pixel and a weighted average of its neighboring pixels. Both of these proposed
methods still required significant user intervention which made the solutions less
than ideal.




GAN Applications: 3D GANs

Learning a Probabilistic Latent Space of Object Shapes
via 3D Generative-Adversarial Modeling
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64x64x64

Figure 1: The generator of 3D Generative Adversarial Networks (3D-GAN)
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Figure 2: Shapes synthesized by 3D-GAN

Abstract

We study the problem of 3D object generation. We propose a novel framework, namely 3D Generative Adversarial Network (3D-GAN), which
generates 3D objects from a probabilistic space by leveraging recent advances in volumetric convolutional networks and generative
adversarial nets. The benefits of our model are three-fold: first, the use of an adversarial criterion, instead of traditional heuristic criteria,
enables the generator to capture object structure implicitly and to synthesize high-quality 3D objects; second, the generator establishes a
mapping from a low-dimensional probabilistic space to the space of 3D objects, so that we can sample objects without a reference image or
CAD models, and explore the 3D object manifold; third, the adversarial discriminator provides a powerful 3D shape descriptor which,
learned without supervision, has wide applications in 3D object recognition. Experiments demonstrate that our method generates high-
quality 3D objects, and our unsupervisedly learned features achieve impressive performance on 3D object recognition, comparable with
those of supervised learning methods.

https://www.youtube.com/watch?v=mfx7uAkUtCI



https://www.youtube.com/watch?v=mfx7uAkUtCI

GAN Applications: GauGAN

Semantic Image Synthesis with Spatially-Adaptive Normalization

Taesung Park!?* Ming-Yu Liu?

'UC Berkeley

Ting-Chun Wang?
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Jun-Yan Zhu*?
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Semantic Manipulation Using Segmentation Map
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Figure 1: Our model allows user control over both semantic and style as synthesizing an image. The semantic (e.g., the
existence of a tree) is controlled via a label map (the top row), while the style is controlled via the reference style image (the
leftmost column). Please visit our website for interactive image synthesis demos.

Abstract

We propose spatially-adaptive normalization, a simple
but effective layer for synthesizing photorealistic images
given an input semantic layout. Previous methods directly
feed the semantic layout as input to the deep network, which
is then processed through stacks of convolution, normaliza-
tion, and nonlinearity layers. We show that this is subop-
timal as the normalization layers tend to “wash away” se-
mantic information. To address the issue, we propose using

)
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https://github.com/NVlabs/SPADE.

1. Introduction

Conditional image synthesis refers to the task of gen-
erating photorealistic images conditioning on certain in-
put data. Seminal work computes the output image by
stitching pieces from a single image (e.g., Image Analo-
gies [16]) or using an image collection [7, [4,23, 30, 35].
Recent methods directly learn the mapping using neural net-
works [3,6,22,47,48, 54,55, 56]. The latter methods are

http://nvidia-research-mingyuliu.com/gaugan/



http://nvidia-research-mingyuliu.com/gaugan/

GAN Applications: Text/ Caption

(Generation

. . . . . . QUEENE:
Generating Diverse and Accurate Visual Captions by Comparative Adversarial 1 1. thought thou hadst  roman: for the oracle,
* Thus by All bids the man against the word,
Leamlng Which are so weak of care, by old care done;
Your children were in your holy love,
And the precipitation through the bleeding throne.

Diangi Li'*, Qiuyuan Huang?, Xiaodong He’**, Lei Zhang”, Ming-Ting Sun' Sreon o £Lv-
. . %University of Washington’ ZMi('?I‘OSOft Rese;arch, 3JD Al Resegrch Marry, and wiil, my lord, to weep in such a one were prettiest;
{dianqili, mts} @uw.edu, xiaodong.he@jd.com, {leizhang, gihua} @microsoft.com Yet now I was adopted heir
of the world's lamentable day,
To watch the next way with his father with his face?

ESCALUS:
The cause why then we are all resolved more sons.

g VOLUMNIA:
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And love and pale as any will to that word.
QUEEN ELIZABETH:
E But how long have I heard the soul for this world,
= And show his hands of life be proved to stand.
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g ble glass of wine and tomatoes plate I say he look'd on, if I must be content
_______________________________________________________________ To stay him from the fatal of our country's bliss.
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E a green garbage truck in a business an antique black car sitting in a a city street filled with taxis and people are waiting in line as the
g district parking lot buses bus travel down the road
é a large green truck driving past a an old style truck parked in a park- the city buses are driving through people gather to a street where a
)} tall building ing space near a building the traffic bus get ready to board




GAN Applications: Music Generation

—

https://experiments.withgoogle.com/ai/ai-duet/view/

GANSYNTH:

ADVERSARIAL NEURAL AUDIO SYNTHESIS https://storage.googleapis.com/magentadat
.gs;%f:lg;l‘;hli:glar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Donahue, a/p a p e rslg a n Syn t h/i n d eX \ h t m |

Google Al
Mountain View, CA 94043, USA

ABSTRACT

Efficient audio synthesis is an inherently difficult machine learning task, as hu-
man perception is itive to both global structure and fine-scale waveform co-
herence. Autoregressive models, such as WaveNet, model local structure but have
slow iterative sampling and lack global latent structure. In contrast, Generative
Adversarial Networks (GANs) have global latent conditioning and efficient paral-
lel sampling, but struggle to generate locally-coherent audio waveforms. Herein,
we demonstrate that GANs can in fact generate high-fidelity and locally-coherent
audio by modeling log magnitudes and instantaneous frequencies with sufficient
frequency resolution in the spectral domain. Through extensive empirical investi-
gations on the NSynth dataset, we demonstrate that GANSs are able to outperform
strong WaveNet baselines on automated and human evaluation metrics, and effi-
ciently generate audio several orders of magnitude faster than their autoregressive
counterparts.'

1 INTRODUCTION

Neural audio synthesis, training generative models to efficiently produce audio with both high-

fidelity and global structure, is a challenging open problem as it requires modeling temporal scales .
over at least five orders of magnitude (~0.1ms to ~100s). Large advances in the state-of-the art pS . q a n a rp - C p . CO

have been pioneered almost exclusively by autoregressive models, such as WaveNet, which solve
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VAE Background:

Autoencoders

* Kingma and Welling published “Auto-Encoding Variational Bayes” in 2013.

* Recall that an Autoencoder (AE) is a (symmetric)
feed-forward NN containing a bottleneck layer and
trained using reconstruction loss.

* AE can naturally be divided into two comparable components:
An encoder network and a decoder network. The encoder
induces a form of dimensionality reduction (e.g. PCA), while
the decoder can be used to generate synthetic data.

Feature Latent Space

[neural network

Auto-Encoding Variational Bayes

Diederik P. Kingma Max Welling
Machine Learning Group Machine Learning Group
ivers van sterd: Uni van
dpkingma@gmail.com welling.max@gmail.com
Abstract

How can we perform efficient inference and learning in directed probabilistic
models, in the presence of continuous latent variables with intractable posterior
distributions, and large dat s? We introduce a stochastic variational inference
and learning algorithm that scales to large datasets and, under some mild differ-
entiability conditions, even works in the intractable case. Our contributions is
two-fold. First, we show that a reparameterization of the variational lower bound
yields a lower bound estimator that can be straightforwardly optimized using stan-
dard stochastic gradient methods. Second, we show that for i.i.d. datasets with
continuous latent variables per datapoint, posterior inference can be made espe-
cially efficient by fitting an approximate inference model (also called a recogni-
tion model) to the intractable posterior using the proposed lower bound estimator.
Theoretical advantages are reflected in experimental results.

1 Introduction

How can we perform efficient approximate inference and learning with directed probabilistic models
whose continuous latent variables and/or parameters have intractable posterior distributions? The
variational Bayesian (VB) approach involves the optimi: of an imation to the i

posterior. Unfortunately, the common mean-field approach requires analytical solutions of expecta-
tions w.r.t. the approximate posterior, which are also intractable in the general case. We show how a
reparameterization of the variational lower bound yields a simple differentiable unbiased estimator
of the lower bound; this SGVB (Stochastic Gradient Variational Bayes) estimator can be used for ef-
ficient approximate posterior inference in almost any model with continuous latent variables and/or
parameters, and is straightforward to optimize using standard stochastic gradient ascent techniques.

For the case of an i.i.d. dataset and continuous latent variables per datapoint, we propose the Auto-
Encoding VB (AEVB) algorithm. In the AEVB algorithm we make inference and learning especially
efficient by using the SGVB estimator to optimize a recognition model that allows s to perform very
efficient approximate posterior inference using simple ancestral sampling, which in turn allows us

to efficiently learn the model parameters, without the need of expensive iterative inference schemes

neural networll
encoder

I decoder

loss = [[x-x[]* = [[x-d@E)|[* = [[>-d(eG)|f?



VAE Background:

Autoencoders

* Importantly, variational autoencoders (VAEs) add a stochastic mechanism (a
random vector) that enables the network to generate synthetic outputs;
additionally, VAEs regularize the latent space.

encoder

training
process e

encoded vector

(in latent space)

decoder
input d
generation sampler decoded content
process
(reconstructed input /

generated content)
sampled vector

(from latent space)



VAE Background:
Variational Inference (brief)

* The goal of variational inference is to approximate a conditional density of latent variables
(denoted z), given observed variables (denoted x), using optimization. This conditional density
can be used to produce point or interval estimates for latent variables, form predictive densities

of new data, etc.

* As usual, we can write the conditional density as:

p(z,Xx)

p(z|x)= o



VAE Background:

Variational Inference

p(z,x)
p(x)

p(z]x)=

* Here the denominator contains the marginal density of the observations, also known as the
evidence. We can calculate the evidence by marginalizing out the latent variables:

p(x) = [ p(z,x)dz

* In many cases, this integral is intractable and so we must resort to approximation techniques.
On the one hand, we can use Monte Carlo techniques to generate a numerical approximation to
the exact posterior using samples.

* By contrast, variational inference provides an analytical solution to the posterior distribution.



VAE Background:

Variational Inference

p(z,x)
p(x)

p(z]x)=

* In variational inference, we specify a family Q of density functions (e.g. Gaussians) over latent
variables. Each q(z) € Q is a candidate approximation to the exact conditional.

* Our goal is to find the best candidate, i.e., the one closest in KL divergence to the exact
condition. Accordingly, we solve the following optimization problem:

q*(z)= arg gan KL(q(z) || p(z|x))

* Once found, g* is the best approximation for the condition — with the family Q. The
complexity of the family determined the complexity of this optimization problem.



VAE Background:

Variational Inference

q*(z)= arg gan KL(q(z) || p(z|x))

* This objective is, however, in general computable because it requires the aforementioned
evidence:



VAE Background:

Variational Inference

q*(z)= arg gan KL(q(z) || p(z|x))

* This objective is, however, in general computable because it requires the aforementioned
evidence:

q*(z) = arg gnQin KL(q(2) || p(z] x))

=E [logq(2)]-E [logp(z|x)] ____
= E _[logq(z)]-E, [log p(z, X)]'+ 10g p(X) >

N——

p(x) = | plz,x)dz



VAE Background:

Variational Inference

q(z)eQ

q*(z)=argmin KL(q(z) || p(z|x))

* Because we cannot compute the KLL-divergence directly, we instead optimize an alternative

objective that 1s equivalent to the KILL-divergence up to a constant; this alternative function 1s

called the evidence lower-bound (ELBO):

ELBO(q)=E [log p(z,x)] - E [log g(z)]

q*(z)= arf(; anm KL(q(2)|| p(z|x))

= E,[logq(z)]- E [log p(z,x)] +log p(x)

* The ELBO is the negative KL divergence of g*, plus logp(x) (which is a constant with respect

to q(z)).

* Maximizing the ELBO is equivalent to minimizing the KL-divergence.



VAE Background:

Variational Inference
ELBO(q)=E, [log p(z,x)]-E, [logg(z)]

* Let’s further analyze ELBO:
ELBO(q) = E,[log p(2)]+ E [log p(x|z)] - E,[log g(z)]
= E [log p(x|z)]-KL(q(2) || p(2))

* Notice that ELBO is maximal when: (1) the latent variables explain the data (the likelihood
expressed by the first term) and (2) when the variational density is close to the prior.

Another property of ELBO is that it lower-bounds the (log) evidence,
logp(x) = ELBO(q) for any q(z).

To see this, note: log p(X) = KL(Q(Z) || p(Z | JC) ~ ELBO(Q)

(recall that KL = 0 — why?)



VAE

* In summary, the ELBO defines the objective function underlying variational
inference.

* However, in order to complete the specification of this objective function, we still
need to define the ELBO with respect to the previously mentioned family of
densities, Q.



VAE

* In summary, the ELBO defines the objective function underlying variational
inference. However, in order to complete the specification of this objective function,
we still need to define the ELBO with respect to the previously mentioned family of

densities, Q.

* There are, naturally, many different families from which to choose. In practice for
improved tractability, a common choice is the so-called mean-field variational
family; for this set of functions, the latent variables are assumed to be mutually
independent, so that each 1s governed by a distinct factor in the variational density.

4(2) =f[qj<z,->



VAE

* Using the ELBO and mean-field family, we have now fully specified the
approximate conditional inference problem as an optimization problem.

* In general, maximizing the ELBO is far from trivial. Again, there are many
optimization techniques available for this task. One common approach is to use
coordinate ascent variational inference (CAVI, due to Bishop*). CAVI iterative
optimizes each factor of the mean-field variational density, while holding the others
fixed — in this way we arrive at a local optimum for the ELBO.

Algorithm 1: Coordinate ascent variational inference (CAVI)
Input: A model p(x,z), a data set x

Output: A variational density q(z) = n;"zl q;(2;)
Initialize: Variational factors q;(z;)
while the ELBO has not converged do

forje{l,..., m} do

| Setq;(z;) o< exp{E_;[logp(z;|z_;,x)]}

end

Compute ELBO(q) = E[logp(z,x)]—E[logq(z)]
end
return q(z)

* Where p(zj|z_j, x) denotes the total is the “total conditional” (i.e. p(z;) given x
and all latent variables except Z;, as seen with Gibbs sampling.

*See: Christopher M. Bishop. 2006. Pattern Recognition and Machine 1earning (Information Science and Statistics). Springer-1erlag, Berlin, Heidelberyg.



VAE

* We previously showed that minimizing our VAE objective is equivalent to maximizing
the ELBO:

ELBO(q) = £, [log p(x| 2)| - KL(q(z| x) || p(2))

Notice that the RHS involves (3) quantities:

(1) q(z) (also written q(z|x)) a projection of the data x into the latent space
(2) z, the latent variable

(3) p(x|z) the distribution generating the data, given the latent variable.

* This structure is equivalent to an autoencoder, where q(z|x) is the encoder network; z 1s
the encoded representation, and p(x|z) is the decoder network.

encode > decode >




VAE

e —
— = o

~-————_—

* For a VAE, we assume that the encoder projects the input to a standard normal
(.e. q(z]x) = N(u(x), Z(x)); furthermore, we assume the latent distribution is a
standard normal, i.e., p(z) = N(O,I).

In fact, this KL divergence term is analytically solvable:
n
2, 2
Z o; +u;—log(o,) -1
i=1

* In summary, q(z|x) is represented by a neural network, where the NN maps input
data (x) to a mean vector U(x) and (diagonal) covariance matrix Z(x) (the
parameters of the latent space).

* By minimizing the indicated KL divergence, we encourage the latent space to
conform with a standard Normal.



VAE

—_———-

ELBO() = £, [log p(x| 2)]=KL(¢(z | 0| p(2)

-~ -
e =

* Notice that the first term on the RHS is equivalent to MLE; so, to maximize this
term we want to minimize the reconstruction error of the decoder with respect to a
given an input X, the assoclated encoding z, and the reconstruction this encoding.

encode > decode >

input hidden output
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VAE

* We are almost done — however, recall that we want the latent parameter (2)

corresponding with the input (x) to be sampled z~N (u(x),2(x)).

However, in order to enable training of the q(z|x) network using backpropagation,
the sampling process must exist outside of the network itself. To achieve these, we
use the so-call “reparameterization trick” (inverse sampling of a Gaussian).

no problem for backpropagation ~ se=aa. backpropagation is not possible due to sampling

suplling prevents backpropagation- o backpropagakion is required

and then d 5 neural network
R / encoder

. 0y
.
o4 A
.
v
.
.
.

neural network

decoder

sampling without reparametrisation trick sampling with reparametrisation trick loss = ||x-x]|]> + KL[ ,NO,D] = |[x-d(z)|]> + KLI ,N(, )]



VAE

* Imposing a structure on the latent space (1.e. Gaussian) is a powerful idea for
generative models. This approach has the effect of regularizing the latent space (and
hence avoiding overfitting to the data).

what can happen without regularisation x V what we want to obtain with regularisation

* Optimizing with both reconstruction loss and KL divergence loss additionally
enforces “similarity embedding” — which is to say, similar inputs to the VAE are
mapped close to one another in the latent space.

~



VAE

* Reconstructing faces with a VAE:

BEEaCalAa=
BEaffabAaEDC

Figure 3-18. Reconstructed faces, after passing through the encoder and decoder

* Generating synthetic faces with a VAE:

f

aces

Figure 3-20. New generated



VAE: Latent Space Arithmetic

* Note that it is possible to manipulate the latent space associated with a generative
model using latent space arithmetic.

*For instance, suppose we wish to vary a particular attribute of our generated
synthetic data. The CelebA dataset includes annotations with various attributes, e.g.,
wearing hat, smiling, etc.

Glasses 4
hat




VAE: Latent Space Arithmetic

* In a similar vein to the latent space arithmetic seen with word-embedding models
(e.g. Word2Vec), one can use vector arithmetic to meaningtully augment latent
vectofs.

* For example, if we want to generate faces that are “smiling”, we could in principle
take the average latent embedding of all the faces with the attribute smiling in our
training set and subtract from this the average latent embedding of all the faces
without the attribute smiling. This gives us a vector in the latent space pointing from
“non-smiling” to “smiling”.

* Now to apply “smiling” to a latent embedding, we apply the following
transformation:

z' =z + a(feature_vector)



VAE: Latent Space Arithmetic

original subtracting vector adding vector
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* The original GAN paper (Goodfellow ez a/, 2014) 1s

one of the most influential ML papers in recent years.

 Simply put, a GAN is a battle between two adversaries:
the generator and the discriminator.

* The generator attempts to convert random noise into
observations that appear as though they were sampled
from the original dataset.

* Conversely, the discriminator tries to predict whether

an observation comes from the original dataset or is a
forgery produced by the generator.

Training set V

Generator ©_ | /Fake image

Generative Adversarial Nets

Ian J. Goodfellow, Jean Pouget-Abadie; Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair] Aaron Courville, Yoshua Bengio®
Département d’informatique et de recherche opérationnelle
Université de Montréal
Montréal, QC H3C 317

Abstract

‘We propose a new framework for estimating generative models via an adversar-
ial process, in which we simultaneously train two models: a generative model G
that captures the data distribution, and a discriminative model D that estimates
the probability that a sample came from the training data rather than G. The train-
ing procedure for G is to maximize the probability of D making a mistake. This
framework corresponds to a minimax two-player game. In the space of arbitrary
functions G and D, a unique solution exists, with G recovering the training data
distribution and D equal to ]E everywhere. In the case where G and D are defined
by multilayer perceptrons, the entire system can be trained with backpropagation.
There is no need for any Markov chains or unrolled approximate inference net-
works during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of
the generated samples.

1 Introduction

The promise of deep learning is to discover rich, hierarchical models [2] that represent probability
distributions over the kinds of data encountered in artificial intelligence applications, such as natural
images, audio waveforms containing speech, and symbols in natural language corpora. So far, the
most striking successes in deep learning have involved discriminative models, usually those that
map a high-dimensional, rich sensory input to a class label [14, 22]. These striking successes have
primarily been based on the backpropagation and dropout algorithms, using piecewise linear units
[19, 9, 10] which have a particularly well-behaved gradient . Deep generative models have had less
of an impact, due to the difficulty of approximating many intractable probabilistic computations that
arise in maximum likelihood estimation and related strategies, and due to difficulty of leveraging

Discriminator

TR
2k / = @ = {Fake



GAN

At the beginning of this process, the generator outputs noisy images and the discriminator
predicts randomly.

* The key to GANSs lies in how we effect the training of the two networks in tandem, so
that as the generator becomes more adept at fooling the discriminator, the discriminator
must adapt in order to maintain its ability to spot “fakes”.

Training set V Discriminator
/ A .
I - S =
noise / -
— %
Generator Fake image




GAN

* Here’s an example specification of a GAN; the architecture of the discriminator is given on

the right.

Discriminator: define input; stack convolutional layers; flatten the last convolutional layer,

etc.; note that a stride of size 2 in the conv layers will reduce the overall size of the tensor;

the final “dense” layer (using sigmoid activation) ensures the output is a scalar in the range

[0,1], corresponding with the probability that the input image is real.

gan = GAN(input_dim = (28,28,1)

3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

)
Generator

discriminator_conv_filters = [64,64,128,128]
discriminator_conv_kernel_size = [5,5,5,5]
discriminator_conv_strides = [2,2,2,1]
discriminator_batch_norm_momentum = None
discriminator_activation = "relu”
discriminator_dropout_rate = 0.4
discriminator_learning_rate = 0.0008
generator_initial_dense_layer _size = (7, 7, 64)
generator_upsample = [2,2, 1, 1]
generator_conv_filters = [128,64, 64,1]
generator_conv_kernel_size = [5,5,5,5]
generator_conv_strides = [1,1, 1, 1]
generator_batch_norm_momentum = 0.9
generator_activation = "relu”
generator_dropout_rate = None
generator_learning_rate = 0.0004

optimiser = “rmsprop”®

z_dim = 100

Discriminator

Layer (type) OQutput Shape Param #
discriminator_ input (InputLa (None, 28, 28, 1) 0
discriminator conv 0 (Conv2D (None, 14, 14, 64) 1664
activation 1 (Activation) (None, 14, 14, 64) 0
dropout_1 (Dropout) (None, 14, 14, 64) 0
discriminator conv_1 (Conv2D (None, 7, 7, 64) 102464
activation 2 (Activation) (None, 7, 7, 64) 0
dropout_2 (Dropout) (None, 7, 7, 64) 0
discriminator conv_2 (Conv2D (None, 4, 4, 128) 204928
activation 3 (Activation) (None, 4, 4, 128) 0
dropout_3 (Dropout) (None, 4, 4, 128) 0
discriminator conv_3 (Conv2D (None, 4, 4, 128) 409728

activation 4 (Activation) (None, 4, 4, 128) 0
dropout_4 (Dropout) (None, 4, 4, 128) 0
flatten_ 1 (Flatten) (None, 2048) 0
dense_1 (Dense) (None, 1) 2049

Total params: 720,833
Trainable params: 720,833
Non-trainable params: 0




GAN

* The input to the generator 1s a vector, usually drawn from a MVN; the output is an image
of the same size as the original dataset.

* The generator serves the same purpose as the decoder for a VAE, in that it converts a
vector from the latent space into an image. The trope of mapping from a low-to-high
dimensional space is common in DL; for a CNN, this operation is commonly known as
deconvolution (also: transposed convolution).

gan = GAN(input_dim = (28,28,1)
Tayer (type) Output Shape Pe— , discriminator_conv_filters = [64,64,128,128]
, discriminator_conv_kernel_size = [5,5,5,5]
discriminator_conv_strides = [2,2,2,1]
dense_9 (Dense) (None, 3136) 316736 discriminator_batch_norm_momentum = None
discriminator_activation = “relu”
discriminator_dropout_rate = 0.4
discriminator_learning_rate = 0.0008
reshape 4 (Reshape) (None, 7, 7, 64) 0 generator_initial_dense_layer_size = (7, 7, 64)
generator_upsample = [2,2, 1, 1]
generator_conv_filters = [128,64, 64,1]
generator_conv_kernel_size = [5,5,5,5]
batch_normalization_11 (Batc (None, 14, 14, 128) 512 generator_conv_strides = [1,1’ 1’ 1]
generator_batch_norm_momentum = 0.9

generator_input (InputLayer) (None, 100) 0

batch_normalization 10 (Batc (None, 3136) 12544

activation_36 (Activation) (None, 3136) 0

up_sampling2d_10 (UpSampling (None, 14, 14, 64) 0

generator_conv_0 (Conv2D) (None, 14, 14, 128) 204928

activation 37 (Activation) (None, 14, 14, 128) 0 3
T AR T IR e 5 , generator_activation = “relu”
up_sampling2d_ pSampling (None, ’ '

) ) , generator_dropout_rate = None
generator_conv_1 (Conv2D) (None, 28, 28, 64) 204864 , generator_learning_rate = 0.0004
batch_normalization 12 (Batc (None, 28, 28, 64) 256 3 Optlmlser = 'rmsprop.

— — , z_dim = 100
activation_ 38 (Activation) (None, 28, 28, 64) 0 ) -
generator_conv_2 (Conv2D) (None, 28, 28, 64) 102464
batch_normalization_ 13 (Batc (None, 28, 28, 64) 256
activation 39 (Activation) (None, 28, 28, 64) 0
generator_conv_3 (Conv2D) (None, 28, 28, 1) 1601
activation 40 (Activation) (None, 28, 28, 1) 0

Generator Discriminator

Total params: 844,161
Trainable params: 837,377
Non-trainable params: 6,784



GAN: Transposed Convolution

* The transposed convolution operation is effected by performing a “backward strided
convolution”.

* In the images below, the blue maps are inputs; cyan maps are outputs.

Basic convolution with Transposed conv with no Transposed conv with no

padding=1, stride =2 padding, no stride padding and stride

* Traditionally, one could achieve up-sampling by applying interpolation schemes (e.g: bilinear
interpolation). Modern architectures such as NNs, however, tend to let the network itself
learn the proper transformation automatically, without human intervention.



GAN: Transposed Convolution

* Let’s dive a little deeper into the contrast between convolution and transposed convolution.
* With convolution, consider C as the kernel, Iarge as the input, and Swa/l as the output
image after convolution. Following convolution, we down-sample the large image into a small
output image, i.e. C x Large = Small.

Input

Kernel

Xo X1 | X2 | Xs Output
Wo,0|Wo,1{Wo,2
Xa | Xs | Xe | X7 _ Yo | Y1
Wi10W1a Wiz ¥ =
Xs | Xo | X10 | X11 Y2 |¥s
W2,0W2,1/W2,2 21%2
3x3 X12 | X13 | X14 | X15
l 4x4
Xo
o . 2 X1
Unrolling the convolution operation
to matrix multiplication X2
X3 A 4
Xa
T I i " < lLecd|
Wo,0Wo,1Wo2 0 Wi0W11W12 0 W2o0W21W22 0 | 0| 0|0 0 Xs Yo
|
0 |Wo,0Wo,1Wo2 0 (WioWi1Wi2 0O W2oW21Wz22 0 | 0| O 0 X Xe — Y1
0 | O |WooWo,1Woz2 O W10Wi1Wi2 O |W20Wz21W22 0 |0 |0 Xz Y2
0 0| 0 WooWwoiwo2 0 WioWiiWiz 0 (Wzowziwzz 0 0 Xa Y3
4x16 X 4x1

Sparse matrix C

X5 16x1

* In the example shown, we take a 4x4 input matrix and flatten it to 16x1; in addition we
transform the 3x3 kernel into a 4x16 sparse, orthogonal matrix. Using matrix multiplication,
the resultant matrix is 4x1, which we then subsequently transform back to a 2x2 output.



GAN: Transposed Convolution

* If, we multiply the equation C x Large = Small, by C', we arrive at: CTxSmall = Large. In
this way multiplication by the transposed convolution yields an up-sampling procedure. (for

reference: we encountered this operation previously when discussing Hinton’s work with

AEs).

Wo,2(Wo,1Wo,0 0

0 (Wo,2Wo,1Wo,0

W0 0 Wo,2Wo,1

W1,1W10 0O Wo,2

0 |[W1,2(W1,1W1,0

W20 0 W1,2W1,1‘

W2,1(W2,0 0 (W12

0 (W2,2W2,1W2,0

0| 0 Wwz22W21

0] 0] 0 w22

0|00 0O

0|00 O

Sparse matrix C"

16 x4

Xo

X1

X2

X3

Xo

X10
X11

X12

X3
Xia

X1s

16x1

A 4

Xa

Xs

Xe

X7

X8

Xo

X10

X11

X12

X13

X1a

Xi5

4x4

ir

s

99

* Note that in practice, usitig a transposed convolution can lead to the presence of
checkerboard artifacts; to alleviate this, practitioners commonly apply a two-step process

instead: (1) bilinear up-sample, followed by (ii) convolution.
* For a comprehensive treatment of these topics, see: https://arxiv.org/abs/1603.07285



https://arxiv.org/abs/1603.07285

GAN: Training

* In general, training the discriminator amounts to a supervised learning problem: we create a
training set of (randomly inserted) real observations from the dataset interspersed with
outputs produced by the generator (label 1 for true image, O for fakes). Recall that binary
cross-entropy loss is defined:

L(yap) —__Z log(pl ( yi)log(l_pi))

Generator . i | Discriminator

LN



GAN: Training

* In general, training the discriminator amounts to a supervised learning problem: we create a
training set of (randomly inserted) real observations from the dataset interspersed with
outputs produced by the generator (label 1 for true image, O for fakes). Recall that binary
cross-entropy loss is defined:

L(yap) —__Z log(pl ( yi)log(l_pi))

* To train the GAN discriminator D, we calculate the loss when comparing predictions for
real images p; = D (x;) to the response y;= 1 and predictions for generated images p; =
D(G(z;)) to the response y;= 0. Therefore, for the GAN discriminator, minimizing the loss
function can be written as follows:

minD—( . [log D(X)|+E._, [log e D(G(z)))])

Generator g Discriminator




GAN: Training

* Training the generator is considerably more difficult, as we don’t readily have access to a
training set that tells us the true image that a particular point in the latent space should be
mapped to, for instance.

* To train the generator, we connect it to the discriminator by feeding the output from the
generator into the discriminator so that the output from the combined model is the
probability that a generated image is 7ea/ (according to the discriminator).

Generator g Discriminator

..........




GAN: Training

* Training the generator is considerably more difficult, as we don’t readily have access to a
training set that tells us the true image that a particular point in the latent space should be
mapped to, for instance.

* To train the generator, we connect it to the discriminator by feeding the output from the
generator into the discriminator so that the output from the combined model is the
probability that a generated image 1s 7ea/ (according to the discriminator).

* We can train the combined model by creating training batches consisting of randomly
generated latent vectors as input and a response which 1s set to 1, since we want to train the
generator to produce images that the discriminator thinks are real. The loss is just binary
cross-entropy loss between the output from the discriminator and the response vector of 1.

* Importantly, we freeze the weights of the discriminator while we are training the
combined model, so that only the generator’s weights are updated.

Generator . Discriminator




GAN: Training

min ,— (Exmpx [log D) |+ E._, [log (1- D(G(Z)))D

* To train the GAN generator G, we calculate the loss when comparing predictions for the
generated images p; = D(G(z;)) to the response y; = 1. Therefore for the GAN

generator, the minimizing loss function can be written as follows:

min,—(E_., [log(D(G(2)))])

i=l

] 1

] 1

1

1

1

Discriminator [—> D —»| cost f---=-=--- !

—>0 :
b - :
or Generator :

_— 1, m m 1
7~ Uf1,1) _VogflniZlog(l—D(G(z(i)))) or VB,,%ZTZ:; log (D (G (z(i)))) :

Real image @




Random noise

GAN: Training

min ,— (Exwpx [log D) [+ E._, [k)g (1- D(G(Z)))D

Discriminator training process

Training batch
(generated)

—>

Generator

OECO--O00m0

Training batch
(dataset images)

re o 01 0
ﬂ\ A Discriminator : : —» LOSS

08 1
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min ,— (Ez~pz | log (D(G(Z)))])




loss

* GAN training is equivalent to a zero-sum non-cooperative game. From a game

GAN: Training

theory context, the GAN model converges when the discriminator and the generator
reach a Nash equilibrium.

e If trained properly (which commonly requires the use of several “tricks” which we

mention next), the discriminator and generator will converge to an equilibrium that

allows the generator to learn meaningful information from the discriminator and the

quality of the images will improve.
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GAN: Challenges

* GAN’s are notoriously difficult to train, for several reasons:

* Mode Collapse: Mode collapse occurs when the generator finds a small number of
samples that fool the discriminator and therefore isn’t able to produce any examples
other than this limited set.

* This can occur, say if we train the generator over several batches without updating the
discriminator in between. In this situation, the generator would be inclined to find a
singly observation that always fools the discriminator (the mode).

* Oscillating Loss: The losses of the discriminator and generator oscillate wildly.
GAN:Ss are trained successfully when we observe a loss stabilization (shown in the
previous slide); unfortunately, oscillating loss 1s common to vanilla GAN approaches.

6 560 IOE]O 15'00 20'00 2500



GAN: CycleGAN

* For the image translation task, CycleGAN trains without using paired examples.

* CycleGAN is composed for (4) models: two generators and two discriminators. The
first generator G, converts images from domain A to domain B; whereas the second

generator Gg,, converts images from domain B to domain A.

* The authors employ a U-Net architecture (shown on the right) for the generator

models.

D,

A
1
1

A

GAB
——-
C——

Gpa

128 x 128 x 3

128 x 128 x 3 fasan
F3
-LJ{L

==

A 64 x 64 x 32
64 x 64 x 32
\ skip connections

k2x32x64 32)(32)(7

DOWNSAMPLING \16 x16x 128 16x 16 x7 UPSAMPLING
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GAN: CycleGAN

Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks

Jun-Yan Zhu* Taesung Park™ Phillip Isola Alexei A. Efros
Berkeley AI Research (BAIR) laboratory, UC Berkeley

Monet 7_ Photos Summer  Winter

Zebras > Horses

zebra —) horse

horse — zebra

Y‘""%’u-ﬂ“’wq |
A 5.,‘1&»

W n.t"

Photograph Monet Van Gogh Cezanne Ukiyo-e
Figure 1: Given any two unordered image collections X and Y, our algorithm learns to automatically “translate” an image




“World Models” GAN

* Ha and Schmidhuber (NeurIPS, 2018) presented “World Models”, a paradigm for
training RL agents using a VAE, whereby an agent is trained:

“entirely insides of its own hallucinated dream generated by its world model,
and transfer this policy back into the actual environment.”

‘World Models

David Ha' Jiirgen Schmidhuber*?

Abstract

We explore building generative neural network
models of popular reinforcement learning
environments. Our world model can be trained
quickly in an unsupervised manner to learn a
compressed spatial and temporal representation
of the environment. By using features extracted
from the world model as inputs to an agent, we
can train a very compact and simple policy that
can solve the required task. We can even train
our agent entirely inside of its own hallucinated
dream generated by its world model, and transfer
this policy back into the actual environment.

An interactive version of this paper is available at
https://worldmodels.github.io

1. Introduction

Humans develop a mental model of the world based on
what they are able to perceive with their limited senses. The
decisions and actions we make are based on this internal
model. Jay Wright Forrester, the father of system dynamics,
described a mental model as:

The image of the world around us, which we carry in our
head, is just a model. Nobody in his head imagines all
the world, government or country. He has only selected
concepts, and relationships between them, and uses those
1o represent the real system. (Forrester, 1971)

To handle the vast amount of information that flows through
our daily lives, our brain learns an abstract representation
of both spatial and temporal aspects of this information.
We are able to observe a scene and remember an abstract
description thereof (Cheang & Tsao, 2017; Quiroga et al.,
2005). Evidence also suggests that what we perceive at any
given moment is governed by our brain’s prediction of the
future based on our internal model (Nortmann et al., 2015;
Gerrit et al., 2013).

One way of understanding the predictive model inside of our

https://worldmodels.qgithub.io/

Figure 1. A World Model, from Scott McCloud’s Understanding
Comics. (McCloud, 1993; E, 2012)

current motor actions (Keller et al., 2012; Leinweber et al.,
2017). We are able t stinctively act on this predictive
model and perform reflexive behaviours when we face
danger (Mobbs et al., 2015), without the need to consciously
plan out a course of action.

Take baseball for example. A batter has milliseconds to de-
cide how they should swing the bat — shorter than the time
it takes for visual signals to reach our brain. The reason
we are able to hit a 100 mph fastball is due to our ability to
instinctively predict when and where the ball will go. For
professional players, this all happens subconsciously. Their
muscles reflexively swing the bat at the right time and loca-
tion in line with their internal models’ predictions (Gerrit
etal., 2013). They can quickly act on their predictions of
the future without the need to consciously roll out possible
future scenarios to form a plan (Hirshon, 2013).
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https://worldmodels.github.io/

“World Models” GAN

The pipeline consists of (3) fundamental components:

(1) The Vision Model (V), A VAE that encodes high-dimensional observations into a

At each time step, our agent
receives an observation from
the environment.

low-dimensional latent vector.
World Model

=

The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

ff

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict
future states.

@ @

j NK
- K

h h

A small Controller (C) uses the

representations from both E@ Ecj Ecj
V and M to select good actions. z z z
a a a

The agent performs actions that
go back and affect the environment.

Figure 4. Our agent consists of three components that work closely
together: Vision (V), Memory (M), and Controller (C)

Original Observed Frame

Encoder @—' Decoder

Reconstructed Frame




“World Models” GAN

The pipeline consists of (3) fundamental components:

(2) A Memory RNN (M): this unit approximates p(z;) using a GMM; the RNN is
trained to output the probability distribution of the next latent vector Z;, 1 given the
current and past information available to it -- specifically predict: p(z;41|at, zt, ht)

Technically, M uses an MDN (mixture density network), which has been used previously
for “sequence generation” (e.g. handwriting).
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“World Models” GAN

The pipeline consists of (3) fundamental components:

(3) A controller (C) (a simple) RL agent that determined the course of actions to take in

order to maximize the expected cumulative reward of the agent during a rollout of the
environment.

-

environment [« —
| action
MODEL PARAMETER COUNT
VAE 4,446,915
MDN-RNN 1,678,785
7 CONTROLLER 1,088
observation ! >
4 ) C
world mode MDN-RNN (M) >
\ J h
I action




“World Models” GAN

Training with simulated dreams!

* Because the model can predict the future (!), the authors can use it to generate
hypothetical racing scenarios on its own. They produce the probability distribution of
given the current states, and sample a zt+1 in place of a real observation. The controller
acts in the hallucinated environment generated by M.

Figure 13. Our agent driving inside of its own dream world. Here,

we deploy our trained policy into a fake environment generated
by the MDN-RNN, and rendered using the VAE’s decoder. In the
demo, one can override the agent’s actions as well as adjust 7 to
control the uncertainty of the environment generated by M.







“World Models” GAN

VizDoom from World Models.

Figure 15. Our agent discovers a policy to avoid hallucinated fire-
balls. In the online version of this article, the reader can interact
with the environment inside this demo.
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