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First…A Message from Mark



Outline
• Applications of  GANs/VAEs

• VAEs

• GANs



GAN Applications

Thispersondoesnotexist.com



GAN Applications

Thispersondoesnotexist.com
Sometimes it FAILS!



GAN Applications: 
Google DeepDream

https://www.youtube.com/watch?v=sh-MQboWJug

*Technically not using a GAN, bust still fundamentally uses a CNN as a generative 
model.

https://www.youtube.com/watch?v=sh-MQboWJug


GAN Applications: 
Image/Video Upsampling

https://www.youtube.com/watch?v=pZXFXtfd-Ak&t=45s
*Teco Gan:

https://www.youtube.com/watch?v=pZXFXtfd-Ak&t=45s


GAN Applications: Image Colorization



GAN Applications: 3D GANs 

https://www.youtube.com/watch?v=mfx7uAkUtCI

https://www.youtube.com/watch?v=mfx7uAkUtCI


GAN Applications: GauGAN

http://nvidia-research-mingyuliu.com/gaugan/

http://nvidia-research-mingyuliu.com/gaugan/


GAN Applications: Text/ Caption 
Generation



GAN Applications: Music Generation

https://experiments.withgoogle.com/ai/ai-duet/view/

https://storage.googleapis.com/magentadat
a/papers/gansynth/index.html

https://ganharp.ctpt.co/

https://experiments.withgoogle.com/ai/ai-duet/view/
https://ganharp.ctpt.co/


GAN FAILS



VAE Background: 
Autoencoders

• Kingma and Welling published “Auto-Encoding Variational Bayes” in 2013. 

• Recall that an Autoencoder (AE) is a (symmetric)
feed-forward NN containing a bottleneck layer and 
trained using reconstruction loss. 

• AE can naturally be divided into two comparable components:
An encoder network and a decoder network. The encoder
induces a form of  dimensionality reduction (e.g. PCA), while
the decoder can be used to generate synthetic data. 

Feature Latent Space



VAE Background: 
Autoencoders

• Importantly, variational autoencoders (VAEs) add a stochastic mechanism (a 
random vector) that enables the network to generate synthetic outputs; 
additionally, VAEs regularize the latent space.



VAE Background: 
Variational Inference (brief)

• The goal of  variational inference is to approximate a conditional density of latent variables 
(denoted z), given observed variables (denoted x), using optimization. This conditional density 
can be used to produce point or interval estimates for latent variables, form predictive densities 
of  new data, etc. 

• As usual, we can write the conditional density as: 
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VAE Background: 
Variational Inference

• Here the denominator contains the marginal density of  the observations, also known as the 
evidence. We can calculate the evidence by marginalizing out the latent variables:

• In many cases, this integral is intractable and so we must resort to approximation techniques. 
On the one hand, we can use Monte Carlo techniques to generate a numerical approximation to 
the exact posterior using samples. 

• By contrast, variational inference provides an analytical solution to the posterior distribution. 
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VAE Background: 
Variational Inference

• In variational inference, we specify a family Q of  density functions (e.g. Gaussians) over latent 
variables. Each 𝑞𝑞(𝑧𝑧) ∈ 𝑄𝑄 is a candidate approximation to the exact conditional. 

• Our goal is to find the best candidate, i.e., the one closest in KL divergence to the exact 
condition. Accordingly, we solve the following optimization problem:

•  Once found, q* is the best approximation for the condition – with the family Q. The 
complexity of  the family determined the complexity of  this optimization problem. 
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VAE Background: 
Variational Inference

• This objective is, however, in general computable because it requires the aforementioned 
evidence:

•
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VAE Background: 
Variational Inference

• This objective is, however, in general computable because it requires the aforementioned 
evidence:

•
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VAE Background: 
Variational Inference

• Because we cannot compute the KL-divergence directly, we instead optimize an alternative 
objective that is equivalent to the KL-divergence up to a constant; this alternative function is 
called the evidence lower-bound (ELBO):

• The ELBO is the negative KL divergence of  q*, plus logp(x) (which is a constant with respect 
to q(z)). 

• Maximizing the ELBO is equivalent to minimizing the KL-divergence. 
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VAE Background: 
Variational Inference

• Let’s further analyze ELBO: 

• Notice that ELBO is maximal when: (1) the latent variables explain the data (the likelihood 
expressed by the first term) and (2) when the variational density is close to the prior. 

Another property of  ELBO is that it lower-bounds the (log) evidence, 
log𝑝𝑝 𝑥𝑥 ≥ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑞𝑞) for any 𝑞𝑞(z). 

To see this, note: 

(recall that 𝐾𝐾𝐸𝐸 ≥ 0 – why?) 

ELBO(q)= [log ( , )] [log ( )]q qE p z x E q z−
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VAE
• In summary, the ELBO defines the objective function underlying variational 
inference. 

• However, in order to complete the specification of  this objective function, we still 
need to define the ELBO with respect to the previously mentioned family of  
densities, Q. 



VAE
• In summary, the ELBO defines the objective function underlying variational 
inference. However, in order to complete the specification of  this objective function, 
we still need to define the ELBO with respect to the previously mentioned family of  
densities, Q. 

• There are, naturally, many different families from which to choose. In practice for 
improved tractability, a common choice is the so-called mean-field variational 
family; for this set of  functions, the latent variables are assumed to be mutually 
independent, so that each is governed by a distinct factor in the variational density. 
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VAE
• Using the ELBO and mean-field family, we have now fully specified the 
approximate conditional inference problem as an optimization problem. 

• In general, maximizing the ELBO is far from trivial. Again, there are many 
optimization techniques available for this task. One common approach is to use 
coordinate ascent variational inference (CAVI, due to Bishop*). CAVI iterative 
optimizes each factor of  the mean-field variational density, while holding the others 
fixed – in this way we arrive at a local optimum for the ELBO. 

•  Where 𝑝𝑝(𝑧𝑧𝑗𝑗|𝑧𝑧_𝑗𝑗 , 𝑥𝑥) denotes the total is the “total conditional” (i.e. 𝑝𝑝(𝑧𝑧𝑗𝑗) given 𝑥𝑥
and all latent variables except 𝑧𝑧𝑗𝑗, as seen with Gibbs sampling. 
*See: Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag, Berlin, Heidelberg.



VAE
• We previously showed that minimizing our VAE objective is equivalent to maximizing 
the ELBO:

Notice that the RHS involves (3) quantities: 
(1) q(z) (also written q(z|x)) a projection of  the data x into the latent space
(2) z, the latent variable
(3) p(x|z) the distribution generating the data, given the latent variable. 
• This structure is equivalent to an autoencoder, where q(z|x) is the encoder network; z is 
the encoded representation, and p(x|z) is the decoder network. 



VAE

• For a VAE, we assume that the encoder projects the input to a standard normal 
(i.e. q 𝑧𝑧|𝑥𝑥 = 𝑁𝑁(𝜇𝜇(𝑥𝑥), Σ(𝑥𝑥)); furthermore, we assume the latent distribution is a 
standard normal, i.e., p 𝑧𝑧 = 𝑁𝑁(0, 𝐼𝐼).

In fact, this KL divergence term is analytically solvable: 

• In summary, q 𝑧𝑧|𝑥𝑥 is represented by a neural network, where the NN maps input 
data (x) to a mean vector 𝜇𝜇 𝑥𝑥 and (diagonal) covariance matrix Σ 𝑥𝑥 (the 
parameters of  the latent space). 

• By minimizing the indicated KL divergence, we encourage the latent space to 
conform with a standard Normal. 

ELBO(q) [log ( | )] ( ( | ) || ( ))qE p x z KL q z x p z= −



VAE

• Notice that the first term on the RHS is equivalent to MLE; so, to maximize this 
term we want to minimize the reconstruction error of  the decoder with respect to a  
given an input x, the associated encoding z, and the reconstruction this encoding. 

ELBO(q) [log ( | )] ( ( | ) || ( ))qE p x z KL q z x p z= −



VAE
• We are almost done – however, recall that  we want the latent parameter (z) 
corresponding with the input (x) to be sampled z~𝑁𝑁(μ(x),Σ(x)). 

However, in order to enable training of  the q(z|x) network using backpropagation, 
the sampling process must exist outside of  the network itself. To achieve these, we 
use the so-call “reparameterization trick” (inverse sampling of  a Gaussian). 



VAE
• Imposing a structure on the latent space (i.e. Gaussian) is a powerful idea for 
generative models. This approach has the effect of  regularizing the latent space (and 
hence avoiding overfitting to the data). 

• Optimizing with both reconstruction loss and KL divergence loss additionally 
enforces “similarity embedding” – which is to say, similar inputs to the VAE are 
mapped close to one another in the latent space. 



VAE
• Reconstructing faces with a VAE:

• Generating synthetic faces with a VAE:



VAE: Latent Space Arithmetic
• Note that it is possible to manipulate the latent space associated with a generative 
model using latent space arithmetic. 

•For instance, suppose we wish to vary a particular attribute of  our generated 
synthetic data. The CelebA dataset includes annotations with various attributes, e.g., 
wearing hat, smiling, etc. 



VAE: Latent Space Arithmetic
• In a similar vein to the latent space arithmetic seen with word-embedding models 
(e.g. Word2Vec), one can use vector arithmetic to meaningfully augment latent 
vectors. 

• For example, if  we want to generate faces that are “smiling”, we could in principle 
take the average latent embedding of  all the faces with the attribute smiling in our 
training set and subtract from this the average latent embedding of  all the faces 
without the attribute smiling. This gives us a vector in the latent space pointing from 
“non-smiling” to “smiling”. 

• Now to apply “smiling” to a latent embedding, we apply the following 
transformation: 

( )α′ = +z z feature_vector



VAE: Latent Space Arithmetic



GAN
• The original GAN paper (Goodfellow et al, 2014) is 
one of  the most influential ML papers in recent years. 

• Simply put, a GAN is a battle between two adversaries:
the generator and the discriminator. 

• The generator attempts to convert random noise into
observations that appear as though they were sampled 
from the original dataset. 

• Conversely, the discriminator tries to predict whether 
an observation comes from the original dataset or is a 
forgery produced by the generator. 



GAN
• At the beginning of  this process, the generator outputs noisy images and the discriminator 
predicts randomly. 

• The key to GANs lies in how we effect the training of  the two networks in tandem, so 
that as the generator becomes more adept at fooling the discriminator, the discriminator 
must adapt in order to maintain its ability to spot “fakes”.



GAN
• Here’s an example specification of  a GAN; the architecture of  the discriminator is given on 
the right. 
Discriminator: define input; stack convolutional layers; flatten the last convolutional layer, 
etc.;  note that a stride of  size 2 in the conv layers will reduce the overall size of  the tensor; 
the final “dense” layer (using sigmoid activation) ensures the output is a scalar in the range 
[0,1], corresponding with the probability that the input image is real. 



GAN
• The input to the generator is a vector, usually drawn from a MVN; the output is an image 
of  the same size as the original dataset. 

• The generator serves the same purpose as the decoder for a VAE, in that it converts a 
vector from the latent space into an image. The trope of  mapping from a low-to-high 
dimensional space is common in DL; for a CNN, this operation is commonly known as 
deconvolution (also: transposed convolution).



GAN: Transposed Convolution
• The transposed convolution operation is effected by performing a “backward strided
convolution”. 

• In the images below, the blue maps are inputs; cyan maps are outputs.  

• Traditionally, one could achieve up-sampling by applying interpolation schemes (e.g. bilinear 
interpolation). Modern architectures such as NNs, however, tend to let the network itself  
learn the proper transformation automatically, without human intervention. 

Basic convolution with 
padding=1, stride =2 

Transposed conv with no 
padding, no stride

Transposed conv with no 
padding and stride



GAN: Transposed Convolution
• Let’s dive a little deeper into the contrast between convolution and transposed convolution. 
• With convolution, consider C as the kernel, Large as the input, and Small as the output 
image after convolution. Following convolution, we down-sample the large image into a small 
output image, i.e. C x Large = Small. 

• In the example shown, we take a 4x4 input matrix and flatten it to 16x1; in addition we 
transform the 3x3 kernel into a 4x16 sparse, orthogonal matrix. Using matrix multiplication, 
the resultant matrix is 4x1, which we then subsequently transform back to a 2x2 output. 



GAN: Transposed Convolution
• If, we multiply the equation C x Large = Small, by CT, we arrive at: CTxSmall = Large. In 
this way multiplication by the transposed convolution yields an up-sampling procedure. (for 
reference: we encountered this operation previously when discussing Hinton’s work with 
AEs). 

• Note that in practice, using a transposed convolution can lead to the presence of  
checkerboard artifacts; to alleviate this, practitioners commonly apply a two-step process 
instead: (i) bilinear up-sample, followed by (ii) convolution. 
• For a comprehensive treatment of  these topics, see: https://arxiv.org/abs/1603.07285

https://arxiv.org/abs/1603.07285


GAN: Training
• In general, training the discriminator amounts to a supervised learning problem: we create a 
training set of  (randomly inserted) real observations from the dataset interspersed with 
outputs produced by the generator (label 1 for true image, 0 for fakes). Recall that binary 
cross-entropy loss is defined: 

( ) ( )
1

1( , ) log( 1 log(1 ))
n
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GAN: Training
• In general, training the discriminator amounts to a supervised learning problem: we create a 
training set of  (randomly inserted) real observations from the dataset interspersed with 
outputs produced by the generator (label 1 for true image, 0 for fakes). Recall that binary 
cross-entropy loss is defined: 

• To train the GAN discriminator D, we calculate the loss when comparing predictions for 
real images 𝑝𝑝𝑖𝑖 = 𝐷𝐷(𝑥𝑥𝑖𝑖) to the response 𝑦𝑦𝑖𝑖= 1 and predictions for generated images 𝑝𝑝𝑖𝑖 =
𝐷𝐷(𝐺𝐺 𝑧𝑧𝑖𝑖 ) to the response 𝑦𝑦𝑖𝑖= 0. Therefore, for the GAN discriminator, minimizing the loss 
function can be written as follows: 

( ) ( )
1

1( , ) log( 1 log(1 ))
n

i i i i
i

L y p y p y p
n =

= − + − −∑
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GAN: Training
• Training the generator is considerably more difficult, as we don’t readily have access to a 
training set that tells us the true image that a particular point in the latent space should be 
mapped to, for instance. 

• To train the generator, we connect it to the discriminator by feeding the output from the 
generator into the discriminator so that the output from the combined model is the 
probability that a generated image is real (according to the discriminator). 



GAN: Training
• Training the generator is considerably more difficult, as we don’t readily have access to a 
training set that tells us the true image that a particular point in the latent space should be 
mapped to, for instance. 

• To train the generator, we connect it to the discriminator by feeding the output from the 
generator into the discriminator so that the output from the combined model is the 
probability that a generated image is real (according to the discriminator). 

• We can train the combined model by creating training batches consisting of  randomly 
generated latent vectors as input and a response which is set to 1, since we want to train the 
generator to produce images that the discriminator thinks are real. The loss is just binary 
cross-entropy loss between the output from the discriminator and the response vector of  1. 

• Importantly, we freeze the weights of  the discriminator while we are training the 
combined model, so that only the generator’s weights are updated. 



GAN: Training

• To train the GAN generator G, we calculate the loss when comparing predictions for the 
generated images 𝑝𝑝𝑖𝑖 = 𝐷𝐷(𝐺𝐺 𝑧𝑧𝑖𝑖 ) to the response 𝑦𝑦𝑖𝑖 = 1.  Therefore for the GAN 
generator, the minimizing loss function can be written as follows: 

( )( )~min log ( ( ))
ZG z pE D G z−   



GAN: Training

( )( )~min log ( ( ))
ZG z pE D G z−   



GAN: Training
• GAN training is equivalent to a zero-sum non-cooperative game. From a game 
theory context, the GAN model converges when the discriminator and the generator 
reach a Nash equilibrium. 

• If  trained properly (which commonly requires the use of  several “tricks” which we 
mention next), the discriminator and generator will converge to an equilibrium that 
allows the generator to learn meaningful information from the discriminator and the 
quality of  the images will improve. 



GAN: Challenges
• GANs are notoriously difficult to train, for several reasons: 

• Mode Collapse: Mode collapse occurs when the generator finds a small number of  
samples that fool the discriminator and therefore isn’t able to produce any examples 
other than this limited set. 

• This can occur, say if  we train the generator over several batches without updating the 
discriminator in between. In this situation, the generator would be inclined to find a 
singly observation that always fools the discriminator (the mode). 

• Oscillating Loss: The losses of  the discriminator and generator oscillate wildly. 
GANs are trained successfully when we observe a loss stabilization (shown in the 
previous slide); unfortunately, oscillating loss is common to vanilla GAN approaches. 



GAN: CycleGAN
• For the image translation task, CycleGAN trains without using paired examples.

• CycleGAN is composed for (4) models: two generators and two discriminators. The 
first generator GAB converts images from domain A to domain B; whereas the second 
generator GBA, converts images from domain B to domain A. 

• The authors employ a U-Net architecture (shown on the right) for the generator 
models. 



GAN: CycleGAN



“World Models” GAN
• Ha and Schmidhuber (NeurIPS, 2018) presented “World Models”, a paradigm for 
training RL agents using a VAE, whereby an agent is trained:

“entirely insides of  its own hallucinated dream generated by its world model, 
and transfer this policy back into the actual environment.”  

https://worldmodels.github.io/

https://worldmodels.github.io/


“World Models” GAN
The pipeline consists of  (3) fundamental components: 

(1) The Vision Model (V), A VAE that encodes high-dimensional observations into a 
low-dimensional latent vector. 



“World Models” GAN
The pipeline consists of  (3) fundamental components: 

(2) A Memory RNN (M): this unit approximates 𝑝𝑝(𝑧𝑧𝑡𝑡) using a GMM; the RNN is 
trained to output the probability distribution of  the next latent vector 𝑧𝑧𝑡𝑡+1 given the 
current and past information available to it -- specifically predict: 𝑝𝑝(𝑧𝑧𝑡𝑡+1|𝑎𝑎𝑎𝑎, 𝑧𝑧𝑎𝑎, ℎ𝑎𝑎)

Technically, M uses an MDN (mixture density network), which has been used previously 
for “sequence generation” (e.g. handwriting). 






“World Models” GAN
The pipeline consists of  (3) fundamental components: 

(3) A controller (C) (a simple) RL agent that determined the course of  actions to take in 
order to maximize the expected cumulative reward of  the agent during a rollout of  the 
environment. 



“World Models” GAN
Training with simulated dreams!

• Because the model can predict the future (!), the authors can use it to generate 
hypothetical racing scenarios on its own. They produce the probability distribution of  
given the current states, and sample a zt+1 in place of  a real observation. The controller 
acts in the hallucinated environment generated by M. 






“World Models” GAN
VizDoom from World Models. 
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